Periodic twists of $G L_{3}$ L-functions

Ph. Michel, EPF Lausanne
a joint work with
E. Kowalski, Y. Lin and W.Sawin

Symposium in Analytic Number Theory Cetraro 2019

For f a fixed modular form, $\chi(\bmod q)$ a Dirichlet character and

$$
L(f \cdot \chi, s)=\sum_{n \geq 1} \frac{\lambda_{f}(n) \chi(n)}{n^{s}}, \Re s>1
$$

the twisteds Hecke L-function. The following subconvex bound was first proven by Duke, Friedlander, Iwaniec:

Subconvex bound

For $\Re s=1 / 2$

$$
L(f \cdot \chi, s) \ll_{f, s} q^{1 / 2-\delta+o(1)}, \delta>0
$$

The bound is substantially equivalent to: for $V \in \mathcal{C}^{\infty}([1,2])$

$$
\sum_{n} \lambda_{f}(n) \chi(n) V\left(\frac{n}{q}\right) \lll f, V q^{1-\delta+o(1)}
$$

A fews years ago, Fouvry, Kowalski and myself looked to establish similar bounds with $\chi(\bmod q)$ replaced by more general q-periodic arithmetic functions. For instance

- Kloosterman fractions: $n \mapsto e\left(a \frac{\bar{n}}{q}\right),(n, q)=1$
- Hyper-Kloosterman sums:

$$
n \mapsto \mathrm{Kl}_{k}(n ; q)=\frac{1}{q^{\frac{k-1}{2}}} \sum_{x_{1} x \cdots x_{k}=n} e\left(\frac{x_{1}+\cdots+x_{k}}{q}\right),(n, q)=1 .
$$

These functions (along with Dirichet characters) are examples of trace functions.

Trace functions

Given $(\ell, q)=1$, choose an embedding $\iota: \overline{\mathbb{Q}_{\ell}} \hookrightarrow \mathbb{C}$.
The basic datum is a Galois representation

$$
\rho: \operatorname{Gal}\left(\overline{\mathbb{F}_{q}}[T] / \mathbb{F}_{q}(T)\right) \rightarrow \operatorname{GL}(V)
$$

for V a finite dimensional $\overline{\mathbb{Q}}$-vector space.
We assume that ρ is ($\iota-)$ pure of weight 0 : the eigenvalues of the Frobenius at any unramified place of $\mathbb{F}_{q}(T)$ have absolute value 1 . The trace function associated with ρ is the function

$$
K_{\rho}: t \in \mathbb{F}_{q} \mapsto \operatorname{tr}\left(\operatorname{Frob}_{t} \mid V^{I_{t}}\right) \in \overline{\mathbb{Q}_{\ell}} \hookrightarrow \mathbb{C}
$$

(here " t " denote the place associated with the polynomial $T-t$.) It follows from purity that

$$
\left\|K_{\rho}\right\|_{\infty} \leq \operatorname{dim} V
$$

To such a trace function, is associated the conductor $C(\rho)$ which is a measure the complexity of the geometric representation (the sum of the rank and of the ramification invariants, the drops and the Swan conductors).

Theorem (FKM)

Suppose f cuspidal. For any trace function $K=K_{\rho}: \mathbb{F}_{q} \rightarrow \mathbb{C}$, one has

$$
\sum_{n} \lambda_{f}(n) K(n) V\left(\frac{n}{q}\right)<_{f, V, C(\rho)} q^{1-\delta+o(1)}, \delta=1 / 8
$$

Here the dependency in $C(\rho)$ is polynomial. Moreover this bound holds for f non- cuspidal, if K "is not" an additive character $n \mapsto e\left(\frac{a n}{q}\right)$ (ie. ρ "is not" an Artin-Schreier representation)

By a version of Schur's lemma one is essentially reduced to the case where ρ geometrically irreducible.

The proof uses the amplification method but in the different way than DFI:

- DFI amplify the character χ within the family of character $\left\{\chi^{\prime}(\bmod q)\right\}$; ie. proceed from the trivial bound

$$
\begin{aligned}
&\left|\sum_{n} \lambda_{f}(n) \chi(n) \vee\left(\frac{n}{q}\right)\right|^{2}\left|M_{\chi}(\chi)\right|^{2} \leq \\
& \sum_{\chi^{\prime}(\bmod q)}\left|\sum_{n} \lambda_{f}(n) \chi^{\prime}(n) V\left(\frac{n}{q}\right)\right|^{2}\left|M_{\chi}\left(\chi^{\prime}\right)\right|^{2}
\end{aligned}
$$

and then bound the second moment on the righthand side by opening the squares and using harmonic analysis; here $\chi^{\prime} \mapsto M_{\chi}\left(\chi^{\prime}\right)$ is a suitable "amplifier" of χ.

The proof uses the amplification method but in the different way than DFI:

- DFI amplify the character χ within the family of character $\left\{\chi^{\prime}(\bmod q)\right\}$; ie. proceed from the trivial bound

$$
\begin{aligned}
&\left|\sum_{n} \lambda_{f}(n) \chi(n) V\left(\frac{n}{q}\right)\right|^{2}\left|M_{\chi}(\chi)\right|^{2} \leq \\
& \sum_{\chi^{\prime}(\bmod q)}\left|\sum_{n} \lambda_{f}(n) \chi^{\prime}(n) V\left(\frac{n}{q}\right)\right|^{2}\left|M_{\chi}\left(\chi^{\prime}\right)\right|^{2}
\end{aligned}
$$

and then bound the second moment on the righthand side by opening the squares and using harmonic analysis; here $\chi^{\prime} \mapsto M_{\chi}\left(\chi^{\prime}\right)$ is a suitable "amplifier" of χ.

The proof uses the amplification method but in the different way than DFI:

- FKM (following Bykovski) amplify the Hecke eigenform $f /(q+1)^{1 / 2}$ within an orthogonormal basis of modular forms of level $q, \mathcal{B}\left(\Gamma_{0}(q)\right)$; ie. proceed from the trivial bound

$$
\begin{aligned}
& \frac{1}{q+1}\left|\sum_{n} \lambda_{f}(n) K(n) V\left(\frac{n}{q}\right)\right|^{2}\left|M_{f}(f)\right|^{2} \leq \\
& \sum_{f^{\prime} \in \mathcal{B}\left(\Gamma_{0}(q)\right)}\left|\sum_{n} \lambda_{f^{\prime}}(n) K(n) V\left(\frac{n}{q}\right)\right|^{2}\left|M_{f}\left(f^{\prime}\right)\right|^{2}
\end{aligned}
$$

then bound the second moment on the righthand side by opening the squares and using harmonic analysis; here $f^{\prime} \mapsto M_{f}\left(f^{\prime}\right)$ is a suitable amplifier of f.

After performing harmonic analysis (Petersson-Kuznetsov formula + Poisson) one face some correlation sums

$$
C(\widehat{K}, \gamma)=\frac{1}{q^{1 / 2}} \sum_{z \in \mathbb{F}_{q}} \overline{\widehat{K}(z)} \cdot \widehat{K}(\gamma \cdot z)
$$

where

$$
\widehat{K}(z)=\frac{1}{q^{1 / 2}} \sum_{t} K(t) e\left(\frac{z t}{q}\right)
$$

is the Fourier transform of K, and

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right), \gamma \cdot z=\frac{a z+b}{c z+d} .
$$

A key fact due to Laumon is that unless ρ is Artin-Schreier (K is an additive character), \widehat{K} is a trace function whose conductor $C(\widehat{\rho})$ is controlled by $C(\rho)$.

After performing harmonic analysis (Petersson-Kuznetsov formula + Poisson) one face some correlation sums

$$
C(\widehat{K}, \gamma)=\frac{1}{q^{1 / 2}} \sum_{z \in \mathbb{F}_{q}} \overline{\widehat{K}(z)} \cdot \widehat{K}(\gamma \cdot z)
$$

where

$$
\widehat{K}(z)=\frac{1}{q^{1 / 2}} \sum_{t} K(t) e\left(\frac{z t}{q}\right)
$$

is the Fourier transform of K, and

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right), \gamma \cdot z=\frac{a z+b}{c z+d}
$$

A key fact due to Laumon is that unless ρ is Artin-Schreier (K is an additive character), \widehat{K} is a trace function whose conductor $C(\widehat{\rho})$ is controlled by $C(\rho)$.

By the work of Deligne and Laumon, the correlation sums $C(\widehat{K}, \gamma)$ are typically $<_{C(\rho)} 1$ and otherwise they satisfy

$$
\begin{equation*}
C(\widehat{K}, \gamma) \gg C(\rho) q^{1 / 2} \tag{1}
\end{equation*}
$$

Theorem (Classification of group of automorphisms of sheaves)

The set of γ such that (1) holds is contained in $G_{\widehat{\rho}}\left(\mathbb{F}_{q}\right)$ the set of \mathbb{F}_{q}-points of an algebraic subgroup of PGL_{2}. Moreover $\left|G_{\widehat{\rho}}\left(\mathbb{F}_{q}\right)\right|$ is either "small" (bounded in terms of $C(\rho)$) or has a simple structure.

This show that the correlation sums $C(\widehat{K}, \gamma)$ which occur in

are of size $<_{C(\rho)} 1$ outside a well controlled diagonal set. From there one conclude the proof.

By the work of Deligne and Laumon, the correlation sums $C(\widehat{K}, \gamma)$ are typically $<_{C(\rho)} 1$ and otherwise they satisfy

$$
\begin{equation*}
C(\widehat{K}, \gamma) \gg C(\rho) q^{1 / 2} \tag{1}
\end{equation*}
$$

Theorem (Classification of group of automorphisms of sheaves)

The set of γ such that (1) holds is contained in $G_{\widehat{\rho}}\left(\mathbb{F}_{q}\right)$ the set of \mathbb{F}_{q}-points of an algebraic subgroup of PGL_{2}. Moreover $\left|G_{\widehat{\rho}}\left(\mathbb{F}_{q}\right)\right|$ is either "small" (bounded in terms of C(ρ)) or has a simple structure.
This show that the correlation sums $C(\widehat{K}, \gamma)$ which occur in

$$
\sum_{f^{\prime} \in \mathcal{B}\left(\Gamma_{0}(q)\right)}\left|\sum_{n} \lambda_{f^{\prime}}(n) K(n) V\left(\frac{n}{q}\right)\right|^{2}\left|M_{f}\left(f^{\prime}\right)\right|^{2}
$$

are of size $<_{C(\rho)} 1$ outside a well controlled diagonal set. From there one conclude the proof.

More striking examples of this amplification scheme (ie amplifying f inside $\mathcal{B}\left(\Gamma_{0}(q), \bullet\right)$ (instead of χ) are found in the works of Conrey-Iwaniec and Petrow-Young to prove subconvex bounds Weyl type(see the next talk).

Twists of GL_{3} L-functions

The subconvexity problem for $G L_{2}$ is completely solved (at least qualitatively.)
For $G L_{3} L$-functions, the first break was made by X. Li. Later R. Munshi developed a new set of techniques leading eventually to:

Theorem (Munshi)

Let f be a $S L_{3}(\mathbb{Z})$-invariant cusp form. For $\Re s=1 / 2$,

$$
L(f \cdot \chi, s) \ll f, s q^{3 / 4-\delta+o(1)}, \delta=1 / 308
$$

Munshi's method does not use amplification but an elaborate variant of the δ-symbol method, the Voronoi summation formula and reciprocity for Kloosterman fractions.

Recently R. Holowinsky and P. Nelson found a major simplification of Munshi approach leading to a significant improvement:

Theorem (Holowinsky-Nelson)

Let f be a $S L_{3}(\mathbb{Z})$-invariant cusp form. For $\Re s=1 / 2$,

$$
L(f \cdot \chi, s) \ll_{f, s} q^{3 / 4-\delta+o(1)}, \delta=1 / 36 .
$$

Again this bound is substantially equivalent to the bound

$$
\sum_{n} \lambda_{f}(1, n) \chi(n) V\left(\frac{n}{q^{3 / 2}}\right) \ll_{f, V} q^{3 / 2-\delta+o(1)}
$$

where $\left(\lambda_{f}(m, n)\right)_{m, n}$ denote the Hecke eigenvalues of f. This method is very robust and extends to general trace functions

More generally we define

$$
S_{V}(K, X):=\sum_{n} \lambda_{f}(1, n) K(n) V\left(\frac{n}{X}\right)
$$

Theorem (KLMS)

Let K be a trace function of modulus q, and X such that $X \leq q^{2}$, one has

$$
S_{V}(K, X) \ll_{f, V, C(\rho)} q^{2 / 9+o(1)} X^{5 / 6}
$$

- For $X=q^{3 / 2}$ one obtains $<_{f, V, C(\rho)} q^{3 / 2-1 / 36+o(1)}$
- the bound is non trivial as long as $X \geq q^{4 / 3+o(1)}$.

If K is an additive character, S . Miller has proven an analog of Wilton's bound

$$
S_{V}\left(e\left(a \frac{\bullet}{q}\right), X\right) \ll_{f} X^{3 / 4+o(1)}
$$

So wlog wma K is not an additive character.
The first step is to realize the q-periodic function K within a one-parameter family of q-periodic functions. Define

$$
\widehat{K}(z, h):= \begin{cases}\widehat{K}(z) e_{q}(-h \bar{z}) & q \nmid z \\ \widehat{K}(0) & q \mid z\end{cases}
$$

for $(z, h) \in \mathbb{Z}^{2}$ so that

$$
K(n, h):=\frac{1}{q^{1 / 2}} \sum_{z \in \mathbb{F}_{q}^{\times}} \widehat{K}(z, h) e_{q}(-n z) .
$$

If K is an additive character, S . Miller has proven an analog of Wilton's bound

$$
S_{V}\left(e\left(a \frac{\bullet}{q}\right), X\right)<_{f} X^{3 / 4+o(1)}
$$

So wlog wma K is not an additive character.
The first step is to realize the q-periodic function K within a one-parameter family of q-periodic functions. Define

$$
\widehat{K}(z, h):= \begin{cases}\widehat{K}(z) e_{q}(-h \bar{z}) & q \nmid z \\ \widehat{K}(0) & q \mid z\end{cases}
$$

for $(z, h) \in \mathbb{Z}^{2}$ so that

$$
K(n, h):=\frac{1}{q^{1 / 2}} \sum_{z \in \mathbb{F}_{q}^{\times}} \widehat{K}(z, h) e_{q}(-n z) .
$$

Taking $h=0$ in the above

$$
K(n, 0)=K(n)-\frac{\widehat{K}(0)}{q^{1 / 2}} .
$$

and, more generally, for any probability measure ϖ on \mathbb{F}_{q}^{\times}, we have

$$
K_{\varpi}(n, 0)=K(n)-\frac{\widehat{K}(0)}{q^{1 / 2}} .
$$

where

$$
K_{\varpi}(n, h):=\sum_{u \in \mathbb{F}_{q}^{\times}} \varpi(u) K(n, \bar{u} h)
$$

It follows that

$$
\begin{aligned}
S_{V}(K, X)= & \sum_{u \in \mathbb{F}_{q}^{\times}} \varpi(u) \sum_{|h| \leq H} S_{V}(K(\bullet, \bar{u} h), X) \\
& -\sum_{u \in \mathbb{F}_{q}^{\times}} \varpi(u) \sum_{0<|h| \leq H} S_{V}(K(\bullet, \bar{u} h), X)+E r r \\
= & \mathcal{F}-\mathcal{O}+E r r .
\end{aligned}
$$

We take ω to be supported on the classes $u \equiv \bar{p} . /(\bmod q)$ for pairs of primes $p \sim P, I \sim L$ with $P, L<q^{1 / 2}$.

Bounding \mathcal{F}

$$
\mathcal{F}=\frac{\log P}{P / 2} \frac{\log L}{L / 2} \sum_{p, l} \sum_{|h| \leq H} \sum_{n} \lambda_{f}(1, n) K(n, p \bar{I} h) V\left(\frac{n}{X}\right) .
$$

We apply Poisson on h getting for the h, n sums

$$
\frac{H}{q^{1 / 2}} \sum_{|r| \leq q / H} \sum_{n} \lambda_{f}(1, n) \widehat{K}(-p \overline{\operatorname{Ir}}) e\left(\frac{\operatorname{Tr} p n}{q}\right) V\left(\frac{n}{X}\right)
$$

and apply reciprocity

$$
e\left(\frac{\overline{T r} p n}{q}\right)=e\left(-\frac{\bar{q} p n}{\mid r}\right) e\left(\frac{p n}{q / r}\right) \approx e\left(-\frac{\bar{q} p n}{I r}\right)
$$

for $X P=(1 / 2) q^{2} L / H$ or $H=q^{2} L / 2 X P$.

Bounding \mathcal{F}

$$
\mathcal{F}=\frac{\log P}{P / 2} \frac{\log L}{L / 2} \sum_{p, I} \sum_{|h| \leq H} \sum_{n} \lambda_{f}(1, n) K(n, p \bar{I} h) V\left(\frac{n}{X}\right) .
$$

We apply Poisson on h getting for the h, n sums

$$
\frac{H}{q^{1 / 2}} \sum_{|r| \leq q / H} \sum_{n} \lambda_{f}(1, n) \widehat{K}(-p \overline{\operatorname{lr}}) e\left(\frac{\operatorname{Tr} p n}{q}\right) V\left(\frac{n}{X}\right)
$$

and apply reciprocity

$$
e\left(\frac{\overline{\operatorname{lr}} p n}{q}\right)=e\left(-\frac{\bar{q} p n}{l r}\right) e\left(\frac{p n}{q l r}\right) \approx e\left(-\frac{\bar{q} p n}{l r}\right)
$$

for $X P=(1 / 2) q^{2} L / H$ or $H=q^{2} L / 2 X P$.

Bounding \mathcal{F}

$$
\mathcal{F}=\frac{\log P}{P / 2} \frac{\log L}{L / 2} \sum_{p, I} \sum_{|h| \leq H} \sum_{n} \lambda_{f}(1, n) K(n, p \bar{I} h) V\left(\frac{n}{X}\right) .
$$

We apply Poisson on h getting for the h, n sums

$$
\frac{H}{q^{1 / 2}} \sum_{|r| \leq q / H} \sum_{n} \lambda_{f}(1, n) \widehat{K}(-p \overline{\operatorname{lr}}) e\left(\frac{\operatorname{Tr} p n}{q}\right) V\left(\frac{n}{X}\right)
$$

and apply reciprocity

$$
e\left(\frac{\overline{\operatorname{lr}} p n}{q}\right)=e\left(-\frac{\bar{q} p n}{l r}\right) e\left(\frac{p n}{q / r}\right) \approx e\left(-\frac{\bar{q} p n}{l r}\right),
$$

for $X P=(1 / 2) q^{2} L / H$ or $H=q^{2} L / 2 X P$.

We use the automorphy of f through Voronoi summation formula:

$$
\begin{aligned}
& \sum_{n} \lambda_{f}(1, n) e\left(-\frac{\bar{q} p n}{I r}\right) V(n / X) \\
& \approx \frac{X}{(L q / H)^{3 / 2}} \sum_{n \ll(L q / H)^{3} / X} \lambda_{f}(n, 1) K I_{2}(\pm \bar{p} q n ; / r)
\end{aligned}
$$

We then Cauchy to smooth out n

and apply Poisson on the resulting n-sum

$$
\sum_{n} K I_{2}\left(\pm \bar{p}_{1} q n ; l_{1} r\right) K I_{2}\left(\pm \bar{p}_{2} q n ; l_{2} r\right) V_{1}\left(\frac{n}{X}\right)
$$

and use the expression of the Fourier transform of the product of Kloosterman sums in terms of Ramanujan sums.

We use the automorphy of f through Voronoi summation formula:

$$
\begin{aligned}
& \sum_{n} \lambda_{f}(1, n) e\left(-\frac{\bar{q} p n}{l r}\right) V(n / X) \\
& \approx \frac{X}{(L q / H)^{3 / 2}} \sum_{n \ll(L q / H)^{3} / X} \lambda_{f}(n, 1) K I_{2}(\pm \bar{p} q n ; / r)
\end{aligned}
$$

We then Cauchy to smooth out n
$\sum_{p, l, n, r} \sum_{n, r} \cdots\left(\sum_{n, r}\left|\lambda_{f}(n, 1)\right|^{2}\right)^{1 / 2}\left(\sum_{n, r}\left|\sum_{p, l} \widehat{K}(-p \overline{p r}) K I_{2}(\pm \bar{p} q n ; I r)\right|^{2}\right)^{1 / 2}$
and apply Poisson on the resulting n-sum

$$
\sum_{n} K I_{2}\left(\pm \bar{p}_{1} q n ; l_{1} r\right) K I_{2}\left(\pm \bar{p}_{2} q n ; l_{2} r\right) V_{1}\left(\frac{n}{X}\right)
$$

and use the expression of the Fourier transform of the product of Kloosterman sums in terms of Ramanujan sums.

We use the automorphy of f through Voronoi summation formula:

$$
\begin{aligned}
& \sum_{n} \lambda_{f}(1, n) e\left(-\frac{\bar{q} p n}{I r}\right) V(n / X) \\
& \approx \frac{X}{(L q / H)^{3 / 2}} \sum_{n \ll(L q / H)^{3} / X} \lambda_{f}(n, 1) K I_{2}(\pm \bar{p} q n ; / r)
\end{aligned}
$$

We then Cauchy to smooth out n
$\sum_{p, l, n, r} \sum_{n, r} \cdots\left(\sum_{n, r}\left|\lambda_{f}(n, 1)\right|^{2}\right)^{1 / 2}\left(\sum_{n, r}\left|\sum_{p, l} \widehat{K}(-p \overline{p r}) K I_{2}(\pm \bar{p} q n ; I r)\right|^{2}\right)^{1 / 2}$
and apply Poisson on the resulting n-sum

$$
\sum_{n} K I_{2}\left(\pm \bar{p}_{1} q n ; l_{1} r\right) K I_{2}\left(\pm \bar{p}_{2} q n ; l_{2} r\right) V_{1}\left(\frac{n}{X}\right)
$$

and use the expression of the Fourier transform of the product of Kloosterman sums in terms of Ramanujan sums.

We obtain that for $L \leq P^{4}$

$$
\mathcal{F} \ll q^{o(1)}\left(\frac{X^{3 / 2} P}{q L^{1 / 2}}+X^{3 / 4}(q P L)^{1 / 4}\right)
$$

and to be non-trivial one need at least that $X \geq q^{1+\eta}$.

Remark

At this stage the only information we have used is that K, not being the trace function of an Artin-Schreier representation, satisfies

$$
\|\widehat{K}\|_{\infty} \ll C(\rho) 1
$$

Bounding \mathcal{O}

Recall that

$$
\mathcal{O}=\frac{\log P}{P / 2} \frac{\log L}{L / 2} \sum_{p, l} \sum_{\substack{0<|h| \leq H \\(h, l)=1}} \sum_{n} \lambda_{f}(1, n) K(n, p \bar{I} h) V\left(\frac{n}{X}\right) .
$$

This time we immediately Cauchy to smooth n and evaluate

$$
\begin{aligned}
& \sum_{\substack{p_{1}, h_{1}, l_{1} \\
p_{2}, h_{2}, l_{2}}} \sum_{n} K\left(n, p_{1} \bar{I}_{1} h_{1}\right) \overline{K\left(n, p_{2} \bar{I}_{2} h_{2}\right)} V\left(\frac{n}{X}\right) \\
& =\sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{\times}} \nu\left(x_{1}\right) \nu\left(x_{2}\right) \sum_{n} K\left(n, x_{1}\right) \overline{K\left(n, x_{2}\right)}
\end{aligned}
$$

Since $X \geq q^{1+\eta}$, only the zero contribution in the dual variable survives and the sum becomes

$$
\begin{aligned}
& \frac{X}{q^{1 / 2}} \sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{\times}} \nu\left(x_{1}\right) \nu\left(x_{2}\right) \frac{1}{q^{1 / 2}} \sum_{u \in \mathbb{F}_{q}} K\left(u, x_{1}\right) \overline{K\left(u, x_{2}\right)} \\
= & \frac{x}{q^{1 / 2}} \sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{\times}} \nu\left(x_{1}\right) \nu\left(x_{2}\right) \frac{1}{q^{1 / 2}} \sum_{u \in \mathbb{F}_{q}} \widehat{K}\left(u, x_{1}\right) \overline{\widehat{K}\left(u, x_{2}\right)}
\end{aligned}
$$

This time we immediately Cauchy to smooth n and evaluate

$$
\begin{aligned}
& \sum_{\substack{p_{1}, h_{1}, l_{1} \\
p_{2}, h_{2}, l_{2}}} \sum_{n} K\left(n, p_{1} \bar{I}_{1} h_{1}\right) \overline{K\left(n, p_{2} \bar{I}_{2} h_{2}\right)} V\left(\frac{n}{X}\right) \\
& =\sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{\times}} \nu\left(x_{1}\right) \nu\left(x_{2}\right) \sum_{n} K\left(n, x_{1}\right) \overline{K\left(n, x_{2}\right)}
\end{aligned}
$$

Since $X \geq q^{1+\eta}$, only the zero contribution in the dual variable survives and the sum becomes

$$
\begin{aligned}
& \frac{X}{q^{1 / 2}} \sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{\times}} \nu\left(x_{1}\right) \nu\left(x_{2}\right) \frac{1}{q^{1 / 2}} \sum_{u \in \mathbb{F}_{q}} K\left(u, x_{1}\right) \overline{K\left(u, x_{2}\right)} \\
= & \frac{X}{q^{1 / 2}} \sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{\times}} \nu\left(x_{1}\right) \nu\left(x_{2}\right) \frac{1}{q^{1 / 2}} \sum_{u \in \mathbb{F}_{q}} \widehat{K}\left(u, x_{1}\right) \overline{\widehat{K}\left(u, x_{2}\right)}
\end{aligned}
$$

Moreover

$$
\frac{1}{q^{1 / 2}} \sum_{u \in \mathbb{F}_{q}} \widehat{K}\left(u, x_{1}\right) \overline{\widehat{K}\left(u, x_{2}\right)}=L\left(x_{1}-x_{2}\right)
$$

with

$$
L(x)=\frac{1}{q^{1 / 2}} \sum_{u \in \mathbb{F}_{q}^{\times}}|\widehat{K}(u)|^{2} e\left(-\frac{\bar{u} x}{q}\right)+\frac{1}{q^{1 / 2}}|\widehat{K}(0)|^{2} .
$$

The second term is no problem.
For the first term, observe that if $|\widehat{K}(u)|^{2}=1$ a.e. (which is the case for $K=\chi$ treated by HN) the first term is a Ramanujan sum hence very small.

In general we have the following elementary:

Lemma

Given $\mu, \nu, L: \mathbb{F}_{q} \rightarrow \mathbb{C}$ we have

$$
\sum_{x_{1}, x_{2} \in \mathbb{F}_{q}} \nu\left(x_{1}\right) \nu\left(x_{2}\right) L\left(x_{1}-x_{2}\right) \leq q^{1 / 2}\|\nu\|_{2}^{2}\|\widehat{L}\|_{\infty} .
$$

which is proven by separating x_{1}, x_{2} in $L\left(x_{1}-x_{2}\right)$ using the inverse Fourier transform formula and Cauchying.

In the present case we have

$$
\widehat{L}(u)=|\widehat{K}(0)|^{2} \delta_{u \equiv 0(\bmod q)}+|\widehat{K}(\bar{u})|^{2} \delta_{u \neq 0(\bmod q)},
$$

and (assuming PHL $<q$)

$$
\begin{aligned}
\|\nu\|_{2}^{2} & =\left|\left\{\left(p_{1}, h_{1}, l_{1}, p_{2}, h_{2}, l_{2}\right), p_{1} \bar{T}_{1} h_{1} \equiv p_{2} \bar{T}_{2} h_{2}(\bmod q)\right\}\right| \\
& =\left|\left\{\left(p_{1}, h_{1}, l_{1}, p_{2}, h_{2}, l_{2}\right), p_{1} l_{2} h_{1}=p_{2} l_{1} h_{2}\right\}\right|=(P H L)^{1+o(1)} .
\end{aligned}
$$

This yields

$$
\mathcal{O}<_{f} q^{o(1)}\|\widehat{K}\|_{\infty} \frac{q X^{1 / 2}}{P} .
$$

Combining the \mathcal{F} and \mathcal{O} bounds we conclude.

Remark

The only information we have used is that K, not being the trace function of an Artin-Schreier representation, satisfies

$$
\|\widehat{K}\|_{\infty} \ll c(\rho) 1 .
$$

In the present case we have

$$
\widehat{L}(u)=|\widehat{K}(0)|^{2} \delta_{u \equiv 0(\bmod q)}+|\widehat{K}(\bar{u})|^{2} \delta_{u \neq 0(\bmod q)}
$$

and (assuming $P H L<q$)

$$
\begin{aligned}
\|\nu\|_{2}^{2} & =\left|\left\{\left(p_{1}, h_{1}, l_{1}, p_{2}, h_{2}, l_{2}\right), p_{1} \bar{I}_{1} h_{1} \equiv p_{2} \bar{I}_{2} h_{2}(\bmod q)\right\}\right| \\
& =\left|\left\{\left(p_{1}, h_{1}, l_{1}, p_{2}, h_{2}, l_{2}\right), p_{1} l_{2} h_{1}=p_{2} I_{1} h_{2}\right\}\right|=(P H L)^{1+o(1)} .
\end{aligned}
$$

This yields

$$
\mathcal{O}<_{f} q^{o(1)}\|\widehat{K}\|_{\infty} \frac{q X^{1 / 2}}{P}
$$

Combining the \mathcal{F} and \mathcal{O} bounds we conclude.

Remark

The only information we have used is that K, not being the trace function of an Artin-Schreier representation, satisfies

$$
\|\widehat{K}\|_{\infty} \ll C(\rho)
$$

In the present case we have

$$
\widehat{L}(u)=|\widehat{K}(0)|^{2} \delta_{u \equiv 0(\bmod q)}+|\widehat{K}(\bar{u})|^{2} \delta_{u \neq 0(\bmod q)}
$$

and (assuming $P H L<q$)

$$
\begin{aligned}
\|\nu\|_{2}^{2} & =\left|\left\{\left(p_{1}, h_{1}, l_{1}, p_{2}, h_{2}, l_{2}\right), p_{1} \bar{I}_{1} h_{1} \equiv p_{2} \bar{I}_{2} h_{2}(\bmod q)\right\}\right| \\
& =\left|\left\{\left(p_{1}, h_{1}, l_{1}, p_{2}, h_{2}, l_{2}\right), p_{1} I_{2} h_{1}=p_{2} I_{1} h_{2}\right\}\right|=(P H L)^{1+o(1)}
\end{aligned}
$$

This yields

$$
\mathcal{O} \ll_{f} q^{o(1)}\|\widehat{K}\|_{\infty} \frac{q X^{1 / 2}}{P}
$$

Combining the \mathcal{F} and \mathcal{O} bounds we conclude.

Remark

The only information we have used is that K, not being the trace function of an Artin-Schreier representation, satisfies

$$
\|\widehat{K}\|_{\infty} \ll C(\rho) 1 .
$$

The reason why the proof uses relatively "little" ℓ-adic cohomology (" only" Deligne's Weil II) is because the convexity range is $n \sim q^{3 / 2}$ while the period of K is q making is possible to apply Poisson to great effect.
Things should become very different if one tries to get X close to or below q.
For instance being able to go below q for $K(n)=K I_{3}(n ; q)$ would make it possible to evaluate asymptotically the first moment

and to obtain non-vanishing results for central values of twists: so far this is known only on average over suitable composite moduli $q_{1} q_{2}$ (W. Luo).

The reason why the proof uses relatively "little" ℓ-adic cohomology (" only" Deligne's Weil II) is because the convexity range is $n \sim q^{3 / 2}$ while the period of K is q making is possible to apply Poisson to great effect.
Things should become very different if one tries to get X close to or below q.
For instance being able to go below q for $K(n)=K I_{3}(n ; q)$ would make it possible to evaluate asymptotically the first moment

$$
\sum_{\chi(\bmod q)} L(f \cdot \chi, 1 / 2)
$$

and to obtain non-vanishing results for central values of twists: so far this is known only on average over suitable composite moduli $q_{1} q_{2}$ (W. Luo).

We expect going below q to be quite challenging:

- for f the $1 \oplus 1 \oplus 1$ Eisenstein series and $K=K I_{3}$ this amount to the groundbreaking paper of FI on d_{3} in large arithmetic progressions.
- for f the $g \oplus 1$ for g a $G L_{2}$ cusp form and $K=K l_{3}$ this was worked out by R. Zacharias and this uses crucially bounds for bilinear sums of Kloosterman sums proven by KMS:

$$
\sum_{m, n \sim q^{1 / 2}} \sum_{m} \beta_{n} K I_{k}(m n ; q) \ll q^{o(1)}\|\alpha\|_{2}\|\beta\|_{2} q^{1 / 2-\delta}, \delta>0
$$

We expect going below q to be quite challenging:

- for f the $1 \oplus 1 \oplus 1$ Eisenstein series and $K=K I_{3}$ this amount to the groundbreaking paper of FI on d_{3} in large arithmetic progressions.
- for f the $g \oplus 1$ for g a $G L_{2}$ cusp form and $K=K I_{3}$ this was worked out by R. Zacharias and this uses crucially bounds for bilinear sums of Kloosterman sums proven by KMS:

$$
\sum_{m, n \sim q^{1 / 2}} \sum_{m} \beta_{n} K I_{k}(m n ; q) \ll q^{o(1)}\|\alpha\|_{2}\|\beta\|_{2} q^{1 / 2-\delta}, \delta>0 .
$$

We expect going below q to be quite challenging:

- for f the $1 \oplus 1 \oplus 1$ Eisenstein series and $K=K I_{3}$ this amount to the groundbreaking paper of FI on d_{3} in large arithmetic progressions.
- for f the $g \oplus 1$ for g a $G L_{2}$ cusp form and $K=K l_{3}$ this was worked out by R. Zacharias and this uses crucially bounds for bilinear sums of Kloosterman sums proven by KMS:

$$
\sum_{m, n \sim q^{1 / 2}} \sum_{m} \beta_{n} K I_{k}(m n ; q) \ll q^{o(1)}\|\alpha\|_{2}\|\beta\|_{2} q^{1 / 2-\delta}, \delta>0 .
$$

Subconvexity for twists of $\mathrm{GL}_{3} \times \mathrm{GL}_{2}$

Very recently (June 22 2019) P. Sharma posted a detailed draft of a subconvex bound for twists of $\mathrm{GL}_{2} \times \mathrm{GL}_{3}$ L-function:

Theorem

Let φ be a $\mathrm{GL}_{3}(\mathbb{Z})$ cup form and f be a GL_{2}-cusp form. One has for $\Re s=1 / 2$

$$
L(\varphi \times f \cdot \chi, s) \ll q^{3 / 2-\delta+o(1)}, \delta>0
$$

The bound is essentially equivalent to

$$
\sum_{n} \lambda(1, n) \lambda_{f}(n) \chi(n) V\left(\frac{n}{q^{3}}\right) \lll \varphi, f, V q^{3-\delta+o(1)}
$$

The proof uses

- δ-symbol methods.
- Conductor decreasing trick.
- GL_{2} and GL_{3}-Voronoi.
- Cauchy.
- Poisson (aka GL_{1}-Voronoi). Some non-zero frequencies contribute here.
- Squareroot cancellation in multivariable exponential sums by summoning the Adolphson-Sperber non-degeneracy criterion.

Excepted for the very last step, the proof does not use that χ is a Dirichlet character (in particular does not use multiplicativity). One can therefore redo the proof with K replaced by a general trace function.

- In the end the most complicated exponential sum one need to face is: for $(I, m, p) \in \mathbb{F}_{q}^{\times}$some parameters (arising from amplification and δ-symbol methods)

$$
\begin{aligned}
& Z_{\ell, m, p}(v):=\frac{1}{q^{1 / 2}} \sum_{a(\bmod q)} K(a) \mathrm{Kl}_{2}\left(\bar{p}^{2} m a ; q\right) \mathrm{Kl}_{2}\left(\bar{p}^{3} \ell \bar{v} a ; q\right) \\
& \mathcal{C}_{\ell, m, p, \ell^{\prime}, m^{\prime}, p^{\prime}}(h ; q):=\frac{1}{q^{1 / 2}} \sum_{v \in \mathbb{F}_{q}^{\times}} Z_{l, m, p}(v) \overline{Z_{l^{\prime}, m^{\prime}, p^{\prime}}\left(v+\overline{p p^{\prime}} h\right)}
\end{aligned}
$$

Excepted for the very last step, the proof does not use that χ is a Dirichlet character (in particular does not use multiplicativity). One can therefore redo the proof with K replaced by a general trace function.

- In the end the most complicated exponential sum one need to face is: for $(I, m, p) \in \mathbb{F}_{q}^{\times}$some parameters (arising from amplification and δ-symbol methods)

$$
\begin{aligned}
& Z_{\ell, m, p}(v):=\frac{1}{q^{1 / 2}} \sum_{a(\bmod q)} K(a) \mathrm{Kl}_{2}\left(\bar{p}^{2} m a ; q\right) \mathrm{Kl}_{2}\left(\bar{p}^{3} \ell \bar{v} a ; q\right) \\
& \mathcal{C}_{\ell, m, p, \ell^{\prime}, m^{\prime}, p^{\prime}}(h ; q):=\frac{1}{q^{1 / 2}} \sum_{v \in \mathbb{F}_{q}^{\times}} Z_{l, m, p}(v) \overline{Z_{l^{\prime}, m^{\prime}, p^{\prime}}\left(v+\overline{p p^{\prime}} h\right)}
\end{aligned}
$$

Theorem (KLMS)

If the sheaf \mathcal{F} associated to K does not satisfy any of these conditions

- For $\lambda \in \mathbb{F}_{q}^{\times}-\{1\}$ the geometric monodromy of \mathcal{F} has some quotient isomorphic to $[\times \lambda]^{*} \mathcal{K} \mathcal{L}_{2}$.
- For some $\lambda \in \mathbb{F}_{q}^{\times}-\{1\}, \mathcal{F}$ and $[\times \lambda]^{*} \mathcal{F}$ are geometrically isomorphic.
- The local monodromy of \mathcal{F} at ∞ has a slope equal to $1 / 2$. then whenever $h \neq 0(\bmod q)$ or $(I, m, p) \neq\left(I^{\prime}, m^{\prime}, p^{\prime}\right)$ one has

$$
\mathcal{C}_{\ell, m, p, \ell^{\prime}, m^{\prime}, p^{\prime}}(h ; q) \ll 1
$$

- The Z function can be obtained from K by a sequence of simple transformations (we assume $\ell=m=p=1$ for simplicity)

$$
\begin{aligned}
K(x) \xrightarrow{x \mathrm{Kl}_{2}} L(x)=K(x) \mathrm{Kl}_{2}(x) \xrightarrow{F T} \widehat{L}(y) \\
\xrightarrow{\text { inv }} M(y):=\widehat{L}\left(y^{-1}\right) \xrightarrow{F T} \widehat{M}(u) \xrightarrow{\text { inv }} M\left(u^{-1}\right)
\end{aligned}
$$

where $F T$ denote the Fourier transform and inv : $x \rightarrow x^{-1}$ the inversion.

- These transformations have geometric analog at the level of sheaves and one can track how the singularities of \mathcal{F} evolve when applying these (the deep but explicit work of Laumon on the local Fourier transform is used there) to see when the two copies of Z correlate.
- The Z function can be obtained from K by a sequence of simple transformations (we assume $\ell=m=p=1$ for simplicity)

$$
\begin{gathered}
K(x) \xrightarrow{x \mathrm{Kl}_{2}} L(x)=K(x) \mathrm{Kl}_{2}(x) \xrightarrow{F T} \widehat{L}(y) \\
\xrightarrow{\text { inv }} M(y):=\widehat{L}\left(y^{-1}\right) \xrightarrow{F T} \widehat{M}(u) \xrightarrow{\mathrm{inv}} M\left(u^{-1}\right)
\end{gathered}
$$

where $F T$ denote the Fourier transform and inv : $x \rightarrow x^{-1}$ the inversion.

- These transformations have geometric analog at the level of sheaves and one can track how the singularities of \mathcal{F} evolve when applying these (the deep but explicit work of Laumon on the local Fourier transform is used there) to see when the two copies of Z correlate.

Corollary

Whenever K does not satisfy any of the above conditions, one has

$$
\sum_{n} \lambda(1, n) \lambda_{f}(n) K(n) V\left(\frac{n}{q^{3}}\right) \ll_{\varphi, f, V} q^{3-\delta+o(1)}, \delta>0
$$

Remark

The second condition excludes a priori $K=\chi$ however, in that specific case, the conclusion holds for $h \neq 0$ and when $h=0$ the failure is localized along an explicit and small diagonal set and the bound remains valid.

Thank you !

