
Periodic twists of GL3 L-functions

Ph. Michel, EPF Lausanne
a joint work with

E. Kowalski, Y. Lin and W.Sawin

Symposium in Analytic Number Theory
Cetraro 2019



For f a fixed modular form, χ (mod q) a Dirichlet character and

L(f .χ, s) =
∑
n≥1

λf (n)χ(n)

ns
, <s > 1

the twisteds Hecke L-function. The following subconvex bound
was first proven by Duke, Friedlander, Iwaniec:

Subconvex bound

For <s = 1/2

L(f .χ, s)�f ,s q
1/2−δ+o(1), δ > 0

The bound is substantially equivalent to: for V ∈ C∞([1, 2])∑
n

λf (n)χ(n)V (
n

q
)�f ,V q1−δ+o(1).



A fews years ago, Fouvry, Kowalski and myself looked to establish
similar bounds with χ (mod q) replaced by more general q-periodic
arithmetic functions. For instance

Kloosterman fractions: n 7→ e(a n
q ), (n, q) = 1

Hyper-Kloosterman sums:
n 7→ Klk(n; q) = 1

q
k−1

2

∑
x1x ···xk=n e( x1+···+xk

q ), (n, q) = 1.

These functions (along with Dirichet characters) are examples of
trace functions.



Trace functions

Given (`, q) = 1, choose an embedding ι : Q` ↪→ C.
The basic datum is a Galois representation

ρ : Gal(Fq[T ]/Fq(T ))→ GL(V )

for V a finite dimensional Q`-vector space.
We assume that ρ is (ι-)pure of weight 0: the eigenvalues of the
Frobenius at any unramified place of Fq(T ) have absolute value 1.
The trace function associated with ρ is the function

Kρ : t ∈ Fq 7→ tr(Frobt |V It ) ∈ Q` ↪→ C.

(here ”t” denote the place associated with the polynomial T − t.)
It follows from purity that

‖Kρ‖∞ ≤ dimV .



To such a trace function, is associated the conductor C (ρ) which is
a measure the complexity of the geometric representation (the sum
of the rank and of the ramification invariants, the drops and the
Swan conductors).

Theorem (FKM)

Suppose f cuspidal. For any trace function K = Kρ : Fq → C, one
has ∑

n

λf (n)K (n)V (
n

q
)�f ,V ,C(ρ) q

1−δ+o(1), δ = 1/8.

Here the dependency in C (ρ) is polynomial. Moreover this bound
holds for f non- cuspidal, if K ”is not” an additive character
n 7→ e(anq ) (ie. ρ ”is not” an Artin-Schreier representation)

By a version of Schur’s lemma one is essentially reduced to the
case where ρ geometrically irreducible.



The proof uses the amplification method but in the different way
than DFI:

DFI amplify the character χ within the family of character
{χ′ (mod q)}; ie. proceed from the trivial bound

|
∑
n

λf (n)χ(n)V (
n

q
)|2|Mχ(χ)|2 ≤∑

χ′ (mod q)

|
∑
n

λf (n)χ′(n)V (
n

q
)|2|Mχ(χ′)|2

and then bound the second moment on the righthand side by
opening the squares and using harmonic analysis; here
χ′ 7→ Mχ(χ′) is a suitable ”amplifier” of χ.
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The proof uses the amplification method but in the different way
than DFI:

FKM (following Bykovski) amplify the Hecke eigenform
f /(q + 1)1/2 within an orthogonormal basis of modular forms
of level q, B(Γ0(q)); ie. proceed from the trivial bound

1

q + 1
|
∑
n

λf (n)K (n)V (
n

q
)|2|Mf (f )|2 ≤∑

f ′∈B(Γ0(q))

|
∑
n

λf ′(n)K (n)V (
n

q
)|2|Mf (f ′)|2

then bound the second moment on the righthand side by
opening the squares and using harmonic analysis; here
f ′ 7→ Mf (f ′) is a suitable amplifier of f .



After performing harmonic analysis (Petersson-Kuznetsov formula
+ Poisson) one face some correlation sums

C (K̂ , γ) =
1

q1/2

∑
z∈Fq

K̂ (z).K̂ (γ.z)

where

K̂ (z) =
1

q1/2

∑
t

K (t)e(
zt

q
)

is the Fourier transform of K , and

γ =

(
a b
c d

)
∈ PGL2(Fq), γ.z =

az + b

cz + d
.

A key fact due to Laumon is that unless ρ is Artin-Schreier (K is
an additive character), K̂ is a trace function whose conductor C (ρ̂)
is controlled by C (ρ).
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By the work of Deligne and Laumon, the correlation sums C (K̂ , γ)
are typically �C(ρ) 1 and otherwise they satisfy

C (K̂ , γ)�C(ρ) q
1/2. (1)

Theorem (Classification of group of automorphisms of sheaves)

The set of γ such that (1) holds is contained in Gρ̂(Fq) the set of
Fq-points of an algebraic subgroup of PGL2. Moreover |Gρ̂(Fq)| is
either ”small” (bounded in terms of C (ρ)) or has a simple
structure.

This show that the correlation sums C (K̂ , γ) which occur in∑
f ′∈B(Γ0(q))

|
∑
n

λf ′(n)K (n)V (
n

q
)|2|Mf (f ′)|2

are of size �C(ρ) 1 outside a well controlled diagonal set. From
there one conclude the proof.
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More striking examples of this amplification scheme (ie amplifying
f inside B(Γ0(q), •) (instead of χ) are found in the works of
Conrey-Iwaniec and Petrow-Young to prove subconvex bounds
Weyl type(see the next talk).



Twists of GL3 L-functions

The subconvexity problem for GL2 is completely solved (at least
qualitatively.)
For GL3 L-functions, the first break was made by X. Li. Later R.
Munshi developed a new set of techniques leading eventually to:

Theorem (Munshi)

Let f be a SL3(Z)-invariant cusp form. For <s = 1/2,

L(f .χ, s)�f ,s q
3/4−δ+o(1), δ = 1/308.

Munshi’s method does not use amplification but an elaborate
variant of the δ-symbol method, the Voronoi summation formula
and reciprocity for Kloosterman fractions.



Recently R. Holowinsky and P. Nelson found a major simplification
of Munshi approach leading to a significant improvement:

Theorem (Holowinsky-Nelson)

Let f be a SL3(Z)-invariant cusp form. For <s = 1/2,

L(f .χ, s)�f ,s q
3/4−δ+o(1), δ = 1/36.

Again this bound is substantially equivalent to the bound∑
n

λf (1, n)χ(n)V (
n

q3/2
)�f ,V q3/2−δ+o(1)

where (λf (m, n))m,n denote the Hecke eigenvalues of f . This
method is very robust and extends to general trace functions



More generally we define

SV (K ,X ) :=
∑
n

λf (1, n)K (n)V (
n

X
)

Theorem (KLMS)

Let K be a trace function of modulus q, and X such that X ≤ q2,
one has

SV (K ,X )�f ,V ,C(ρ) q
2/9+o(1)X 5/6.

For X = q3/2 one obtains �f ,V ,C(ρ) q
3/2−1/36+o(1)

the bound is non trivial as long as X ≥ q4/3+o(1).



If K is an additive character, S. Miller has proven an analog of
Wilton’s bound

SV (e(a
•
q

),X )�f X 3/4+o(1).

So wlog wma K is not an additive character.
The first step is to realize the q-periodic function K within a
one-parameter family of q-periodic functions. Define

K̂ (z , h) :=

{
K̂ (z)eq(−hz) q - z
K̂ (0) q | z

for (z , h) ∈ Z2 so that

K (n, h) :=
1

q1/2

∑
z∈F×q

K̂ (z , h)eq(−nz).
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Taking h = 0 in the above

K (n, 0) = K (n)− K̂ (0)

q1/2
.

and, more generally, for any probability measure $ on F×q , we have

K$(n, 0) = K (n)− K̂ (0)

q1/2
.

where
K$(n, h) :=

∑
u∈F×q

$(u)K (n, uh)



It follows that

SV (K ,X ) =
∑
u∈F×q

$(u)
∑
|h|≤H

SV (K (•, uh),X )

−
∑
u∈F×q

$(u)
∑

0<|h|≤H

SV (K (•, uh),X ) + Err

= F −O + Err .

We take ω to be supported on the classes u ≡ p.l (mod q) for pairs
of primes p ∼ P, l ∼ L with P, L < q1/2.



Bounding F

F =
logP

P/2

log L

L/2

∑
p,l

∑
|h|≤H

∑
n

λf (1, n)K (n, plh)V (
n

X
).

We apply Poisson on h getting for the h, n sums

H

q1/2

∑
|r |≤q/H

∑
n

λf (1, n)K̂ (−plr)e(
lrpn

q
)V (

n

X
)

and apply reciprocity

e(
lrpn

q
) = e(−qpn

lr
)e(

pn

qlr
) ≈ e(−qpn

lr
),

for XP = (1/2)q2L/H or H = q2L/2XP.
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We use the automorphy of f through Voronoi summation formula:

∑
n

λf (1, n)e(−qpn

lr
)V (n/X )

≈ X

(Lq/H)3/2

∑
n�(Lq/H)3/X

λf (n, 1)Kl2(±pqn; lr)

We then Cauchy to smooth out n∑∑
p,l ,n,r

· · · ≤ (
∑
n,r

|λf (n, 1)|2)1/2(
∑
n,r

|
∑
p,l

K̂ (−plr)Kl2(±pqn; lr)|2)1/2

and apply Poisson on the resulting n-sum∑
n

Kl2(±p1qn; l1r)Kl2(±p2qn; l2r)V1(
n

X
)

and use the expression of the Fourier transform of the product of
Kloosterman sums in terms of Ramanujan sums.
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We obtain that for L ≤ P4

F � qo(1)(
X 3/2P

qL1/2
+ X 3/4(qPL)1/4).

and to be non-trivial one need at least that X ≥ q1+η.

Remark

At this stage the only information we have used is that K , not
being the trace function of an Artin-Schreier representation,
satisfies

‖K̂‖∞ �C(ρ) 1.



Bounding O

Recall that

O =
logP

P/2

log L

L/2

∑
p,l

∑
0<|h|≤H
(h,l)=1

∑
n

λf (1, n)K (n, plh)V (
n

X
).



This time we immediately Cauchy to smooth n and evaluate∑∑
p1,h1,l1
p2,h2,l2

∑
n

K (n, p1l1h1)K (n, p2l2h2)V (
n

X
)

=
∑

x1,x2∈F×q

ν(x1)ν(x2)
∑
n

K (n, x1)K (n, x2)

Since X ≥ q1+η, only the zero contribution in the dual variable
survives and the sum becomes

X

q1/2

∑
x1,x2∈F×q

ν(x1)ν(x2)
1

q1/2

∑
u∈Fq

K (u, x1)K (u, x2)

=
X

q1/2

∑
x1,x2∈F×q

ν(x1)ν(x2)
1

q1/2

∑
u∈Fq

K̂ (u, x1)K̂ (u, x2)
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Moreover

1

q1/2

∑
u∈Fq

K̂ (u, x1)K̂ (u, x2) = L(x1 − x2)

with

L(x) =
1

q1/2

∑
u∈F×q

|K̂ (u)|2e(−ux

q
) +

1

q1/2
|K̂ (0)|2.

The second term is no problem.
For the first term, observe that if |K̂ (u)|2 = 1 a.e. (which is the
case for K = χ treated by HN) the first term is a Ramanujan sum
hence very small.



In general we have the following elementary:

Lemma

Given µ, ν, L : Fq → C we have∑
x1,x2∈Fq

ν(x1)ν(x2)L(x1 − x2) ≤ q1/2‖ν‖2
2‖L̂‖∞.

which is proven by separating x1, x2 in L(x1 − x2) using the inverse
Fourier transform formula and Cauchying.



In the present case we have

L̂(u) = |K̂ (0)|2δu≡0 (mod q) + |K̂ (ū)|2δu 6≡0 (mod q),

and (assuming PHL < q)

‖ν‖2
2 = |{(p1, h1, l1, p2, h2, l2), p1l1h1 ≡ p2l2h2 (mod q)}|

= |{(p1, h1, l1, p2, h2, l2), p1l2h1 = p2l1h2}| = (PHL)1+o(1).

This yields

O �f qo(1)‖K̂‖∞
qX 1/2

P
.

Combining the F and O bounds we conclude.

Remark

The only information we have used is that K , not being the trace
function of an Artin-Schreier representation, satisfies

‖K̂‖∞ �C(ρ) 1.
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The reason why the proof uses relatively ”little” `-adic cohomology
(”only” Deligne’s Weil II) is because the convexity range is
n ∼ q3/2 while the period of K is q making is possible to apply
Poisson to great effect.
Things should become very different if one tries to get X close to
or below q.
For instance being able to go below q for K (n) = Kl3(n; q) would
make it possible to evaluate asymptotically the first moment∑

χ (mod q)

L(f .χ, 1/2)

and to obtain non-vanishing results for central values of twists: so
far this is known only on average over suitable composite moduli
q1q2 (W. Luo).



The reason why the proof uses relatively ”little” `-adic cohomology
(”only” Deligne’s Weil II) is because the convexity range is
n ∼ q3/2 while the period of K is q making is possible to apply
Poisson to great effect.
Things should become very different if one tries to get X close to
or below q.
For instance being able to go below q for K (n) = Kl3(n; q) would
make it possible to evaluate asymptotically the first moment∑

χ (mod q)

L(f .χ, 1/2)

and to obtain non-vanishing results for central values of twists: so
far this is known only on average over suitable composite moduli
q1q2 (W. Luo).



We expect going below q to be quite challenging:

for f the 1⊕ 1⊕ 1 Eisenstein series and K = Kl3 this amount
to the groundbreaking paper of FI on d3 in large arithmetic
progressions.

for f the g ⊕ 1 for g a GL2 cusp form and K = Kl3 this was
worked out by R. Zacharias and this uses crucially bounds for
bilinear sums of Kloosterman sums proven by KMS:∑∑

m,n∼q1/2

αmβnKlk(mn; q)� qo(1)‖α‖2‖β‖2q
1/2−δ, δ > 0.
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Subconvexity for twists of GL3×GL2

Very recently (June 22 2019) P. Sharma posted a detailed draft of
a subconvex bound for twists of GL2×GL3 L-function:

Theorem

Let ϕ be a GL3(Z) cup form and f be a GL2-cusp form. One has
for <s = 1/2

L(ϕ× f .χ, s)� q3/2−δ+o(1), δ > 0.

The bound is essentially equivalent to∑
n

λ(1, n)λf (n)χ(n)V (
n

q3
)�ϕ,f ,V q3−δ+o(1).



The proof uses

δ-symbol methods.

Conductor decreasing trick.

GL2 and GL3-Voronoi.

Cauchy.

Poisson (aka GL1-Voronoi). Some non-zero frequencies
contribute here.

Squareroot cancellation in multivariable exponential sums by
summoning the Adolphson-Sperber non-degeneracy criterion.



Excepted for the very last step, the proof does not use that χ is a
Dirichlet character (in particular does not use multiplicativity).
One can therefore redo the proof with K replaced by a general
trace function.

In the end the most complicated exponential sum one need to
face is: for (l ,m, p) ∈ F×q some parameters (arising from
amplification and δ-symbol methods)

Z`,m,p(v) :=
1

q1/2

∑
a (mod q)

K (a)Kl2(p2ma; q)Kl2(p3`va; q)

C`,m,p,`′,m′,p′(h; q) :=
1

q1/2

∑
v∈F×q

Zl ,m,p(v)Zl ′,m′,p′(v + pp′h).
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Theorem (KLMS)

If the sheaf F associated to K does not satisfy any of these
conditions

For λ ∈ F×q − {1} the geometric monodromy of F has some
quotient isomorphic to [×λ]∗KL2.

For some λ ∈ F×q − {1}, F and [×λ]∗F are geometrically
isomorphic.

The local monodromy of F at ∞ has a slope equal to 1/2.

then whenever h 6= 0 (mod q) or (l ,m, p) 6= (l ′,m′, p′) one has

C`,m,p,`′,m′,p′(h; q)� 1



The Z function can be obtained from K by a sequence of
simple transformations (we assume ` = m = p = 1 for
simplicity)

K (x)
×Kl2−−−→ L(x) = K (x)Kl2(x)

FT−−→ L̂(y)

inv−−→ M(y) := L̂(y−1)
FT−−→ M̂(u)

inv−−→ M(u−1)

where FT denote the Fourier transform and inv : x → x−1

the inversion.

These transformations have geometric analog at the level of
sheaves and one can track how the singularities of F evolve
when applying these (the deep but explicit work of Laumon on
the local Fourier transform is used there) to see when the two
copies of Z correlate.
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Corollary

Whenever K does not satisfy any of the above conditions, one has∑
n

λ(1, n)λf (n)K (n)V (
n

q3
)�ϕ,f ,V q3−δ+o(1), δ > 0.

Remark

The second condition excludes a priori K = χ however, in that
specific case, the conclusion holds for h 6= 0 and when h = 0 the
failure is localized along an explicit and small diagonal set and the
bound remains valid.



Thank you !


