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For f a fixed modular form, x (mod q) a Dirichlet character and
Ar(n)x(n)
L(f. = — 1
(9= 2O 5

the twisteds Hecke L-function. The following subconvex bound
was first proven by Duke, Friedlander, Iwaniec:

Subconvex bound
For s =1/2

L(f.x,s) <r.s g/2704°M) 550

The bound is substantially equivalent to: for V € C*(][1,2])

n _
Z/\f(”)x(”)v(a) <rv gtote).



A fews years ago, Fouvry, Kowalski and myself looked to establish
similar bounds with x (mod q) replaced by more general g-periodic
arithmetic functions. For instance

@ Kloosterman fractions: n e(ag), (n,g) =1
@ Hyper-Kloosterman sums:
n— Klk(n; q) = é lex---xkzn G(Lq"'xk)’ (n7 q) =1.
q

These functions (along with Dirichet characters) are examples of
trace functions.



Trace functions

Given (¢,q) = 1, choose an embedding ¢ : Q; — C.
The basic datum is a Galois representation

p: Gal(Fg[T]/Fq(T)) — GL(V)

for V a finite dimensional Q-vector space.

We assume that p is (t-)pure of weight 0: the eigenvalues of the
Frobenius at any unramified place of Fq(T) have absolute value 1.
The trace function associated with p is the function

K, : t € Fy s tr(Frob,| V") € @, — C.

(here "t" denote the place associated with the polynomial T — t.)
It follows from purity that

1K, oo < dim V.



To such a trace function, is associated the conductor C(p) which is
a measure the complexity of the geometric representation (the sum
of the rank and of the ramification invariants, the drops and the
Swan conductors).

Theorem (FKM)

Suppose f cuspidal. For any trace function K = K, : Fq; — C, one
has

n —6+o
ZM(”)K(”)V(E) <f,v,C(p) gt 5 =1/8.

Here the dependency in C(p) is polynomial. Moreover this bound
holds for f non- cuspidal, if K "is not” an additive character
n— e(%") (ie. p "is not” an Artin-Schreier representation)

By a version of Schur’s lemma one is essentially reduced to the
case where p geometrically irreducible.



The proof uses the amplification method but in the different way
than DFI:



The proof uses the amplification method but in the different way
than DFI:

o DFI amplify the character x within the family of character
{X' (mod q)}; ie. proceed from the trivial bound

MV QP IM(P <
> I M )V EEIM)P

X' (modq) 1

and then bound the second moment on the righthand side by
opening the squares and using harmonic analysis; here
X' — M, (x') is a suitable "amplifier” of x.



The proof uses the amplification method but in the different way
than DFI:
e FKM (following Bykovski) amplify the Hecke eigenform
f/(q + 1)%/2 within an orthogonormal basis of modular forms
of level g, B(I'o(q)); ie. proceed from the trivial bound

G 1 DMKV <
> I MKV PIMATP
f7eB(To(q))

then bound the second moment on the righthand side by
opening the squares and using harmonic analysis; here
'+ Mg (f") is a suitable amplifier of f.



After performing harmonic analysis (Petersson-Kuznetsov formula
+ Poisson) one face some correlation sums

C(K.7) = 1/2 Z 2).K(7.2)
zelq
where

~ 1 zt
(z) = A% zt: K(t)e(—

is the Fourier transform of K, and

a b az+b
v= (C d) € PGLy(Fy), v.z = p——




After performing harmonic analysis (Petersson-Kuznetsov formula
+ Poisson) one face some correlation sums

C(K,7) = 1/2 Z 2).K(7.2)
zelq
where

K(z) = 1/2 Z

is the Fourier transform of K, and

a b az+b
v= (C d) € PGLy(Fy), v.z = p——

A key fact due to Laumon is that unless p is Artin-Schreier (K is
an additive character), K is a trace function whose conductor C(p)
is controlled by C(p).



By the work of Deligne and Laumon, the correlation sums C(R,fy)
are typically <¢(,) 1 and otherwise they satisfy

C(K.7) >c() 4% (1)

Theorem (Classification of group of automorphisms of sheaves)

The set of v such that (1) holds is contained in G5(IFq) the set of
IF4-points of an algebraic subgroup of PGLy. Moreover |G5(FFq)| is
either "small” (bounded in terms of C(p)) or has a simple
structure.



By the work of Deligne and Laumon, the correlation sums C(R,fy)
are typically <¢(,) 1 and otherwise they satisfy

C(K.7) >c() 4% (1)

Theorem (Classification of group of automorphisms of sheaves)

The set of v such that (1) holds is contained in G5(F4) the set of
IF4-points of an algebraic subgroup of PGLy. Moreover |G5(FFq)| is
either "small” (bounded in terms of C(p)) or has a simple
structure.

This show that the correlation sums C(K,~) which occur in
Yo I An(mK( )I | Me ()2
f'eB(To(q)) 1

are of size <¢(,) 1 outside a well controlled diagonal set. From
there one conclude the proof. O



More striking examples of this amplification scheme (ie amplifying
f inside B(Io(q), ®) (instead of x) are found in the works of
Conrey-lwaniec and Petrow-Young to prove subconvex bounds

Weyl type(see the next talk).



Twists of GL3 L-functions

The subconvexity problem for GL; is completely solved (at least
qualitatively.)

For GL3 L-functions, the first break was made by X. Li. Later R.
Munshi developed a new set of techniques leading eventually to:

Theorem (Munshi)
Let f be a SL3(Z)-invariant cusp form. For Rs =1/2,

L(f.x,s) <r.s /40 5 =1/308.

Munshi’s method does not use amplification but an elaborate
variant of the d-symbol method, the Voronoi summation formula
and reciprocity for Kloosterman fractions.



Recently R. Holowinsky and P. Nelson found a major simplification
of Munshi approach leading to a significant improvement:

Theorem (Holowinsky-Nelson)
Let f be a SL3(Z)-invariant cusp form. For Rs =1/2,

L(f.x,s) <55 g/4701°M) 5 = 1/36.

Again this bound is substantially equivalent to the bound
DAL XMV 55) <ry @20t

where (Af(m, n))m » denote the Hecke eigenvalues of f. This
method is very robust and extends to general trace functions



More generally we define

n

Sv(K,X) =>_ A1, nK(n)V(5)

Theorem (KLMS)

Let K be a trace function of modulus q, and X such that X < ¢°,
one has

SV(Ka X) <<f,V,C(p) q2/9+0(1)X5/6'

e For X = ¢/2 one obtains <£,v,C(p) q3/2-1/36+0(1)

e the bound is non trivial as long as X > g*/3+o(1).



If K is an additive character, S. Miller has proven an analog of
Wilton's bound

Sv(e(aé),X) <5 X3/4+e(1),

So wlog wma K is not an additive character.



If K is an additive character, S. Miller has proven an analog of
Wilton's bound

Sv(e(aé),X) <5 X3/4+e(1),

So wlog wma K is not an additive character.
The first step is to realize the g-periodic function K within a
one-parameter family of g-periodic functions. Define

Rz h) = K(z)eq(—hz) qtz
T K(©) qlz

for (z, h) € 72 so that

K(n, h) = 1/2 Z (z, h)eq(—nz).

ZEF><



Taking h =0 in the above

K(0)
q1/2 )

K(n,0) = K(n) —

and, more generally, for any probability measure @ on F}, we have

K(0)
g2

K=(n,0) = K(n) —

where
Ke(n, h) == ) w(u)K(n, uh)

ueFy



It follows that

Sv(K.X)= Y w(u) > Sy(K(e,uh),X)

UGFX |h|<H
—Z Z Sv(K(e,Th), X) + Err
uE]F;< 0<|h‘§H
= F—O+ Err.

We take w to be supported on the classes u = p./ (mod q) for pairs
of primes p ~ P, | ~ L with P, L < q/2.
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Bounding F

=Bt L X Tk K V).

J |h<H n

We apply Poisson on h getting for the h, n sums

q1/2 > D Ar(L.mK(~plr)e (Irpn)V(Y)

ri<a/H 7



Bounding F

=Bt L X Tk K V).

J |h<H n

We apply Poisson on h getting for the h, n sums
Irpn
1/2 Z Z)\fln plrje(—— q )V(y)
[rl<q/H n

and apply reciprocity

Irpny . qpn, pn qpn
e( q )_ € /r )e(q/r e( )7

for XP = (1/2)q?L/H or H = g*L/2XP.



We use the automorphy of f through Voronoi summation formula:
qgpn
3 A1, n)e(—%)V(n/X)

X
~ (Lq/H)? > Ar(n,1)Kh(+pgn; Ir)
I n<(Lq/H)*/X
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We use the automorphy of f through Voronoi summation formula:
qgpn
3 A1, n)e(—%)V(n/X)

X
~ (Lq/H)? > Ar(n,1)Kh(+pgn; Ir)
I n<(Lq/H)*/X

We then Cauchy to smooth out n

Yo < Qo M )PP QC D K(=pIn)Kh(+pan; Ir)?)!/

pvlvnr n,r n,r p7/

and apply Poisson on the resulting n-sum

n
Z Kh(£pign; hr)Kh(£pygn; kr) VI(Y)

and use the expression of the Fourier transform of the product of
Kloosterman sums in terms of Ramanujan sums.



We obtain that for L < P*

x3/2p

. 72 +X3/4(qPL)1/4)

FegWXr
q

and to be non-trivial one need at least that X > g'*

Remark

At this stage the only information we have used is that K, not
being the trace function of an Artin-Schreier representation,
satisfies

[1K]loo <c(p) 1-



Bounding O

Recall that

o~ = Satomusmul

p,l 0<|h|<H N
(h1)=1




This time we immediately Cauchy to smooth n and evaluate

ZZZK n, p1/1h1 (n p2/2h2)\/(;)

p1,hi,h 1
p2,h2,h

= Z v(x1)v(x2) Z K(n,x1)K(n, x2)

X1,X2 G]Ff;



This time we immediately Cauchy to smooth n and evaluate

ZZZK n, p1/1h1 (n p2/2h2)\/(;)

p1,hi,h 1
p2,h2,h

= Z v(x2 ZKnxl nx2)

X1,X2 G]Ff;

Since X > gt only the zero contribution in the dual variable
survives and the sum becomes

L Z v(x1)v(x) 1/22 (u, x1)K(u, x2)

1/2

X1,X2€]F ucFq
X ~ —_-—
= 17/2 Z V(Xl)l/(Xz)li/2 Z K(U,Xl)K(u X2)
q q u€eFq

X1,X2 GIFé



Moreover

1/2ZKUX1 UX2)—L(X1—X2)
uclFq

with

)= Ly 3 IR+ RO

UEFX

The second term is no problem.

For the first term, observe that if |[K(u)|> =1 a.e. (which is the
case for K = y treated by HN) the first term is a Ramanujan sum
hence very small.



In general we have the following elementary:

Lemma
Given p,v, L :Fq — C we have

> vla)vle)lia — x2) < g2 (VB Llloo-
x1,x€Fq

which is proven by separating x1, x2 in L(x; — x2) using the inverse
Fourier transform formula and Cauchying.



In the present case we have
L(u) = |K(0)8u=0 mod ) + IK(2)Surz0 (mod o)
and (assuming PHL < q)

Iv3 = [{(p1, 1, h,pa, b2, b), prlihi = palaha (mod q)}|
= {(p1, b1, h, P2, ha, b), prhhy = pahho}| = (PHL) oW,
This yields
. x1/2
O <5 q"(l)HKHoho-

Combining the F and O bounds we conclude.

The only information we have used is that K, not being the trace
function of an Artin-Schreier representation, satisfies

[1K]loo < c(p) 1-



In the present case we have

L(u) = |K(0)[?0,=0 (mod q) + |K(8)[?8,20 (mod )-

and (assuming PHL < q)

w3 = [{(p1, 1, h,p2, h2, ), prliht = palahy (mod q)}|
= {(p1, 1, h, P2, 2, o), prhhy = pahihp}| = (PHL)Y M),
This yields
~ X1/2
0 <5 q"(l)HKHOOqT.

Combining the F and O bounds we conclude.



In the present case we have
L(u) = |K(0)*du=0 (moa q) + IK(@)*Fusz0 (mod q):
and (assuming PHL < q)

w3 = [{(p1, 1, h,p2, h2, ), prliht = palahy (mod q)}|
= {(p1, 1, h, P2, 2, o), prhhy = pahihp}| = (PHL)Y M),
This yields
N X1/2
0 <5 qo(l)HKHoho.

Combining the F and O bounds we conclude.

The only information we have used is that K, not being the trace
function of an Artin-Schreier representation, satisfies

1Ko <c(p) 1-



The reason why the proof uses relatively " little” /-adic cohomology
("only" Deligne's Weil 11) is because the convexity range is

n ~ q%/2 while the period of K is g making is possible to apply
Poisson to great effect.



The reason why the proof uses relatively " little” /-adic cohomology
("only" Deligne's Weil 11) is because the convexity range is

n ~ q%/2 while the period of K is g making is possible to apply
Poisson to great effect.

Things should become very different if one tries to get X close to
or below q.

For instance being able to go below g for K(n) = Ki(n; q) would
make it possible to evaluate asymptotically the first moment

> L(fx,1/2)

x (mod q)

and to obtain non-vanishing results for central values of twists: so
far this is known only on average over suitable composite moduli

g192 (W. Luo).



We expect going below g to be quite challenging:



We expect going below g to be quite challenging:

o for f the 1 ® 1@ 1 Eisenstein series and K = Kl3 this amount
to the groundbreaking paper of Fl on d3 in large arithmetic
progressions.



We expect going below g to be quite challenging:

o for f the 1 ® 1@ 1 Eisenstein series and K = Kl3 this amount
to the groundbreaking paper of Fl on d3 in large arithmetic
progressions.

o for f the g 1 for g a GLy cusp form and K = K5 this was
worked out by R. Zacharias and this uses crucially bounds for
bilinear sums of Kloosterman sums proven by KMS:

SN amBuKi(mn; q) < ¢°@ all2]|8ll2g"2%, 6 > 0.

m,n~ql/2



Subconvexity for twists of GL3 x GL,

Very recently (June 22 2019) P. Sharma posted a detailed draft of
a subconvex bound for twists of GL, x GL3 L-function:

Theorem

Let ¢ be a GL3(Z) cup form and f be a GLa-cusp form. One has
for Rs =1/2
L(p x f.x,s) < g3/>70+) 5> 0.
The bound is essentially equivalent to
n
D AL mA(n)x(m) V(=

q3) <oty go+o),



The proof uses

@ J-symbol methods.
Conductor decreasing trick.
GL, and GL3-Voronoi.
Cauchy.

Poisson (aka GLi-Voronoi). Some non-zero frequencies
contribute here.

Squareroot cancellation in multivariable exponential sums by
summoning the Adolphson-Sperber non-degeneracy criterion.



Excepted for the very last step, the proof does not use that y is a
Dirichlet character (in particular does not use multiplicativity).
One can therefore redo the proof with K replaced by a general
trace function.



Excepted for the very last step, the proof does not use that y is a
Dirichlet character (in particular does not use multiplicativity).
One can therefore redo the proof with K replaced by a general
trace function.

@ In the end the most complicated exponential sum one need to
face is: for (/,m, p) € Fy some parameters (arising from
amplification and J-symbol methods)

1
Zimp(V) = W Z K(a)Kly(p°ma; q)Kla(p30va; q)
a(mod q)

1 —
Cf,m,p,ﬁ’,m’,p’(h; q) = m Z Zl,m,p(V)Zl’,m’,p’(V + PP’h)

VGF§



Theorem (KLMS)

If the sheaf F associated to K does not satisfy any of these
conditions

o For A € Fy — {1} the geometric monodromy of F has some
quotient isomorphic to [XA]*KLs.

o Forsome A € F; — {1}, F and [xA]*F are geometrically
isomorphic.

@ The local monodromy of F at oo has a slope equal to 1/2.
then whenever h # 0 (mod q) or (I, m, p) # (I',m’, p') one has

Comper,m o (hiq) <1



@ The Z function can be obtained from K by a sequence of
simple transformations (we assume { = m = p =1 for
simplicity)

K(x) 222, 1(x) = K(x)Kla(x) 25 L(y)

5 M(y) = Ly™) 5 M(u) =5 M(u™)

where FT denote the Fourier transform and inv : x — x~1

the inversion.



@ The Z function can be obtained from K by a sequence of
simple transformations (we assume { = m = p =1 for
simplicity)

K(x) 222, 1(x) = K(x)Kla(x) 25 L(y)

5 M(y) = Ly™) 5 M(u) =5 M(u™)

where FT denote the Fourier transform and inv : x — x~1

the inversion.

@ These transformations have geometric analog at the level of
sheaves and one can track how the singularities of F evolve
when applying these (the deep but explicit work of Laumon on
the local Fourier transform is used there) to see when the two
copies of Z correlate.



Corollary

Whenever K does not satisfy any of the above conditions, one has

SOA n))\f(n)K(n)V(q%) <prv @M § >0,

Remark

The second condition excludes a priori K = x however, in that
specific case, the conclusion holds for h # 0 and when h = 0 the
failure is localized along an explicit and small diagonal set and the
bound remains valid.



Thank you !



