The fourth moment of Dirichlet L-functions

along a coset and the Weyl bound

lan Petrow

ETH Ziirich

Joint work with Matthew P. Young

lan Petrow (ETH Ziirich) The 4th moment and the Weyl bound 1/16



The subconvexity problem

Given 7 an automorphic form, let C(7) be its analytic conductor.
Example: x a Dirichlet character modulo g and |- |'* : n— n"

COul-1") =@ +]tha.
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The subconvexity problem

Given 7 an automorphic form, let C(7) be its analytic conductor.
Example: x a Dirichlet character modulo g and |- |'* : n— n"

Clocl- 1) = (1 +t))a.
Trivial “convexity” bound:
L(1/2,7) < C(m)Y/4*e
GRH = Generalized Lindelof hypothesis:
L(1/2,7) < C(m)°
Subconvexity problem: show that there exists 6 > 0 so that
L(1/2,7) < C(m)*/*°
Michel-Venkatesh (2010): 7 on GL; or GL, with unspecified § > 0.
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Subconvexity results
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Subconvexity results

First subconvexity result: Weyl (1922):
1 : Ite
C(E +it) < (14 |t])s™e.

Based on the method of Weyl differencing;
invariance of continuous functions under translation.
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Subconvexity results

First subconvexity result: Weyl (1922):
1 : Ite
C(E +it) < (14 |t])s™e.

Based on the method of Weyl differencing;
invariance of continuous functions under translation.

Burgess (1962) x primitive modulo g:
L(1/2,x) < qis*

Throws away correlation between character sums on many very short
intervals, but uses Holder and RH for curves over finite fields.
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Subconvexity results

First subconvexity result: Weyl (1922):
1 : Ite
C(E +it) < (14 |t])s™e.

Based on the method of Weyl differencing;
invariance of continuous functions under translation.

Burgess (1962) x primitive modulo g:
L(1/2,x) < qis*

Throws away correlation between character sums on many very short
intervals, but uses Holder and RH for curves over finite fields.

The exponent 3/16 re-occurs often in modern incarnations of these
problems (Blomer-Harcos-Michel, Blomer-Harcos, Han Wu).
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The Weyl exponent and Conrey-lwaniec

Until recently, the exponent 1/6 only known in special cases related
to quadratic characters (Conrey-lwaniec, Ivi¢, Young, P.-Young)
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The Weyl exponent and Conrey-lwaniec

Until recently, the exponent 1/6 only known in special cases related
to quadratic characters (Conrey-lwaniec, Ivi¢, Young, P.-Young)

Conrey-lwaniec (2000): if x> = 1 with odd (sq.-free) conductor g
L(1/2,x) < q° 7,

using input from automorphic forms and Deligne’s RH for varieties.
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The Weyl exponent and Conrey-lwaniec

Until recently, the exponent 1/6 only known in special cases related
to quadratic characters (Conrey-lwaniec, Ivi¢, Young, P.-Young)

Conrey-lwaniec (2000): if x> = 1 with odd (sq.-free) conductor g
L(1/2,x) < q° 7,

using input from automorphic forms and Deligne’s RH for varieties.
Hi:(m, 1) = {Maass newforms of level m char. ¢ and spec. par. it}.

DD SND SINCEEEP S | L2+ i) o

T mlq meH (m1)
B 1
< TPq'te.

B < oo unspecified, ((t) = t3(4 + t3)7L. L(1/2,7 ® x) > 0.by Guo,
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Fact (Atkin-Li 1978, or use local Langands for GL,):
If m| g, x conductor q, m € Hy(m, x?), then T ® X € H;:(g°, 1).
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Fact (Atkin-Li 1978, or use local Langands for GL,):
If m| g, x conductor q, m € Hy(m, x?), then T ® X € H;:(g°, 1).

Theorem (P.-Young (2018))

Let x be primitive of conductor q cube-free and not quadratic.

Y Y wzren)’+ /T\L<1/2+ft,x)rﬁdt

I41<T mlq meH (m.x2) -

< TB ql—l—a“
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Fact (Atkin-Li 1978, or use local Langands for GL,):
If m| g, x conductor q, m € Hy(m, x?), then T ® X € H;:(g°, 1).

Theorem (P.-Young (2018))

Let x be primitive of conductor q cube-free and not quadratic.

Y Y wzren)’+ /_T\L<1/2+ft,x)r6dr

I41<T mlq weH (mx2)

< TB q1+6 ]

Theorem (P.-Young (2018))
Let x be primitive of conductor q cube-free and T > ¢°.

Z Z Z L(1/2’7T®Y)3+/T+’L(1/2—|—it,x)]6dt

T<|g|<T+1 mlq meHi;(m,x?)

< (Tq)1+€.

- ___________________________________________________/
lan Petrow (ETH Ziirich) The 4th moment and the Weyl bound 5/ 16



Fact (Atkin-Li 1978, or use local Langands for GL,):
If m| g, x conductor q, m € Hy(m, x?), then T ® X € H;:(g°, 1).

Theorem (P.-Young (2019))
Let x be primitive of conductor q ewbe-free-and not quadratic.

S Y w2rex’+ /T|L<1/z+ft,x)|6dt

[GIST mlq meH(m,x?)

< TB q1+€ )

4

Theorem (P.-Young (2019))
Let x be primitive of conductor q ewbe-free and T > ¢°.

>, 2 DL L(1/2,7T®Y)3+/T+|L(1/2+it,x)|6dt

T<|4|<T+1 mlq m€H;;(m,x?)

< (Tq)™**.

- ______________________________/
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The Weyl Bound

Corollary (P.-Young 2019)

For all primitive x modulo q we have

L(1/2+ it,x) < ((1 + |t])g)s*e.
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The Weyl Bound

Corollary (P.-Young 2019)

For all primitive x modulo q we have

L(1/2+ it,x) < ((1 + |t])g)s*e.

In other language: For any Hecke character x on GL; over Q we have

L(1/2,x) < C(x)5*.
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The Weyl Bound

Corollary (P.-Young 2019)

For all primitive x modulo q we have

L(1/2+ it,x) < ((1 + |t])g)s*e.

In other language: For any Hecke character x on GL; over Q we have
L(1/2,x) < C)*.

Why did the cube-free hypothesis come up, and how to remove it?
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Summary of proof
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Summary of proof

Apply:
@ Approximate functional equation to expand L(1/2, 7 ® X)
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@ Approximate functional equation to expand L(1/2, 7 ® X)

© Bruggeman-Kuznetsov formula
(for newforms, using explicit orthonormal basis of S(gq, x?))

@ Poisson summation (Voronoi formula for Eis. series on GL3)

@ Stationary phase, explicit computation of complete character
sums, Mellin inversion.
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Summary of proof

Apply:
@ Approximate functional equation to expand L(1/2, 7 ® X)

© Bruggeman-Kuznetsov formula
(for newforms, using explicit orthonormal basis of S(gq, x?))

@ Poisson summation (Voronoi formula for Eis. series on GL3)

@ Stationary phase, explicit computation of complete character
sums, Mellin inversion.

Result is a reciprocal “dual moment” (P. 2014 in quadratic case)

N8 Y a2aen’e Y ILL/2,0) e v)

tj mlq meH (m,x?) ¥ (mod q)

ghov) = Y x()x(u+Dx(v)x(v+ 1)g(uv —1).

u,v (mod q)
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Other examples of dual moments

Motohashi (c. 1995):

/ w2+ it oY S w(t)L(1/2 1)

tj ﬂ'EH,t (1,1)

(see Michel-Venkatesh (2010) for a geometric proof)
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Other examples of dual moments

Motohashi (c. 1995):

/ w2+ it oY S w(t)L(1/2 1)

tj ﬂ'EH,t (1,1)

(see Michel-Venkatesh (2010) for a geometric proof)
Young (2007):

SO0 e > > Alp)L(/27)?

x (mod p) tj meH,(1,1)
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Other examples of dual moments

Motohashi (c. 1995):

/ w2+ it oY S w(t)L(1/2 1)

tj ﬂ'EH,t (1,1)

(see Michel-Venkatesh (2010) for a geometric proof)
Young (2007):

SO0 e > > Alp)L(/27)?

x (mod p) tj meH,(1,1)

See also recent work of Blomer-Khan (2017) and Zacharias (2018).
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Dual moment estimates

To win, need

Z* 1L(1/2,9)]*e(x, ¥) < ¢**°.

4 (mod q)
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Dual moment estimates

To win, need

Z* 1L(1/2,9)]*e(x, ¥) < ¢**°.

4 (mod q)

Suffices to consider g a prime power, since g(x, v) factors.
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Dual moment estimates

To win, need
> IL/2,4) e (x.v) < g7 *.
3 (mod q)

Suffices to consider g a prime power, since g(x, v) factors.

e If g = p then g(x, ) < p follows the RH of Deligne.
Note: the proof of Conrey-lwaniec in the case x quadratic does
not generalize, we need to get our hands dirty with the /-adic
sheaf machinery of Deligne and Katz.
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sheaf machinery of Deligne and Katz.
o If g = p?, then g(,v) < p? by an elementary computation.
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Dual moment estimates

To win, need

> IL(1/2,9) g (X, ¥) < ¢
1 (mod q)
Suffices to consider g a prime power, since g(x, v) factors.

e If g = p then g(x, ) < p follows the RH of Deligne.
Note: the proof of Conrey-lwaniec in the case x quadratic does
not generalize, we need to get our hands dirty with the /-adic
sheaf machinery of Deligne and Katz.

o If g = p?, then g(,v) < p? by an elementary computation.
In these cases we have by a standard large-sieve type inequality:

S IL2.9) 00 w) < ¢ ST IL(L/2,9)f < g7

¥ (mod q) ¥ (mod q)
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Dual moment estimates

To win, need

> IL/2,4) e (x.v) < g7 *.
1 (mod q)
Suffices to consider g a prime power, since g(x, v) factors.

e If g = p then g(x, ) < p follows the RH of Deligne.
Note: the proof of Conrey-lwaniec in the case x quadratic does
not generalize, we need to get our hands dirty with the /-adic
sheaf machinery of Deligne and Katz.

o If g = p?, then g(,v) < p? by an elementary computation.
In these cases we have by a standard large-sieve type inequality:

> ILA/2,0) e ) < gt Y ILA/2,9)* < gt
¥ (mod q) 1 (mod q)

Finishes the proof if g is cube-free.
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Prime cubes

If g = p® with p = 1(4), then
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Prime cubes

If g = p* with p = 1(4), then (SUPRISE!) there exist 2(p — 1)
characters ¥ mod g such that

g(x. )| = p2g.
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Prime cubes

If g = p* with p = 1(4), then (SUPRISE!) there exist 2(p — 1)
characters ¥ mod g such that

1
lg(x,¥)| = p2q.
The “bad” % are in two cosets of the subgroup of characters mod p:

(Z/pZ)* — (Z/p*L)*.
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Prime cubes

If g = p* with p = 1(4), then (SUPRISE!) there exist 2(p — 1)
characters ¥ mod g such that
1
lg(x,¥)| = p2q.
The “bad” % are in two cosets of the subgroup of characters mod p:

—_—

(Z/pZ)* — (Z/p*L)*.
So, for o primitive modulo g = p3 need to bound

S IL/2. 0.0 'e (e ¢) < pra Y [L(L/2,4.0)]"

¥ (mod p) 1 (mod p)
3+i+tc  Burgess
< {q§+ . ges
qg-ep2 large sieve
Need: > [L(1/2,%.0)|* < p?5*.
¥ (mod p)
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Fourth moment along cosets
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Fourth moment along cosets

Theorem (P.-Young 2019)

Let q,d > 1 withd | q. Let ¢* = [0y P .
i.e. q* is the least positive integer such that ¢* | (q*)3.
Let o be a primitive Dirichlet character modulo q. Then

> IL(1/2,¢.0)* < lem(d, *)g".

¥ (mod d)

lan Petrow (ETH Ziirich) The 4th moment and the Weyl bound

12 / 16



Fourth moment along cosets

Theorem (P.-Young 2019)

Let q,d > 1 withd | q. Let ¢* = [0y P .
i.e. q* is the least positive integer such that ¢* | (q*)3.
Let o be a primitive Dirichlet character modulo q. Then

> IL(1/2,¢.0)* < lem(d, *)g".

¥ (mod d)

Note the set {¢).a : ¢ (mod d)} is a coset of the subgroup

(Z/dz2)* — (Z/qZ)*

For example, if ¢ = p> and d = p? this is Lindelof on average.
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Fourth moment along cosets

Theorem (P.-Young 2019)

Let q,d > 1 withd | q. Let ¢* = [0y P .
i.e. q* is the least positive integer such that ¢* | (q*)3.
Let o be a primitive Dirichlet character modulo q. Then

> IL(1/2,¢.0)* < lem(d, *)g".

¥ (mod d)

Note the set {¢).a : ¢ (mod d)} is a coset of the subgroup

(Z/dz2)* — (Z/qZ)*

For example, if ¢ = p> and d = p? this is Lindelof on average.

o2t < > |L1/2,¢a)t < PP
% (mod p) 1 (mod p?)
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By itself, the 4th moment along cosets recovers a Weyl-subconvex
result of Heath-Brown (1978) for certain special moduli g.
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By itself, the 4th moment along cosets recovers a Weyl-subconvex
result of Heath-Brown (1978) for certain special moduli g.

Analogous to a result of lwaniec (1980):

T+A
/ 1C(1/2 + it)|* dt < max(A, T?/3) T
.
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Structure of sets of “bad” 1)
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Structure of sets of “bad” 1)

o Let p(A, p®) = #{x (mod p?): x> — A =0 (mod p”)}.
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Structure of sets of “bad” 1)

o Let p(A, p®) = #{x (mod p?): x> — A =0 (mod p”)}.
e There exists (Z/pPZ)* — Z/p°~'Z, x +— {, given by
l\ log,(1+ pt)
p’ '

X(1+pt):e(
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e There exists (Z/pPZ)* — Z/p°~'Z, x +— {, given by
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X(1+pt):e(

o Set A = ({,0y)? +4.
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Structure of sets of “bad” 1)

o Let p(A, p®) = #{x (mod p?): x> — A =0 (mod p”)}.
e There exists (Z/pPZ)* — Z/p°~'Z, x +— {, given by
l\ log,(1+ pt)
p’ '

X(1+pt):e(

o Set A = ({,0y)? +4.
If g = p? with p odd and 3 = 2a, then

1g(x, )| < gp(A, p),
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Structure of sets of “bad” 1)

o Let p(A, p®) = #{x (mod p?): x> — A =0 (mod p”)}.
e There exists (Z/pPZ)* — Z/p°~'Z, x +— {, given by
l\ log,(1+ pt)
p’ '

X(1+pt):e(

o Set A = ({,0y)? +4.
If g = p? with p odd and 3 = 2a, then
lg(x, V)| < gp(A, p%),
and if g = p® with p odd and 8 =2a + 1, a > 1, then
2q, piA,
lg(x,¥)| < {0, pllA,
ap'?p(%,p"71), PA.
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Proof of 4th moment bound

Apply approx. functional equation and orthogonality of characters.
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Proof of 4th moment bound

Apply approx. functional equation and orthogonality of characters.
Need when H < N:

Z (Z 7(n+ h)x(n+ h)T(n)W) < N(1+ g)(Nq)s

h=0(mod d) \nxN
h=H
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Proof of 4th moment bound

Apply approx. functional equation and orthogonality of characters.
Need when H < N:

Z (Z 7(n+ h)x(n+ h)T(n)W) < N(1+ g)(Nq)s
h=0(mod d) \nxN

Conductor dropping phenomenon:

x(n+ h)x(n) = x(1 + hn)

E.g. if d = p? q = p3 and h = p?k then

x(n+h)x(n) = x(1+hA)=e <£X§ﬁ> :
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Dual moment for 4th moment along cosets

Solve the shifted convolution problem with the Bruggeman-Kuznetsov
formula with character 772 at cusps 0, co and Poisson summation:

S a2l o

¥ (mod p?)

DoY) Y Ap)L(L/2, @ n).

7 (mod p) tj w€Hi; (1)

lan Petrow (ETH Ziirich) The 4th moment and the Weyl bound 16 / 16



Dual moment for 4th moment along cosets

Solve the shifted convolution problem with the Bruggeman-Kuznetsov
formula with character 772 at cusps 0, co and Poisson summation:

S oLa2eafr o
¥ (mod p?)
Y o) Py Y MpL/2 0w

7 (mod p) tj w€Hi; (1)

Apply Holder with exponents (4,4,4,4) and use a (new) spectral
large sieve inequality:
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Dual moment for 4th moment along cosets

Solve the shifted convolution problem with the Bruggeman-Kuznetsov
formula with character 772 at cusps 0, co and Poisson summation:

S oLa2eafr o
¥ (mod p?)
Y o) Py Y MpL/2 0w

7 (mod p) tj ﬂ'EHitJ-(PﬂY2)

Apply Holder with exponents (4,4,4,4) and use a (new) spectral
large sieve inequality:

oS Y a2 renf < @THT)

n(mod q) [|<T mlq weH;; (mn?)
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