The fourth moment of Dirichlet L-functions along a coset and the Weyl bound

Ian Petrow

ETH Zürich

The subconvexity problem

Given π an automorphic form, let $C(\pi)$ be its analytic conductor. Example: χ a Dirichlet character modulo q and $|\cdot|^{i t}: n \mapsto n^{i t}$

$$
C\left(\chi .|\cdot|^{i t}\right)=(1+|t|) q .
$$

The subconvexity problem

Given π an automorphic form, let $C(\pi)$ be its analytic conductor. Example: χ a Dirichlet character modulo q and $|\cdot|^{i t}: n \mapsto n^{i t}$

$$
C\left(\chi .|\cdot|^{i t}\right)=(1+|t|) q .
$$

Trivial "convexity" bound:

$$
L(1 / 2, \pi) \ll C(\pi)^{1 / 4+\varepsilon}
$$

The subconvexity problem

Given π an automorphic form, let $C(\pi)$ be its analytic conductor. Example: χ a Dirichlet character modulo q and $|\cdot|^{i t}: n \mapsto n^{i t}$

$$
C\left(\chi .|\cdot|^{i t}\right)=(1+|t|) q .
$$

Trivial "convexity" bound:

$$
L(1 / 2, \pi) \ll C(\pi)^{1 / 4+\varepsilon}
$$

GRH \Rightarrow Generalized Lindelöf hypothesis:

$$
L(1 / 2, \pi) \ll C(\pi)^{\varepsilon}
$$

The subconvexity problem

Given π an automorphic form, let $C(\pi)$ be its analytic conductor. Example: χ a Dirichlet character modulo q and $|\cdot|^{i t}: n \mapsto n^{i t}$

$$
C\left(\chi \cdot|\cdot|^{i t}\right)=(1+|t|) q .
$$

Trivial "convexity" bound:

$$
L(1 / 2, \pi) \ll C(\pi)^{1 / 4+\varepsilon}
$$

GRH \Rightarrow Generalized Lindelöf hypothesis:

$$
L(1 / 2, \pi) \ll C(\pi)^{\varepsilon}
$$

Subconvexity problem: show that there exists $\delta>0$ so that

$$
L(1 / 2, \pi) \ll C(\pi)^{1 / 4-\delta}
$$

The subconvexity problem

Given π an automorphic form, let $C(\pi)$ be its analytic conductor. Example: χ a Dirichlet character modulo q and $|\cdot|^{i t}: n \mapsto n^{i t}$

$$
C\left(\chi .|\cdot|^{i t}\right)=(1+|t|) q .
$$

Trivial "convexity" bound:

$$
L(1 / 2, \pi) \ll C(\pi)^{1 / 4+\varepsilon}
$$

GRH \Rightarrow Generalized Lindelöf hypothesis:

$$
L(1 / 2, \pi) \ll C(\pi)^{\varepsilon}
$$

Subconvexity problem: show that there exists $\delta>0$ so that

$$
L(1 / 2, \pi) \ll C(\pi)^{1 / 4-\delta}
$$

Michel-Venkatesh (2010): π on GL_{1} or GL_{2} with unspecified $\delta>0$.

Subconvexity results

Subconvexity results

First subconvexity result: Weyl (1922):

$$
\zeta\left(\frac{1}{2}+i t\right) \ll(1+|t|)^{\frac{1}{6}+\varepsilon} .
$$

Based on the method of Weyl differencing; invariance of continuous functions under translation.

Subconvexity results

First subconvexity result: Weyl (1922):

$$
\zeta\left(\frac{1}{2}+i t\right) \ll(1+|t|)^{\frac{1}{6}+\varepsilon} .
$$

Based on the method of Weyl differencing; invariance of continuous functions under translation.

Burgess (1962) χ primitive modulo q :

$$
L(1 / 2, \chi) \ll q^{\frac{3}{16}+\varepsilon}
$$

Throws away correlation between character sums on many very short intervals, but uses Hölder and RH for curves over finite fields.

Subconvexity results

First subconvexity result: Weyl (1922):

$$
\zeta\left(\frac{1}{2}+i t\right) \ll(1+|t|)^{\frac{1}{6}+\varepsilon} .
$$

Based on the method of Weyl differencing; invariance of continuous functions under translation.

Burgess (1962) χ primitive modulo q :

$$
L(1 / 2, \chi) \ll q^{\frac{3}{16}+\varepsilon}
$$

Throws away correlation between character sums on many very short intervals, but uses Hölder and RH for curves over finite fields.

The exponent $3 / 16$ re-occurs often in modern incarnations of these problems (Blomer-Harcos-Michel, Blomer-Harcos, Han Wu).

The Weyl exponent and Conrey-Iwaniec

Until recently, the exponent $1 / 6$ only known in special cases related to quadratic characters (Conrey-Iwaniec, Ivić, Young, P.-Young)

The Weyl exponent and Conrey-Iwaniec

Until recently, the exponent $1 / 6$ only known in special cases related to quadratic characters (Conrey-lwaniec, Ivić, Young, P.-Young)

Conrey-Iwaniec (2000): if $\chi^{2}=1$ with odd (sq.-free) conductor q

$$
L(1 / 2, \chi) \ll q^{\frac{1}{6}+\varepsilon}
$$

using input from automorphic forms and Deligne's RH for varieties.

The Weyl exponent and Conrey-Iwaniec

Until recently, the exponent $1 / 6$ only known in special cases related to quadratic characters (Conrey-Iwaniec, Ivić, Young, P.-Young)

Conrey-Iwaniec (2000): if $\chi^{2}=1$ with odd (sq.-free) conductor q

$$
L(1 / 2, \chi) \ll q^{\frac{1}{6}+\varepsilon}
$$

using input from automorphic forms and Deligne's RH for varieties. $H_{i t}(m, \psi)=\{$ Maass newforms of level m char. ψ and spec. par. it $\}$.

The Weyl exponent and Conrey-Iwaniec

Until recently, the exponent $1 / 6$ only known in special cases related to quadratic characters (Conrey-Iwaniec, Ivić, Young, P.-Young)

Conrey-Iwaniec (2000): if $\chi^{2}=1$ with odd (sq.-free) conductor q

$$
L(1 / 2, \chi) \ll q^{\frac{1}{6}+\varepsilon},
$$

using input from automorphic forms and Deligne's RH for varieties. $H_{i t}(m, \psi)=\{$ Maass newforms of level m char. ψ and spec. par. it $\}$.

$$
\sum_{\left|t_{j}\right| \leq T} \sum_{m \mid q} \sum_{\pi \in H_{i t j^{j}(m, 1)}} L(1 / 2, \pi \otimes \chi)^{3}+\int_{-T}^{T}|L(1 / 2+i t, \chi)|^{6} \ell(t) d t
$$

$$
\ll T^{B} q^{1+\varepsilon} .
$$

$B<\infty$ unspecified, $\ell(t)=t^{2}\left(4+t^{2}\right)^{-1} . L(1 / 2, \pi \otimes \chi) \geq 0$ by Guo,

Fact (Atkin-Li 1978, or use local Langands for GL_{2}):
If $m \mid q, \chi$ conductor $q, \pi \in H_{i t}\left(m, \chi^{2}\right)$, then $\pi \otimes \bar{\chi} \in H_{i t}\left(q^{2}, 1\right)$.

Fact (Atkin-Li 1978, or use local Langands for GL_{2}):
If $m \mid q, \chi$ conductor $q, \pi \in H_{i t}\left(m, \chi^{2}\right)$, then $\pi \otimes \bar{\chi} \in H_{i t}\left(q^{2}, 1\right)$.

Theorem (P.-Young (2018))

Let χ be primitive of conductor q cube-free and not quadratic.

$$
\sum_{\left|t_{j}\right| \leq T} \sum_{m \mid q} \sum_{\pi \in H_{i t_{j}}\left(m, \chi^{2}\right)} L(1 / 2, \pi \otimes \bar{\chi})^{3}+\int_{-T}^{T}|L(1 / 2+i t, \chi)|^{6} d t
$$

$\ll T^{B} q^{1+\varepsilon}$.

Fact (Atkin-Li 1978, or use local Langands for GL_{2}):
If $m \mid q, \chi$ conductor $q, \pi \in H_{i t}\left(m, \chi^{2}\right)$, then $\pi \otimes \bar{\chi} \in H_{i t}\left(q^{2}, 1\right)$.

Theorem (P.-Young (2018))

Let χ be primitive of conductor q cube-free and not quadratic.

$$
\sum_{\left|t_{j}\right| \leq T} \sum_{m \mid q} \sum_{\pi \in H_{i i_{j}}\left(m, \chi^{2}\right)} L(1 / 2, \pi \otimes \bar{\chi})^{3}+\int_{-T}^{T}|L(1 / 2+i t, \chi)|^{6} d t
$$

$\ll T^{B} q^{1+\varepsilon}$.

Theorem (P.-Young (2018))

Let χ be primitive of conductor q cube-free and $T \gg q^{\varepsilon}$.

$$
\begin{array}{r}
\sum_{T<\left|t_{j}\right| \leq T+1} \sum_{m \mid q} \sum_{\pi \in H_{i_{j}(m,}\left(m, \chi^{2}\right)} L(1 / 2, \pi \otimes \bar{\chi})^{3}+\int_{T}^{T+1}|L(1 / 2+i t, \chi)|^{6} d t \\
\ll(T q)^{1+\varepsilon} .
\end{array}
$$

Fact (Atkin-Li 1978, or use local Langands for GL_{2}):
If $m \mid q, \chi$ conductor $q, \pi \in H_{i t}\left(m, \chi^{2}\right)$, then $\pi \otimes \bar{\chi} \in H_{i t}\left(q^{2}, 1\right)$.

Theorem (P.-Young (2019))

Let χ be primitive of conductor q eube-free and not quadratic.

$$
\sum_{\left|t_{j}\right| \leq T} \sum_{m \mid q} \sum_{\pi \in H_{i i_{j}}\left(m, \chi^{2}\right)} L(1 / 2, \pi \otimes \bar{\chi})^{3}+\int_{-T}^{T}|L(1 / 2+i t, \chi)|^{6} d t
$$

$$
\ll T^{B} q^{1+\varepsilon}
$$

Theorem (P.-Young (2019))

Let χ be primitive of conductor q cube-free and $T \gg q^{\varepsilon}$.

$$
\begin{array}{r}
\sum_{T<\left|t_{j}\right| \leq T+1} \sum_{m \mid q} \sum_{\pi \in H_{i t_{j}}\left(m, \chi^{2}\right)} L(1 / 2, \pi \otimes \bar{\chi})^{3}+\int_{T}^{T+1}|L(1 / 2+i t, \chi)|^{6} d t \\
\end{array} \ll(T q)^{1+\varepsilon} .
$$

The Weyl Bound

Corollary (P.-Young 2019)

For all primitive χ modulo q we have

$$
L(1 / 2+i t, \chi) \ll((1+|t|) q)^{\frac{1}{6}+\varepsilon}
$$

The Weyl Bound

Corollary (P.-Young 2019)

For all primitive χ modulo q we have

$$
L(1 / 2+i t, \chi) \ll((1+|t|) q)^{\frac{1}{6}+\varepsilon}
$$

In other language: For any Hecke character χ on GL_{1} over \mathbb{Q} we have

$$
L(1 / 2, \chi) \ll C(\chi)^{\frac{1}{6}+\varepsilon}
$$

The Weyl Bound

Corollary (P.-Young 2019)

For all primitive χ modulo q we have

$$
L(1 / 2+i t, \chi) \ll((1+|t|) q)^{\frac{1}{6}+\varepsilon}
$$

In other language: For any Hecke character χ on GL_{1} over \mathbb{Q} we have

$$
L(1 / 2, \chi) \ll C(\chi)^{\frac{1}{6}+\varepsilon}
$$

Why did the cube-free hypothesis come up, and how to remove it?

Summary of proof

Summary of proof

Apply:

(1) Approximate functional equation to expand $L(1 / 2, \pi \otimes \bar{\chi})$

Summary of proof

Apply:

(1) Approximate functional equation to expand $L(1 / 2, \pi \otimes \bar{\chi})$
(2) Bruggeman-Kuznetsov formula (for newforms, using explicit orthonormal basis of $S\left(q, \chi^{2}\right)$)

Summary of proof

Apply:
(1) Approximate functional equation to expand $L(1 / 2, \pi \otimes \bar{\chi})$
(2) Bruggeman-Kuznetsov formula (for newforms, using explicit orthonormal basis of $S\left(q, \chi^{2}\right)$)
(3) Poisson summation (Voronoi formula for Eis. series on $G L_{3}$)

Summary of proof

Apply:
(1) Approximate functional equation to expand $L(1 / 2, \pi \otimes \bar{\chi})$
(2) Bruggeman-Kuznetsov formula (for newforms, using explicit orthonormal basis of $S\left(q, \chi^{2}\right)$)
(3) Poisson summation (Voronoi formula for Eis. series on GL_{3})

- Stationary phase, explicit computation of complete character sums, Mellin inversion.

Summary of proof

Apply:
(1) Approximate functional equation to expand $L(1 / 2, \pi \otimes \bar{\chi})$
(2) Bruggeman-Kuznetsov formula (for newforms, using explicit orthonormal basis of $S\left(q, \chi^{2}\right)$)
(3) Poisson summation (Voronoi formula for Eis. series on $G L_{3}$)
(4) Stationary phase, explicit computation of complete character sums, Mellin inversion.
Result is a reciprocal "dual moment" (P. 2014 in quadratic case)

$$
\begin{aligned}
& \sum_{t_{j}} \sum_{m \mid q} \sum_{\pi \in H_{i t_{j}}\left(m, \chi^{2}\right)} L(1 / 2, \pi \otimes \bar{\chi})^{3} \leftrightarrow \sum_{\psi(\bmod q)}^{*}|L(1 / 2, \psi)|^{4} g(\chi, \psi) \\
& g(\chi, \psi):=\sum_{u, v(\bmod q)} \chi(u) \overline{\chi(u+1) \chi(v)} \chi(v+1) \psi(u v-1)
\end{aligned}
$$

Other examples of dual moments

Motohashi (c. 1995):

$$
\int w(t)|\zeta(1 / 2+i t)|^{4} d t \leftrightarrow \sum_{t_{j}} \sum_{\pi \in H_{i t_{j}}(1,1)} \check{w}\left(t_{j}\right) L(1 / 2, \pi)^{3}
$$

(see Michel-Venkatesh (2010) for a geometric proof)

Other examples of dual moments

Motohashi (c. 1995):

$$
\int w(t)|\zeta(1 / 2+i t)|^{4} d t \leftrightarrow \sum_{t_{j}} \sum_{\pi \in H_{i t_{j}}(1,1)} \check{w}\left(t_{j}\right) L(1 / 2, \pi)^{3}
$$

(see Michel-Venkatesh (2010) for a geometric proof) Young (2007):

$$
\sum_{\chi(\bmod p)}|L(1 / 2, \chi)|^{4} \leftrightarrow \sum_{t_{j}} \sum_{\pi \in H_{i_{j}(}(1,1)} \lambda_{\pi}(p) L(1 / 2, \pi)^{3}
$$

Other examples of dual moments

Motohashi (c. 1995):

$$
\int w(t)|\zeta(1 / 2+i t)|^{4} d t \leftrightarrow \sum_{t_{j}} \sum_{\pi \in H_{i t_{j}}(1,1)} \check{w}\left(t_{j}\right) L(1 / 2, \pi)^{3}
$$

(see Michel-Venkatesh (2010) for a geometric proof)
Young (2007):

$$
\sum_{\chi(\bmod p)}|L(1 / 2, \chi)|^{4} \leftrightarrow \sum_{t_{j}} \sum_{\pi \in H_{i_{j}(1,1)}} \lambda_{\pi}(p) L(1 / 2, \pi)^{3}
$$

See also recent work of Blomer-Khan (2017) and Zacharias (2018).

Dual moment estimates

To win, need

$$
\sum_{\psi(\bmod q)}^{*}|L(1 / 2, \psi)|^{4} g(\chi, \psi) \ll q^{2+\varepsilon}
$$

Dual moment estimates

To win, need

$$
\sum_{\psi(\bmod q)}^{*}|L(1 / 2, \psi)|^{4} g(\chi, \psi) \ll q^{2+\varepsilon}
$$

Suffices to consider q a prime power, since $g(\chi, \psi)$ factors.

Dual moment estimates

To win, need

$$
\sum_{\psi(\bmod q)}^{*}|L(1 / 2, \psi)|^{4} g(\chi, \psi) \ll q^{2+\varepsilon}
$$

Suffices to consider q a prime power, since $g(\chi, \psi)$ factors.

- If $q=p$ then $g(\chi, \psi) \ll p$ follows the RH of Deligne. Note: the proof of Conrey-Iwaniec in the case χ quadratic does not generalize, we need to get our hands dirty with the ℓ-adic sheaf machinery of Deligne and Katz.

Dual moment estimates

To win, need

$$
\sum_{\psi(\bmod q)}^{*}|L(1 / 2, \psi)|^{4} g(\chi, \psi) \ll q^{2+\varepsilon}
$$

Suffices to consider q a prime power, since $g(\chi, \psi)$ factors.

- If $q=p$ then $g(\chi, \psi) \ll p$ follows the RH of Deligne. Note: the proof of Conrey-Iwaniec in the case χ quadratic does not generalize, we need to get our hands dirty with the ℓ-adic sheaf machinery of Deligne and Katz.
- If $q=p^{2}$, then $g(\chi, \psi) \ll p^{2}$ by an elementary computation.

Dual moment estimates

To win, need

$$
\sum_{\psi(\bmod q)}^{*}|L(1 / 2, \psi)|^{4} g(\chi, \psi) \ll q^{2+\varepsilon}
$$

Suffices to consider q a prime power, since $g(\chi, \psi)$ factors.

- If $q=p$ then $g(\chi, \psi) \ll p$ follows the RH of Deligne. Note: the proof of Conrey-Iwaniec in the case χ quadratic does not generalize, we need to get our hands dirty with the ℓ-adic sheaf machinery of Deligne and Katz.
- If $q=p^{2}$, then $g(\chi, \psi) \ll p^{2}$ by an elementary computation. In these cases we have by a standard large-sieve type inequality:

$$
\sum_{\psi(\bmod q)}^{*}|L(1 / 2, \psi)|^{4} g(\chi, \psi) \ll q^{1+\varepsilon} \sum_{\psi(\bmod q)}^{*}|L(1 / 2, \psi)|^{4} \ll q^{2+\varepsilon}
$$

Dual moment estimates

To win, need

$$
\sum_{\psi(\bmod q)}^{*}|L(1 / 2, \psi)|^{4} g(\chi, \psi) \ll q^{2+\varepsilon}
$$

Suffices to consider q a prime power, since $g(\chi, \psi)$ factors.

- If $q=p$ then $g(\chi, \psi) \ll p$ follows the RH of Deligne. Note: the proof of Conrey-Iwaniec in the case χ quadratic does not generalize, we need to get our hands dirty with the ℓ-adic sheaf machinery of Deligne and Katz.
- If $q=p^{2}$, then $g(\chi, \psi) \ll p^{2}$ by an elementary computation. In these cases we have by a standard large-sieve type inequality:

$$
\sum_{\psi(\bmod q)}^{*}|L(1 / 2, \psi)|^{4} g(\chi, \psi) \ll q^{1+\varepsilon} \sum_{\psi(\bmod q)}^{*}|L(1 / 2, \psi)|^{4} \ll q^{2+\varepsilon}
$$

Finishes the proof if q is cube-free.

Prime cubes

If $q=p^{3}$ with $p \equiv 1(4)$, then

Prime cubes

If $q=p^{3}$ with $p \equiv 1(4)$, then (SUPRISE!) there exist $2(p-1)$ characters $\psi \bmod q$ such that

$$
|g(\chi, \psi)|=p^{\frac{1}{2}} q .
$$

Prime cubes

If $q=p^{3}$ with $p \equiv 1(4)$, then (SUPRISE!) there exist $2(p-1)$ characters $\psi \bmod q$ such that

$$
|g(\chi, \psi)|=p^{\frac{1}{2}} q
$$

The "bad" ψ are in two cosets of the subgroup of characters $\bmod p$:

$$
(\widehat{\mathbb{Z} / p \mathbb{Z}})^{\times} \hookrightarrow\left(\widehat{\mathbb{Z} / p^{3} \mathbb{Z}}\right)^{\times} .
$$

Prime cubes

If $q=p^{3}$ with $p \equiv 1(4)$, then (SUPRISE!) there exist $2(p-1)$ characters $\psi \bmod q$ such that

$$
|g(\chi, \psi)|=p^{\frac{1}{2}} q
$$

The "bad" ψ are in two cosets of the subgroup of characters $\bmod p$:

$$
(\widehat{\mathbb{Z} / p \mathbb{Z}})^{\times} \hookrightarrow\left(\widehat{\mathbb{Z} / p^{3} \mathbb{Z}}\right)^{\times} .
$$

So, for α primitive modulo $q=p^{3}$ need to bound

$$
\begin{aligned}
\sum_{\psi(\bmod p)}^{*}|L(1 / 2, \psi \cdot \alpha)|^{4} g(\chi, \psi) \leq p^{\frac{1}{2}} q & \sum_{\psi(\bmod p)}^{*}|L(1 / 2, \psi \cdot \alpha)|^{4} \\
& \ll \begin{cases}q p^{3+\frac{1}{4}+\varepsilon} & \text { Burgess } \\
q^{2+\varepsilon} p^{\frac{1}{2}} & \text { large sieve }\end{cases}
\end{aligned}
$$

Need: $\sum_{\psi(\bmod p)}^{*}|L(1 / 2, \psi \cdot \alpha)|^{4} \ll p^{2.5+\varepsilon}$.

Fourth moment along cosets

Fourth moment along cosets

Theorem (P.-Young 2019)

Let $q, d \geq 1$ with $d \mid q$. Let $q^{*}=\prod_{p^{\beta} \| q} p^{\left\lceil\frac{2 \beta}{3}\right\rceil}$, i.e. q^{*} is the least positive integer such that $q^{2} \mid\left(q^{*}\right)^{3}$. Let α be a primitive Dirichlet character modulo q. Then

$$
\sum_{\psi(\bmod d)}|L(1 / 2, \psi \cdot \alpha)|^{4} \ll \operatorname{lcm}\left(d, q^{*}\right) q^{\varepsilon}
$$

Fourth moment along cosets

Theorem (P.-Young 2019)

Let $q, d \geq 1$ with $d \mid q$. Let $q^{*}=\prod_{p^{\beta} \| q} p^{\left\lceil\frac{2 \beta}{3}\right\rceil}$, i.e. q^{*} is the least positive integer such that $q^{2} \mid\left(q^{*}\right)^{3}$. Let α be a primitive Dirichlet character modulo q. Then

$$
\sum_{\psi(\bmod d)}|L(1 / 2, \psi \cdot \alpha)|^{4} \ll \operatorname{lcm}\left(d, q^{*}\right) q^{\varepsilon}
$$

Note the set $\{\psi \cdot \alpha: \psi(\bmod d)\}$ is a coset of the subgroup $(\widehat{\mathbb{Z} / d \mathbb{Z}})^{\times} \hookrightarrow(\widehat{\mathbb{Z} / q \mathbb{Z}})^{\times}$.
For example, if $q=p^{3}$ and $d=p^{2}$ this is Lindelöf on average.

Fourth moment along cosets

Theorem (P.-Young 2019)

Let $q, d \geq 1$ with $d \mid q$. Let $q^{*}=\prod_{p^{\beta} \| q} p^{\left\lceil\frac{2 \beta}{3}\right\rceil}$, i.e. q^{*} is the least positive integer such that $q^{2} \mid\left(q^{*}\right)^{3}$. Let α be a primitive Dirichlet character modulo q. Then

$$
\sum_{\psi(\bmod d)}|L(1 / 2, \psi \cdot \alpha)|^{4} \ll \operatorname{lcm}\left(d, q^{*}\right) q^{\varepsilon}
$$

Note the set $\{\psi \cdot \alpha: \psi(\bmod d)\}$ is a coset of the subgroup $(\widehat{\mathbb{Z} / d \mathbb{Z}})^{\times} \hookrightarrow(\widehat{\mathbb{Z} / q \mathbb{Z}})^{\times}$.
For example, if $q=p^{3}$ and $d=p^{2}$ this is Lindelöf on average.

$$
\sum_{\psi(\bmod p)}|L(1 / 2, \psi \cdot \alpha)|^{4} \leq \sum_{\psi\left(\bmod p^{2}\right)}|L(1 / 2, \psi \cdot \alpha)|^{4} \ll p^{2+\varepsilon}
$$

Remarks

By itself, the 4th moment along cosets recovers a Weyl-subconvex result of Heath-Brown (1978) for certain special moduli q.

Remarks

By itself, the 4th moment along cosets recovers a Weyl-subconvex result of Heath-Brown (1978) for certain special moduli q.

Analogous to a result of Iwaniec (1980):

$$
\int_{T}^{T+\Delta}|\zeta(1 / 2+i t)|^{4} d t \ll \max \left(\Delta, T^{2 / 3}\right) T^{\varepsilon}
$$

Structure of sets of "bad" ψ

Structure of sets of "bad" ψ

- Let $\rho\left(\Delta, p^{\beta}\right)=\#\left\{x\left(\bmod p^{\beta}\right): x^{2}-\Delta \equiv 0\left(\bmod p^{\beta}\right)\right\}$.

Structure of sets of "bad" ψ

- Let $\rho\left(\Delta, p^{\beta}\right)=\#\left\{x\left(\bmod p^{\beta}\right): x^{2}-\Delta \equiv 0\left(\bmod p^{\beta}\right)\right\}$.
- There exists $\left(\widehat{\mathbb{Z} / p^{\beta} \mathbb{Z}}\right)^{\times} \rightarrow \mathbb{Z} / p^{\beta-1} \mathbb{Z}, \chi \mapsto \ell_{\chi}$ given by

$$
\chi(1+p t)=e\left(\frac{\ell_{\chi} \log _{p}(1+p t)}{p^{\beta}}\right) .
$$

Structure of sets of "bad" ψ

- Let $\rho\left(\Delta, p^{\beta}\right)=\#\left\{x\left(\bmod p^{\beta}\right): x^{2}-\Delta \equiv 0\left(\bmod p^{\beta}\right)\right\}$.
- There exists $\left(\widehat{\mathbb{Z}} / p^{\beta} \mathbb{Z}\right)^{\times} \rightarrow \mathbb{Z} / p^{\beta-1} \mathbb{Z}, \chi \mapsto \ell_{\chi}$ given by

$$
\chi(1+p t)=e\left(\frac{\ell_{\chi} \log _{p}(1+p t)}{p^{\beta}}\right) .
$$

- Set $\Delta=\left(\ell_{\chi} \overline{\ell_{\psi}}\right)^{2}+4$.

Structure of sets of "bad" ψ

- Let $\rho\left(\Delta, p^{\beta}\right)=\#\left\{x\left(\bmod p^{\beta}\right): x^{2}-\Delta \equiv 0\left(\bmod p^{\beta}\right)\right\}$.
- There exists $\left(\widehat{\mathbb{Z} / p^{\beta} \mathbb{Z}}\right)^{\times} \rightarrow \mathbb{Z} / p^{\beta-1} \mathbb{Z}, \chi \mapsto \ell_{\chi}$ given by

$$
\chi(1+p t)=e\left(\frac{\ell_{\chi} \log _{p}(1+p t)}{p^{\beta}}\right) .
$$

- Set $\Delta=\left(\ell_{\chi} \overline{\ell_{\psi}}\right)^{2}+4$.

If $q=p^{\beta}$ with p odd and $\beta=2 \alpha$, then

$$
|g(\chi, \psi)| \leq q \rho\left(\Delta, p^{\alpha}\right)
$$

Structure of sets of "bad" ψ

- Let $\rho\left(\Delta, p^{\beta}\right)=\#\left\{x\left(\bmod p^{\beta}\right): x^{2}-\Delta \equiv 0\left(\bmod p^{\beta}\right)\right\}$.
- There exists $\left(\widehat{\mathbb{Z}} / p^{\beta} \mathbb{Z}\right)^{\times} \rightarrow \mathbb{Z} / p^{\beta-1} \mathbb{Z}, \chi \mapsto \ell_{\chi}$ given by

$$
\chi(1+p t)=e\left(\frac{\ell_{\chi} \log _{p}(1+p t)}{p^{\beta}}\right) .
$$

- Set $\Delta=\left(\ell_{\chi} \overline{\ell_{\psi}}\right)^{2}+4$.

If $q=p^{\beta}$ with p odd and $\beta=2 \alpha$, then

$$
|g(\chi, \psi)| \leq q \rho\left(\Delta, p^{\alpha}\right),
$$

and if $q=p^{\beta}$ with p odd and $\beta=2 \alpha+1, \alpha \geq 1$, then

$$
|g(\chi, \psi)| \leq \begin{cases}2 q, & p \nmid \Delta, \\ 0, & p \| \Delta, \\ q p^{1 / 2} \rho\left(\frac{\Delta}{p^{2}}, p^{\alpha-1}\right), & p^{2} \mid \Delta\end{cases}
$$

Proof of 4th moment bound

Apply approx. functional equation and orthogonality of characters.

Proof of 4th moment bound

Apply approx. functional equation and orthogonality of characters. Need when $H \ll N$:

$$
\sum_{\substack{n=0(\bmod d) \\ h \asymp H}}\left(\sum_{n \asymp N} \tau(n+h) \chi(n+h) \tau(n) \overline{\chi(n)}\right) \ll N\left(1+\frac{H}{q}\right)(N q)^{\varepsilon}
$$

Proof of 4th moment bound

Apply approx. functional equation and orthogonality of characters. Need when $H \ll N$:

$$
\sum_{\substack{h=0(\bmod d) \\ h \approx H}}\left(\sum_{n \approx N} \tau(n+h) \chi(n+h) \tau(n) \overline{\chi(n)}\right) \ll N\left(1+\frac{H}{q}\right)(N q)^{\varepsilon}
$$

Conductor dropping phenomenon:

Proof of 4th moment bound

Apply approx. functional equation and orthogonality of characters. Need when $H \ll N$:

$$
\sum_{\substack{n \equiv 0(\bmod d) \\ h \simeq H}}\left(\sum_{n \asymp N} \tau(n+h) \chi(n+h) \tau(n) \overline{\chi(n)}\right) \ll N\left(1+\frac{H}{q}\right)(N q)^{\varepsilon}
$$

Conductor dropping phenomenon:

$$
\chi(n+h) \overline{\chi(n)}=\chi(1+h \bar{n})
$$

Proof of 4th moment bound

Apply approx. functional equation and orthogonality of characters. Need when $H \ll N$:

$$
\sum_{\substack{n \equiv 0(\bmod d) \\ h \asymp H}}\left(\sum_{n \asymp N} \tau(n+h) \chi(n+h) \tau(n) \overline{\chi(n)}\right) \ll N\left(1+\frac{H}{q}\right)(N q)^{\varepsilon}
$$

Conductor dropping phenomenon:

$$
\chi(n+h) \overline{\chi(n)}=\chi(1+h \bar{n})
$$

E.g. if $d=p^{2}, q=p^{3}$, and $h=p^{2} k$ then

$$
\chi(n+h) \overline{\chi(n)}=\chi(1+h \bar{n})=e\left(\frac{\ell_{\chi} k \bar{n}}{p}\right) .
$$

Dual moment for 4th moment along cosets

Solve the shifted convolution problem with the Bruggeman-Kuznetsov formula with character $\bar{\eta}^{2}$ at cusps $0, \infty$ and Poisson summation:

$$
\sum_{\psi\left(\bmod p^{2}\right)}|L(1 / 2, \psi \cdot \alpha)|^{4} \leftrightarrow \sum_{\eta(\bmod p)} \eta\left(\ell_{\alpha}\right) \tau(\eta)^{3} \sum_{t_{j}} \sum_{\pi \in H_{i t_{j}}\left(p, \eta^{2}\right)} \lambda_{\pi}(p) L(1 / 2, \pi \otimes \bar{\eta})^{3} .
$$

Dual moment for 4th moment along cosets

Solve the shifted convolution problem with the Bruggeman-Kuznetsov formula with character $\bar{\eta}^{2}$ at cusps $0, \infty$ and Poisson summation:

$$
\begin{aligned}
\sum_{\psi\left(\bmod p^{2}\right)}|L(1 / 2, \psi \cdot \alpha)|^{4} & \leftrightarrow \\
& \sum_{\eta(\bmod p)} \eta\left(\ell_{\alpha}\right) \tau(\eta)^{3} \sum_{t_{j}} \sum_{\pi \in H_{i t j}\left(\rho, \eta^{2}\right)} \lambda_{\pi}(p) L(1 / 2, \pi \otimes \bar{\eta})^{3} .
\end{aligned}
$$

Apply Hölder with exponents ($4,4,4,4$) and use a (new) spectral large sieve inequality:

Dual moment for 4th moment along cosets

Solve the shifted convolution problem with the Bruggeman-Kuznetsov formula with character $\bar{\eta}^{2}$ at cusps $0, \infty$ and Poisson summation:

$$
\begin{aligned}
\sum_{\psi\left(\bmod p^{2}\right)}|L(1 / 2, \psi \cdot \alpha)|^{4} & \leftrightarrow \\
& \sum_{\eta(\bmod p)} \eta\left(\ell_{\alpha}\right) \tau(\eta)^{3} \sum_{t_{j}} \sum_{\pi \in H_{i_{j} j}\left(p, \eta^{2}\right)} \lambda_{\pi}(p) L(1 / 2, \pi \otimes \bar{\eta})^{3} .
\end{aligned}
$$

Apply Hölder with exponents ($4,4,4,4$) and use a (new) spectral large sieve inequality:

$$
\sum_{\eta(\bmod q)} \sum_{\left|t_{j}\right| \leq T} \sum_{m \mid q} \sum_{\pi \in H_{i_{j}\left(m, \eta^{2}\right)}}|L(1 / 2, \pi \otimes \bar{\eta})|^{4} \ll q^{2} T^{2}(q T)^{\varepsilon} .
$$

