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The subconvexity problem

Given π an automorphic form, let C (π) be its analytic conductor.
Example: χ a Dirichlet character modulo q and | · |it : n 7→ nit

C (χ.| · |it) = (1 + |t|)q.

Trivial “convexity” bound:

L(1/2, π)� C (π)1/4+ε

GRH ⇒ Generalized Lindelöf hypothesis:

L(1/2, π)� C (π)ε

Subconvexity problem: show that there exists δ > 0 so that

L(1/2, π)� C (π)1/4−δ

Michel-Venkatesh (2010): π on GL1 or GL2 with unspecified δ > 0.
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Ian Petrow (ETH Zürich) The 4th moment and the Weyl bound 2 / 16



The subconvexity problem

Given π an automorphic form, let C (π) be its analytic conductor.
Example: χ a Dirichlet character modulo q and | · |it : n 7→ nit

C (χ.| · |it) = (1 + |t|)q.

Trivial “convexity” bound:

L(1/2, π)� C (π)1/4+ε

GRH ⇒ Generalized Lindelöf hypothesis:
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Subconvexity results

First subconvexity result: Weyl (1922):

ζ(
1

2
+ it)� (1 + |t|)

1
6

+ε.

Based on the method of Weyl differencing;
invariance of continuous functions under translation.

Burgess (1962) χ primitive modulo q:

L(1/2, χ)� q
3

16
+ε

Throws away correlation between character sums on many very short
intervals, but uses Hölder and RH for curves over finite fields.

The exponent 3/16 re-occurs often in modern incarnations of these
problems (Blomer-Harcos-Michel, Blomer-Harcos, Han Wu).
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The Weyl exponent and Conrey-Iwaniec

Until recently, the exponent 1/6 only known in special cases related
to quadratic characters (Conrey-Iwaniec, Ivić, Young, P.-Young)

Conrey-Iwaniec (2000): if χ2 = 1 with odd (sq.-free) conductor q

L(1/2, χ)� q
1
6

+ε,

using input from automorphic forms and Deligne’s RH for varieties.
Hit(m, ψ) = {Maass newforms of level m char. ψ and spec. par. it}.

∑
|tj |≤T

∑
m|q

∑
π∈Hitj

(m,1)

L(1/2, π ⊗ χ)3 +

∫ T

−T
|L(1/2 + it, χ)|6`(t) dt

� TBq1+ε.

B <∞ unspecified, `(t) = t2(4 + t2)−1. L(1/2, π ⊗ χ) ≥ 0 by Guo.
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Conrey-Iwaniec (2000): if χ2 = 1 with odd (sq.-free) conductor q

L(1/2, χ)� q
1
6

+ε,

using input from automorphic forms and Deligne’s RH for varieties.

Hit(m, ψ) = {Maass newforms of level m char. ψ and spec. par. it}.

∑
|tj |≤T

∑
m|q

∑
π∈Hitj

(m,1)

L(1/2, π ⊗ χ)3 +

∫ T

−T
|L(1/2 + it, χ)|6`(t) dt

� TBq1+ε.

B <∞ unspecified, `(t) = t2(4 + t2)−1. L(1/2, π ⊗ χ) ≥ 0 by Guo.
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Fact (Atkin-Li 1978, or use local Langands for GL2):
If m | q, χ conductor q, π ∈ Hit(m, χ

2), then π ⊗ χ ∈ Hit(q
2, 1).

Theorem (P.-Young (2018))

Let χ be primitive of conductor q cube-free and not quadratic.∑
|tj |≤T

∑
m|q

∑
π∈Hitj

(m,χ2)

L(1/2, π ⊗ χ)3 +

∫ T

−T
|L(1/2 + it, χ)|6 dt

� TBq1+ε.

Theorem (P.-Young (2018))

Let χ be primitive of conductor q cube-free and T � qε.∑
T<|tj |≤T+1

∑
m|q

∑
π∈Hitj

(m,χ2)

L(1/2, π⊗χ)3 +

∫ T+1

T

|L(1/2 + it, χ)|6 dt

� (Tq)1+ε.
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Ian Petrow (ETH Zürich) The 4th moment and the Weyl bound 5 / 16



Fact (Atkin-Li 1978, or use local Langands for GL2):
If m | q, χ conductor q, π ∈ Hit(m, χ

2), then π ⊗ χ ∈ Hit(q
2, 1).

Theorem (P.-Young (2018))

Let χ be primitive of conductor q cube-free and not quadratic.∑
|tj |≤T

∑
m|q

∑
π∈Hitj

(m,χ2)

L(1/2, π ⊗ χ)3 +

∫ T

−T
|L(1/2 + it, χ)|6 dt

� TBq1+ε.

Theorem (P.-Young (2018))

Let χ be primitive of conductor q cube-free and T � qε.∑
T<|tj |≤T+1

∑
m|q

∑
π∈Hitj

(m,χ2)

L(1/2, π⊗χ)3 +

∫ T+1

T

|L(1/2 + it, χ)|6 dt

� (Tq)1+ε.
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The Weyl Bound

Corollary (P.-Young 2019)

For all primitive χ modulo q we have

L(1/2 + it, χ)� ((1 + |t|)q)
1
6

+ε.

In other language: For any Hecke character χ on GL1 over Q we have

L(1/2, χ)� C (χ)
1
6

+ε.

Why did the cube-free hypothesis come up, and how to remove it?
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Ian Petrow (ETH Zürich) The 4th moment and the Weyl bound 7 / 16



Summary of proof

Apply:

1 Approximate functional equation to expand L(1/2, π ⊗ χ)
2 Bruggeman-Kuznetsov formula

(for newforms, using explicit orthonormal basis of S(q, χ2))
3 Poisson summation (Voronoi formula for Eis. series on GL3)
4 Stationary phase, explicit computation of complete character

sums, Mellin inversion.

Result is a reciprocal “dual moment” (P. 2014 in quadratic case)∑
tj

∑
m|q

∑
π∈Hitj

(m,χ2)

L(1/2, π ⊗ χ)3 ↔
∑∗

ψ (mod q)

|L(1/2, ψ)|4g(χ, ψ)

g(χ, ψ) :=
∑

u,v (mod q)

χ(u)χ(u + 1)χ(v)χ(v + 1)ψ(uv − 1).
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Ian Petrow (ETH Zürich) The 4th moment and the Weyl bound 8 / 16



Summary of proof

Apply:

1 Approximate functional equation to expand L(1/2, π ⊗ χ)
2 Bruggeman-Kuznetsov formula

(for newforms, using explicit orthonormal basis of S(q, χ2))
3 Poisson summation (Voronoi formula for Eis. series on GL3)

4 Stationary phase, explicit computation of complete character
sums, Mellin inversion.

Result is a reciprocal “dual moment” (P. 2014 in quadratic case)∑
tj

∑
m|q

∑
π∈Hitj

(m,χ2)

L(1/2, π ⊗ χ)3 ↔
∑∗

ψ (mod q)

|L(1/2, ψ)|4g(χ, ψ)

g(χ, ψ) :=
∑

u,v (mod q)

χ(u)χ(u + 1)χ(v)χ(v + 1)ψ(uv − 1).
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Ian Petrow (ETH Zürich) The 4th moment and the Weyl bound 8 / 16



Summary of proof

Apply:

1 Approximate functional equation to expand L(1/2, π ⊗ χ)
2 Bruggeman-Kuznetsov formula

(for newforms, using explicit orthonormal basis of S(q, χ2))
3 Poisson summation (Voronoi formula for Eis. series on GL3)
4 Stationary phase, explicit computation of complete character

sums, Mellin inversion.

Result is a reciprocal “dual moment” (P. 2014 in quadratic case)∑
tj

∑
m|q

∑
π∈Hitj

(m,χ2)

L(1/2, π ⊗ χ)3 ↔
∑∗

ψ (mod q)

|L(1/2, ψ)|4g(χ, ψ)

g(χ, ψ) :=
∑

u,v (mod q)

χ(u)χ(u + 1)χ(v)χ(v + 1)ψ(uv − 1).
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Other examples of dual moments

Motohashi (c. 1995):∫
w(t)|ζ(1/2 + it)|4 dt ↔

∑
tj

∑
π∈Hitj

(1,1)

w̌(tj)L(1/2, π)3

(see Michel-Venkatesh (2010) for a geometric proof)

Young (2007):∑
χ (mod p)

|L(1/2, χ)|4 ↔
∑
tj

∑
π∈Hitj

(1,1)

λπ(p)L(1/2, π)3

See also recent work of Blomer-Khan (2017) and Zacharias (2018).
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Dual moment estimates

To win, need ∑∗

ψ (mod q)

|L(1/2, ψ)|4g(χ, ψ)� q2+ε.

Suffices to consider q a prime power, since g(χ, ψ) factors.

If q = p then g(χ, ψ)� p follows the RH of Deligne.
Note: the proof of Conrey-Iwaniec in the case χ quadratic does
not generalize, we need to get our hands dirty with the `-adic
sheaf machinery of Deligne and Katz.

If q = p2, then g(χ, ψ)� p2 by an elementary computation.

In these cases we have by a standard large-sieve type inequality:∑∗

ψ (mod q)

|L(1/2, ψ)|4g(χ, ψ)� q1+ε
∑∗

ψ (mod q)

|L(1/2, ψ)|4 � q2+ε.

Finishes the proof if q is cube-free.
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Prime cubes

If q = p3 with p ≡ 1(4), then

(SUPRISE!) there exist 2(p − 1)
characters ψ mod q such that

|g(χ, ψ)| = p
1
2q.

The “bad” ψ are in two cosets of the subgroup of characters mod p:

̂(Z/pZ)× ↪→ ̂(Z/p3Z)×.

So, for α primitive modulo q = p3 need to bound∑∗

ψ (mod p)

|L(1/2, ψ.α)|4g(χ, ψ) ≤ p
1
2q
∑∗

ψ (mod p)

|L(1/2, ψ.α)|4

�

{
qp3+ 1

4
+ε Burgess

q2+εp
1
2 large sieve

Need:
∑∗

ψ (mod p)

|L(1/2, ψ.α)|4 � p2.5+ε.
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Ian Petrow (ETH Zürich) The 4th moment and the Weyl bound 11 / 16



Prime cubes

If q = p3 with p ≡ 1(4), then (SUPRISE!) there exist 2(p − 1)
characters ψ mod q such that

|g(χ, ψ)| = p
1
2q.

The “bad” ψ are in two cosets of the subgroup of characters mod p:

̂(Z/pZ)× ↪→ ̂(Z/p3Z)×.

So, for α primitive modulo q = p3 need to bound∑∗

ψ (mod p)

|L(1/2, ψ.α)|4g(χ, ψ) ≤ p
1
2q
∑∗

ψ (mod p)

|L(1/2, ψ.α)|4

�

{
qp3+ 1

4
+ε Burgess

q2+εp
1
2 large sieve

Need:
∑∗

ψ (mod p)

|L(1/2, ψ.α)|4 � p2.5+ε.
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Fourth moment along cosets

Theorem (P.-Young 2019)

Let q, d ≥ 1 with d | q. Let q∗ =
∏

pβ‖q p
d 2β

3
e,

i.e. q∗ is the least positive integer such that q2 | (q∗)3.
Let α be a primitive Dirichlet character modulo q. Then∑

ψ (mod d)

|L(1/2, ψ.α)|4 � lcm(d , q∗)qε.

Note the set {ψ.α : ψ (mod d)} is a coset of the subgroup

̂(Z/dZ)× ↪→ ̂(Z/qZ)×.

For example, if q = p3 and d = p2 this is Lindelöf on average.∑
ψ (mod p)

|L(1/2, ψ.α)|4 ≤
∑

ψ (mod p2)

|L(1/2, ψ.α)|4 � p2+ε.
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Remarks

By itself, the 4th moment along cosets recovers a Weyl-subconvex
result of Heath-Brown (1978) for certain special moduli q.

Analogous to a result of Iwaniec (1980):∫ T+∆

T

|ζ(1/2 + it)|4 dt � max(∆,T 2/3)T ε.
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Structure of sets of “bad” ψ

Let ρ(∆, pβ) = #{x (mod pβ) : x2 −∆ ≡ 0 (mod pβ)}.
There exists ̂(Z/pβZ)× � Z/pβ−1Z, χ 7→ `χ given by

χ(1 + pt) = e

(
`χ logp(1 + pt)

pβ

)
.

Set ∆ = (`χ`ψ)2 + 4.

If q = pβ with p odd and β = 2α, then

|g(χ, ψ)| ≤ qρ(∆, pα),

and if q = pβ with p odd and β = 2α + 1, α ≥ 1, then

|g(χ, ψ)| ≤


2q, p - ∆,

0, p‖∆,
qp1/2ρ( ∆

p2 , p
α−1), p2|∆.
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Ian Petrow (ETH Zürich) The 4th moment and the Weyl bound 14 / 16



Structure of sets of “bad” ψ

Let ρ(∆, pβ) = #{x (mod pβ) : x2 −∆ ≡ 0 (mod pβ)}.
There exists ̂(Z/pβZ)× � Z/pβ−1Z, χ 7→ `χ given by

χ(1 + pt) = e

(
`χ logp(1 + pt)

pβ

)
.

Set ∆ = (`χ`ψ)2 + 4.

If q = pβ with p odd and β = 2α, then

|g(χ, ψ)| ≤ qρ(∆, pα),

and if q = pβ with p odd and β = 2α + 1, α ≥ 1, then

|g(χ, ψ)| ≤


2q, p - ∆,

0, p‖∆,
qp1/2ρ( ∆

p2 , p
α−1), p2|∆.
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Proof of 4th moment bound

Apply approx. functional equation and orthogonality of characters.

Need when H � N :

∑
h≡0 (mod d)

h�H

(∑
n�N

τ(n + h)χ(n + h)τ(n)χ(n)

)
� N(1 +

H

q
)(Nq)ε

Conductor dropping phenomenon:

χ(n + h)χ(n) = χ(1 + hn)

E.g. if d = p2, q = p3, and h = p2k then

χ(n + h)χ(n) = χ(1 + hn) = e

(
`χkn

p

)
.
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Dual moment for 4th moment along cosets

Solve the shifted convolution problem with the Bruggeman-Kuznetsov
formula with character η2 at cusps 0,∞ and Poisson summation:∑

ψ (mod p2)

|L(1/2, ψ.α)|4 ↔

∑
η (mod p)

η(`α)τ(η)3
∑
tj

∑
π∈Hitj

(p,η2)

λπ(p)L(1/2, π ⊗ η)3.

Apply Hölder with exponents (4, 4, 4, 4) and use a (new) spectral
large sieve inequality:∑

η (mod q)

∑
|tj |≤T

∑
m|q

∑
π∈Hitj

(m,η2)

|L(1/2, π ⊗ η)|4 � q2T 2(qT )ε.
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