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The main question

Question: Is the multiplicative and additive structure of the integers
independent?
Conjectural answer: Yes, up to minor local obstructions.
The precise form of this answer is due to Chowla and Elliott.

Conjecture (Chowla-Elliott)
Let f1, f2, . . . , fr be real-valued multiplicative functions with |fi | ≤ 1.
Then, for any distinct h1, . . . , hr there exists a constant Ch1,...,hr such
that ,

1

x

∑
n≤x

f1(n + h1) . . . fr (n + hr ) ∼ Ch1,...,hr

r∏
i=1

(1

x

∑
n≤x

fi (n)
)
.

Note that Ch1,...,hr can be zero (this is in fact the most interesting case!)
and in that case we interpret the asymptotic as saying that the left-hand
side is o(1).



Disclaimer

1. Until recently the Chowla-Elliott conjecture appeared to be
completely out of reach

2. Since 2015 there has been a lot of progress.

3. I am (overly?) optimistic that we will see a resolution within the
next 10 years.

4. Since there has been rapid progress there are some patchy “gray
areas” which in principle ought to be not there, and we don’t
understand why they are there. I will therefore try to give a quick
survey of the state of the art (nonetheless I will omit some results).



Recent progress (Averaged versions)

There has been substantial recent progress on “averaged” versions of this
conjecture.

Theorem (Matomäki-Radziwi l l, 2015)
Let f1, f2 : N→ R be multiplicative functions with |f1|, |f2| ≤ 1. Then, for
any H →∞ arbitrarily slowly with x →∞,

1

2H

∑
|h|≤H

1

x

∑
n≤x

f1(n)f2(n + h) ∼ C
2∏

i=1

(1

x

∑
n≤x

fi (n)
)
.

with C > 0 a constant.

Actually we obtained a description of the behavior of short averages,∑
x≤n≤x+H

f (n)

for almost all x ∈ [X , 2X ]. This essentially implies the above statement.



Recent progress (Averaged versions)

Theorem (Matomäki-Radziwi l l-Tao, 2015)
Let f1, f2 : N→ R be multiplicative functions with |f1|, |f2| ≤ 1. Then, for
any H →∞ arbitrarily slowly with x →∞,

1

2H

∑
|h|≤H

∣∣∣1
x

∑
n≤x

f1(n)f2(n + h)− Ch

2∏
i=1

(1

x

∑
n≤x

fi (n)
)∣∣∣ = o(1)

for some constants Ch = O(1).

In the proof one needs control not only over,∑
x≤n≤x+H

f (n) but also over
∑

x≤n≤x+H

f (n)e(nα)

for almost all x ∈ [X , 2X ] and with α fixed. Roughly speaking the case of
α ∈ Q follows from my result with Matomäki, while the case of α 6∈ Q
from a version of Vinogradov’s method due to
Daboussi-Delange-Katai-Bourgain-Sarnak-Ziegler.



Recent progress (Logarithmic versions)

Theorem (Tao, 2015)
Let f1, f2 : N→ R be multiplicative functions. Then, given h, there exists
a Ch (possibly zero) such that as x →∞,∑

n≤x

f1(n)f2(n + h)

n
∼ Ch log x

1. The proof depends on the previous two results and the “entropy
decrement argument”. The latter is very sensitive to f1, f2 being
non-lacunary and mostly of size ≈ 1 (in absolute value).

2. The logarithmic averaging allows one to introduce a third variable,
which allows to make use of the previous “averaged” results.



Recent progress (Logarithmic versions)

Let λ(n) denote the Liouville function (i.e λ(n) = (−1)Ω(n) where Ω(n) is
the number of prime factors of n counted with multiplicity).

Theorem (Tao-Teräväinen, 2017)
Let k be odd. Then, for any h1, . . . , hk distinct, as x →∞,∑

n≤x

λ(n + h1) . . . λ(n + hk)

n
= o(log x)

1. In some sense this is a “parity trick”. The proof depends on the fact
that k is odd and λ(p) = −1.

2. The number theoretic content is much lighter (in comparison with
the k = 2 case). For example for k = 3 one only needs cancellations
in ∑

n≤x

λ(n)e(nα).

which was proven by Davenport using ideas of Vinogradov.



Major questions

1. Can we show that for any k ≥ 2, and any distinct h1, . . . , hk ,∑
n≤x

λ(n + h1) . . . λ(n + hk)

n
= o(log x) ? (1)

This would, among other things, settle Sarnak’s conjecture in
logarithmic form.

2. Can we establish (1) without the logarithmic weights? (Even only
for k = 2?)

The roadmap towards 1. is at the moment much more clear than the one
towards 2. (There is some progress on 2. by Tao-Teräväinen, but in my
opinion there is still no clear roadmap for 2.)



Fourier uniformity

Tao showed that in order to obtain∑
n≤x

λ(n + h1) . . . λ(n + hk)

n
= o(log x) (2)

for every k ≥ 1 it is necessary to establish the following

Conjecture (Local Fourier Uniformity conjecture)
Let k ≥ 1 be given. For H →∞ arbitrarily slowly with X →∞,∫ X

1

sup
P∈R[X ]
deg P=k

∣∣∣ ∑
x≤n≤x+H

λ(n)e(P(n))
∣∣∣ · dx

x
= o(logX )

1. In reality one also needs to establish the above for nilsequences.
This is then also sufficient for (2).

2. As far as I can see the measure dx
x appears to give no real advantage

compared to dx . We will therefore consider the measure dx instead.



Previous results

Previous results are rather unsatisfactory:

Theorem (The k = 0 case, MRT, 2015)
Let H →∞ arbitrarily slowly with X →∞. Then,

sup
α

∫ X

1

∣∣∣ ∑
x≤n≤x+H

λ(n)e(nα)
∣∣∣dx = o(HX ).

The above is contained in earlier progress on “averaged Chowla”.

Theorem (The k = 1 case for H > X 5/8, Zhan, 1991)
Let ε > 0. Let H > X 5/8+ε. Then, for X →∞,∑

X≤n≤X+H

λ(n)e(nα) = o(H).

The above uses Heath-Brown’s identity. The method hits a hard limit at
H =

√
X because it is based on Dirichlet polynomial techniques.



New results

Theorem (The k = 1 case for H > X ε, MRT, 2018)
Let ε > 0 be given. Then for H > X ε as X →∞,∫ X

1

sup
α

∣∣∣ ∑
x≤n≤x+H

λ(n)e(nα)
∣∣∣dx = o(HX ).

1. One can prove a variant for general multiplicative functions (even
unbounded), as long as they are not χ(n)niT pretentious (with
|T | � X 2/H and χ of condutor O(1)).

2. It appears to be possible to lower H to H > exp((logX )1/2+ε).



Work in progress

Progress at the American Institute for Mathematics :

1. After conversations with Teräväinen we understood that our proof
extends fairly easily to polynomials. Thus we can get, for any k ∈ N,∫ X

1

sup
P∈R[X ]
deg P=k

∣∣∣ ∑
x≤n≤x+H

λ(n)e(P(n))
∣∣∣dx = o(HX )

for H > exp((logX )1/2+ε).

2. As part of an on-going large AIM collaboration it appears that we
can also handle the case of nilsequences for H > exp((logX )1/2+ε).

3. So the current bottle-neck towards a full resolution of Chowla-Elliott
in logarithmic form is the reduction of H from exp(

√
logX ) to H

growing arbitrarily slowly.



Consequences of Fourier Uniformity
A good illustration of the content of Fourier uniformity for k = 1 is:

Corollary (MRT, 2018)
Let ε > 0. Let α(n) and β(n) be two arbitrary sequences of complex
numbers with |α(i)| ≤ 1 and |β(i)| ≤ 1 for every i ≥ 1. Then, for
H > X ε as X →∞,∑

|h|≤H

∑
n≤X

λ(n)α(n + h)β(n + 2h) = o(HX ).

Proof sketch: The above is roughly, H−1 times∫ 2X

X

∫ 1

0

( ∑
x≤n≤x+H

λ(n)e(nα)
)( ∑

x≤n≤x+H

α(n)e(nα)
)( ∑

x≤n≤x+H

β(n)e(−2nα)
)
dαdx

Taking the supremum over α in the sum over λ(n) and using
Cauchy-Schwarz and Plancherel on the remaining two trigonometric
polynomials we can bound the inner integral in absolute value by

sup
α

∣∣∣ ∑
x≤n≤x+H

λ(n)e(nα)
∣∣∣·H and the result follows from Fourier uniformity



Consequences of Fourier uniformity
If the sequences α(n), β(n) admit tight sieve majorants then we can
allow them to be unbounded.

Corollary (MRT, 2018)
Let ε > 0 and H > X ε. Then, as X →∞,∑

|h|≤H

∑
n≤X

λ(n)Λ(n + h)Λ(n + 2h) = o(HX ). (3)

1. We are not able to establish that,∑
|h|≤H

∑
n≤X

Λ(n + h)Λ(n + 2h) ∼ HX (4)

2. (4) is equivalent to a prime number theorem in almost all intervals
of length H.

3. The best known result for (4) remains H > X 1/6+ε due to Huxley
(Zaccagnini showed using ideas of Heath-Brown that ε can tend to
zero from the negative side).

4. In (3) all the heavy-lifting is done by the Liouville function



Consequences of Fourier uniformity : Work in progress
It is possible to generalize the result on Fourier uniformity to unbounded
functions. This then has consequences for triple correlations of divisor
functions (or more general coefficients of high-rank automorphic forms)

Corollary (MRT, 2019+)
Let ε > 0. Let k, `,m ≥ 1. Let H > X ε. Then, as X →∞,∑

|h|≤H

∑
n≤X

dk(n)d`(n + h)dm(n + 2h) ∼ CHX (logX )k+`+m−3.

with C > 0 a constant.

1. For H = X this follows from work of Mathiessen.

2. In the case k = ` = m = 2 Blomer obtained an asymptotic for
H > X 1/3+ε using spectral methods of automorphic forms.

3. It is striking that one can go further by using only multiplicativity
(and the Littlewood zero-free region).

4. In many applications of spectral methods multiplicativity is never
used (this is especially clear when variants apply to half-integral
weight forms).



Sketch of proof of Fourier Uniformity for k = 1

1. I will now sketch the ideas going into the proof of the k = 1 case,
with H > X ε,∫ X

1

sup
α

∣∣∣ ∑
x≤n≤x+H

λ(n)e(nα)
∣∣∣dx = o(HX ).

2. We will suppose that Fourier Uniformity fails and reach a
contradiction.

3. Arguing by contradiction we assume that there exists an η > 0 and a
collection I of � X/H disjoint intervals of length H, contained in
[1,X ], such that, for each I ∈ I,∣∣∣∑

n∈I

λ(n)e(nαI )
∣∣∣ ≥ ηH

for some αI ∈ R.



Overall strategy

1. We will gain increasing control over the frequencies αI .

2. We will first show, that the multiplicativity of λ forces that for a
positive proportion of I , e(nαI ) ≈ niTI for some |TI | � X 2/H
depending on I (in reality e(nαI ) ≈ e(na/q)niTI with q � X ε but
for simplicity let’s ignore the q-aspect).

3. Importantly the values TI and TJ are sometimes related. If
I
p ∩

J
q 6= ∅ for some primes p, q ∈ [P, 2P] then TI = TJ . P is

roughly of size Hε. This is also a consequence of multiplicativity.

4. We then show that the above relationships between the TI ’s imply
that there is a global T such that TI = T for a positive proportion
of the interval I ’s. This step uses cancellations in

∑
H≤p≤2H pit .

5. Therefore for a positive proportion of intervals I ,∣∣∣∑
n∈I

λ(n)e(nαI )
∣∣∣ ≈ ∣∣∣∑

n∈I

λ(n)niT
∣∣∣� H

and this is ruled out by my result with Matomäki.



Overall strategy

1. The first two steps are “local” : they use the large sieve, the
Turan-Kubilius inequality and multiplicativity at the primes p ≤ H.

2. The second step is “global” : it uses cancellations in
∑

H≤p≤2H pit .

I will start with the second step which is easier to explain and maybe also
a bit more surprising.



The “global” step

1. We assume that there is a P, of size roughly Hε and a set of� X/H
disjoint intervals I , J and real numbers TI ,TJ , such that whenever

I

p
∩ J

q
6= ∅

for some p, q ∈ [P, 2P] then we have TI = TJ . We want to show
that there exists a T such that for a positive proportion of intervals I
we have TI = T + O(X/H) (this is the morally the same as TI = T
because if TI = T + O(X/H) then

∑
n∈I λ(n)niTI ≈

∑
n∈I λ(n)niT )

2. Given V let A(V ) = #{I : TI = V + O(X/H)}. Then,

X

H

( P

logP

)2

�
∑
V

∑
I ,J∈A(V )
p,q∈[P,2P]

I
p∩

J
q 6=∅

1



The “global” step

1. I
p ∩

J
q 6= ∅ implies | log xI − log xJ + log p − log q| � H

X with xI , xJ
are end-points of I , J.

2. Therefore, we can re-write the previous expression as

X

H

( P

logP

)2

�
∑
V

∑
I ,J∈A(V )
p,q∈[P,2P]

ψ
(X
H

(
log xI − log xJ + log p − log q

))

for some smooth function ψ and with xI , xJ the end-points of I , J.

3. Opening ψ as a Fourier transform we then get,

X

H
·
( P

logP

)2

� H

X

∑
V

∫
|t|≤X/H

∣∣∣ ∑
I∈A(V )

x itI

∣∣∣∣∣∣ ∑
J∈A(V )

x itJ

∣∣∣∣∣∣ ∑
p∈[P,2P]

pit
∣∣∣2dt.

and where the xI are H-spaced.



The “global” step

We now analyze,

H

X

∫
|t|≤X/H

∣∣∣ ∑
I∈A(V )

x itI

∣∣∣∣∣∣ ∑
J∈A(V )

x itJ

∣∣∣∣∣∣ ∑
p∈[P,2P]

pit
∣∣∣2dt

1. On the one hand, the small values of t (say t = O(1)) contribute

H

X

∑
V

#A(V )2 ·
( P

logP

)2

� sup
V

#A(V ) ·
( P

logP

)2

2. On the other hand when t is large, we have cancellations in the
Dirichlet polynomial over primes. Using this and the mean-value
theorem on the Dirichlet polynomials over xI we see that the
contribution of the large values of t is

�A
H

X

∑
V

X

H
#A(V ) · P2

logA P
� X

H
· P2

logA P
.

for any given A > 0.



The “global” step

1. Combining the above two bounds we obtain,

X

H

( P

logP

)2

� sup
V

#A(V ) ·
( P

logP

)2

.

Therefore there exists a V such that for a positive proportion of I ’s
we have TI = V + O(X/H), which is what we wanted to prove.

2. This argument has an ergodic flavor

3. Cancellations in the prime sum are not strictly necessary; one can
instead take high moments of the sum over primes and consider level
sets. This allows us to go to H > exp(

√
logX ).



The “local” step

I will now explain the ideas in the “local” step. We are trying to show
that if ∣∣∣∑

n∈I

λ(n)e(nαI )
∣∣∣� H

for a positive proportion of intervals I , then, for a positive proportion of I ,∣∣∣∑
n∈I

λ(n)e(nαI )
∣∣∣ ≈ ∣∣∣∑

n∈I

λ(n)niTI

∣∣∣
and moreover

1. We have |TI | � X 2

2. If I
p ∩

J
q 6= ∅ for p, q ∈ [P, 2P] then TI = TJ .

(In reality there is also a twist by e(na/q) that we are ignoring for
simplicity, and 2. won’t hold for all p, q ∈ [P, 2P] but for a positive
proportion subset)



The local step : The main tools

Our two main tools are :

1. (The large sieve) If

sup
J∩I 6=∅

∣∣∣∑
n∈J

λ(n)e(nα)
∣∣∣ ≥ ηH (5)

then α is within O(1/H) of a set of at most Oη(1) elements. This
morally allows us to assume that (up to perturbation by O(1/H)
and modulo 1) α is uniquely determined, and αJ = αI for any J
such that J ∩ I 6= ∅.

2. (Turan-Kubilius) For “most” primes p∣∣∣∑
n∈I

λ(n)e(nαI )
∣∣∣ ≈ p

∣∣∣ ∑
n∈I/p

λ(np)e(npαI )
∣∣∣ = p

∣∣∣ ∑
n∈I/p

λ(n)e(npαI )
∣∣∣.

Let us pretend this holds for all primes p ∈ [P, 2P].

Consequently if I and J are such that I
p ∩

J
q 6= ∅ then

pαI ≡ qαJ + O(P/H) (mod 1). This is the main relation that we will
use.



The “local step”

1. The fact that we only know pαI ≡ qαJ + O(P/H) modulo 1 is very
restrictive.

2. It would be great if we could divide by q as having
(p/q)αI ≡ αJ + O(1/H) (mod 1) is equivalent to
pαI ≡ qαJ + O(P/H) (mod q) and thus contains more information.

3. One natural idea is that we can shift the αJ ’s in whatever way we
wish by integers. Perhaps we can show that there exists
α̃J = αJ + kJ with kJ ∈ Z such that

p

q
α̃I = α̃J + O(1/H) (mod 1)

whenever I
p ∩

J
q 6= ∅ and p, q ∈ [P, 2P].

4. We were not quite able to prove that (only something weaker).
Nonetheless let us pretend that we have the above relationship as it
allows to succintly give the flavor of the rest of the proof,
eliminating a lot of somewhat overwhelming technicalities but
keeping the overall structure.



The “local” step
Let’s assume that we have p

qαI ≡ αJ + O(1/H) (mod 1) whenever
I
p ∩

J
q 6= ∅ for p, q ∈ [P, 2P]. Pick k ∈ 2N such that Pk ≈ X .

1. An application of Hölder (actually Sidorenko’s conjecture) shows
that for a positive proportion of I there exists many (pi , qi ) with
i = 1, . . . , k and intervals I = I1, I2, . . . , Ik+1 = I such that,

pi
qi
· αIi+1 ≡ Ii + O(1/H) (mod 1) ,

qi
pi
Ii+1 ∩ Ii 6= ∅.

2. Iterating along this cycle we obtain,

p1

q1
· · · pk

qk
αI ≡ αI +

( 1

H

)
(mod 1) ,

q1 . . . qk
p1 . . . pk

I ∩ I 6= ∅. (6)

3. q1...qk
p1...pk

I ∩ I 6= ∅ implies that |p1 . . . pk − q1 . . . qk | � X ε and so

multiplying (6) by p1 . . . pk we get

(p1 . . . pk − q1 . . . qk)αI ≡ O
(Pk

H

)
(mod Q) , Q = p1 . . . pk

with Q large (� X ). Since there are many choices for pi , qi we can
also ensure that p1 . . . pk − q1 . . . qk 6= 0.



The “local” step

1. Since Pk/H = o(Q) we conclude that αI can be written as,

αI =
a

q
· Q +

TI

xI
(7)

for some TI � X · Pk/H � X 2/H, with xI the end-point of I and
q � X ε. In particular for n ∈ I , e(nαI ) ≈ e(na/q)niTI .

2. For simplicity let us suppose that q = 1.

3. Plugging (7) into pαI ≡ qαJ + O(P/H) (mod 1) for I
p ∩

J
q 6= ∅,

shows that whenever I
p ∩

J
q 6= ∅ we have TI = TJ + O(X/H).

4. Having TI = TJ + O(X/H) is for us morally the same as TI = TJ

since if TI = TJ + O(X/H) then,∣∣∣∑
n∈I

λ(n)niTI

∣∣∣ ≈ ∣∣∣∑
n∈I

λ(n)niTJ

∣∣∣
5. This concludes the “local” step (although we lied a lot to make the

presentation simpler!)



Thank you

Thank you!
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