Devote a Lifetime to Playing Games

Emanuele Di Giandomenico
e.di.giandomenico@tue.nl
Dipartimento di Matematica
Università di Genova
PhD Seminar
21st December 2023

Outline

(1) What is a Game?
(2) Sequence of Games
(3) Public Key Encryption
(4) ElGamal Encryption
(5) Security of ElGamal
(1) What is a Game?
(2) Sequence of Games
(3) Public Key Encryption

4 ElGamal Encryption
(5) Security of ElGamal

What is a Game?

A tool to prove the security of cryptographic primitives.

The definition of security is tied to some particular event S. $\operatorname{Pr}[S]$ has to be very close to some specified target probability.

Outline

(1) What is a Game?

(2) Sequence of Games
(3) Public Key Encryption

4 ElGamal Encryption
(5) Security of ElGamal

To prove the security we use a sequence of games
Game 0, Game $1, \ldots$, Game n, which are related to the events $S_{0}, S_{1}, \ldots, S_{n}$.

- $\operatorname{Pr}\left[S_{i}\right]$ negligibly close to $\operatorname{Pr}\left[S_{i+1}\right]$.
- $\operatorname{Pr}\left[S_{n}\right]$ negligibly close to the target probability.

Transition based on Indistinguishability

A small change, if detected by the adversary, would imply an efficient method of distinguishing two distributions that are indistinguishable.

- P_{1}, P_{2} are computationally indistinguishable distribution related respectively to S_{i}, S_{i+1}.
- Distinguish algorithm \mathcal{D} s.t

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{D}(x) \Rightarrow 1 \mid x \leftarrow P_{1}\right]=\operatorname{Pr}\left[S_{i}\right] \text { and } \\
& \operatorname{Pr}\left[\mathcal{D}(y) \Rightarrow 1 \mid y \leftarrow P_{2}\right]=\operatorname{Pr}\left[S_{i+1}\right] .
\end{aligned}
$$

The indistiguishability assumption implies that $\left|\operatorname{Pr}\left[S_{i}\right]-\operatorname{Pr}\left[S_{i+1}\right]\right|$ is negligible.

Transition based on Failure Events

Game i and Game $i+1$ proceed identically unless a certain failure events F occurs. It is equivalent to saying that $S_{i} \wedge \neg F \Longleftrightarrow S_{i+1} \wedge \neg F$.

Difference Lemma

Let S, S^{\prime}, F be events defined in some probability distribution, and suppose that $S \wedge \neg F \Longleftrightarrow S^{\prime} \wedge \neg F$. Then

$$
\left|\operatorname{Pr}[S]-\operatorname{Pr}\left[S^{\prime}\right]\right| \leq \operatorname{Pr}[F] .
$$

Bridging Steps

This change is purely conceptual and $\operatorname{Pr}\left[S_{i}\right]=\operatorname{Pr}\left[S_{i+1}\right]$. It prepares the ground for one of the previous transition.

Outline

(1) What is a Game?

(2) Sequence of Games
(3) Public Key Encryption

4 ElGamal Encryption
(5) Security of ElGamal

Public Key Encryption

Syntax

A public key encryption scheme PKE := (KeyGen, Enc, Dec) consists on three algorithms

- $(p k, s k) \leftarrow \operatorname{KeyGen}\left(1^{\lambda}\right)$.
- $c \leftarrow \operatorname{Enc}(p k, m)$.
- $m \leftarrow \operatorname{Dec}(s k, c)$.

Correctness

We say that PKE is ρ-correct if we have

$$
\operatorname{Pr}\left[\begin{array}{l|l}
m=m^{\prime} & \begin{array}{l}
(p k, s k) \leftarrow \operatorname{KeyGen}\left(1^{\lambda}\right) \\
c \leftarrow \operatorname{Enc}(p k, m), \\
m^{\prime} \leftarrow \operatorname{Dec}(s k, c)
\end{array}
\end{array}\right] \geq \rho
$$

Security Game

$$
\begin{aligned}
& \text { IND }-\mathrm{PKE} \\
& \hline 00 \quad(p k, s k) \leftarrow \operatorname{KeyGen}\left(1^{\lambda}\right) \\
& 01 \quad\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(p k) \\
& 02 \quad b \leftarrow\{0,1\} \\
& 03 c \leftarrow \operatorname{Enc}\left(p k, m_{b}\right) \\
& 04 \quad b^{\prime} \leftarrow \mathcal{A}(p k, c) \\
& 05 \text { return } b^{\prime} \\
& \hline
\end{aligned}
$$

The advantage of an adversary \mathcal{A} against the above game is defined as

$$
\operatorname{Adv}_{\text {IND }-\operatorname{PKE}}(\mathcal{A}):=\left|\operatorname{Pr}\left[b=b^{\prime}\right]-\frac{1}{2}\right| .
$$

Outline

(1) What is a Game?

(2) Sequence of Games
(3) Public Key Encryption
4. ElGamal Encryption
(5) Security of ElGamal

ElGamal Encryption Scheme

Let G be a multiplicative group of prime order p, and let $g \in G$ be a generator.

$$
\begin{aligned}
& \frac{\operatorname{KeyGen}\left(1^{\lambda}\right)}{00 x \leftarrow \mathbb{Z}_{p}} \\
& 01 h:=g^{x} \\
& 02 \text { return }(p k, s k):=(h, x) \\
& \frac{\operatorname{Enc}(p k, m \in G)}{03 y \leftarrow \mathbb{Z}_{p}} \\
& 04 j:=g^{y} \\
& 05 k:=h^{y} \\
& 06 l:=k m \\
& 07 c:=(j, l) \\
& 08 \text { return } c \\
& \operatorname{Dec}(s k, c) \\
& \overline{09 m:=l}\left(j^{x}\right)^{-1} \\
& 10 \text { return } m
\end{aligned}
$$

Outline

(1) What is a Game?

(2) Sequence of Games
(3) Public Key Encryption

4 ElGamal Encryption
(5) Security of ElGamal

Security of ElGamal

Let G be a multiplicative group of prime order p, and let $g \in G$ be a generator.

DDH Assumption

Let \mathcal{D} be an algorithm that takes as input triples of group elements and outputs a bit. We define the advantage of \mathcal{A} against DDH as

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{DDH}}(\mathcal{D}):= & \mid \operatorname{Pr}\left[x, y \leftarrow \mathbb{Z}_{p}: \mathcal{D}\left(g^{x}, g^{y}, g^{x y}\right)=1\right] \\
& -\operatorname{Pr}\left[x, y, z \leftarrow \mathbb{Z}_{p}: \mathcal{D}\left(g^{x}, g^{y}, g^{z}\right)=1\right] \mid
\end{aligned}
$$

Technische Universiteit

Security Proof

> | Game 0 |
| :--- |
| $00 x \leftarrow \mathbb{Z}_{p}$ |
| $01 h:=g^{x}$ |
| $02(p k, s k):=(h, x)$ |
| $03\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(p k)$ |
| $04 \quad b \leftarrow\{0,1\}$ |
| $05 \quad y \leftarrow \mathbb{Z}_{p}$ |
| $06 j:=g^{y}$ |
| $07 \quad k:=h^{y}$ |
| $08 l:=k m_{b}$ |
| $09 \quad c:=(j, l)$ |
| $10 b^{\prime} \leftarrow \mathcal{A}(p k, c)$ |
| 11 return b^{\prime} |

Technische Universiteit

Security Proof

$$
\begin{aligned}
& \text { Game } 1 \\
& 00 x \leftarrow \mathbb{Z}_{p} \\
& 01 h:=g^{x} \\
& 02(p k, s k):=(h, x) \\
& 03\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(p k) \\
& 04 b \leftarrow\{0,1\} \\
& 05 y \leftarrow \mathbb{Z}_{p} \\
& 06 j:=g^{y} \\
& 07 \quad z \leftarrow \mathbb{Z}_{p} \\
& 08 k:=g^{z} \\
& 09 l:=k m_{b} \\
& 10 c:=(j, l) \\
& 11 b^{\prime} \leftarrow \mathcal{A}(p k, c) \\
& 12 \text { return } b^{\prime} \\
& \hline
\end{aligned}
$$

Security Proof

- $\operatorname{Pr}\left[S_{1}\right]=\frac{1}{2}$: this follows from the fact that b^{\prime} is independent from b.
- $\left|\operatorname{Pr}\left[S_{0}\right]-\operatorname{Pr}\left[S_{1}\right]\right| \leq \operatorname{Adv}_{\text {DDH }}$.
- Adv ${ }_{\text {IND }}^{\text {EIGamal }}$. $\leq \operatorname{Adve}_{\text {DDH }}$.

I still prefer this game.

