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Introduction

• Classical mechanics versus Quantum Mechanics: where do quantum feature become relevant and
why we should not regard it as strange against our all-day world intuition.

• Quantum mechanics developed in the last century. Is the biggest scientific revolution, especially
in terms of its impact in our all day life. The study of its foundation produced more than 70 Nobel
Laureates (Nobel prize introduced in 1901):
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Introduction

• Aim of the talk: present at a very elementary level the essential ideas of the quantum theory in
the algebraic approach. The latter approach is the one suited for generalization to field theories
(physical theories with uncountably many degrees of freedom)
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Generalities on the Algebraic Framework

Algebraic Viewpoint

• Primary datum: A physical system is characterized by its observable/measurable quantities.
Primary datum: A unital algebra A with an associative product and an involution ∗ (∗-algebra).
Additional topological structure can be required: Banach Algebra, C∗-algebra. The elements a ∈ A
such that a∗ = a are the observables.

• Second datum: The configuration of a system is specified by the outcome of measurements.
Second datum: Linear functional ω : A → C that are positive (ω(a∗a) ≥ 0) and normalized
(ω(I) = 1). These are called states. For a ∈ A, the value ω(a) is the expectation value (probabilistic
expected result of the measurement).

• Third datum: Dynamical laws describing the time evolution of the configuration of the system.
Third datum: One-parameter group of ∗-automorphisms on the algebra {τt}t∈R.
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Generalities on the Algebraic Framework

GNS Theorem: Representation on Hilbert Space

Theorem (Gelfand-Naimark-Segal)

Let A be a ∗-algebra with unit I and let ω : A → C be a state. Then there exist a quadruple
(Hω ,Dω , πω ,Ψω) made of a Hilbert space Hω , a subspace Dω ⊂ Hω , a linear map πω : A →
L(Dω ,Hω) and an element Ψω ∈ Dω such that:
i) Dω = πω(A)Ψω
ii) Ψω is cyclic for πω , that is Dω is dense in Hω .
iii) πω : A→ πω(A) is an algebra ∗-homomorphism. Namely πω(I) = 1 and

πω(a∗) = πω(a)∗
∣∣
Dω

for a ∈ A

iv) For any a ∈ A holds: ω(a) = 〈Ψω |πω(a)Ψω〉

Idea of Proof Define a product: 〈A|B〉 = ω(A∗B). Then:

Dω = A/Iω

Where Iω := {A ∈ A|ω(A∗A) = 0} is a double-sided ideal (Gelfand Ideal). Moreover, πω(A)[B] =
[AB]. Finally Ψω = [I] and Hω = Dω completed in the norm induced by the scalar product above.

If A is finitely generated, then τt is represented in Hω by a strongly continuous one-parameter
family of unitary Ut .
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Generalities on the Algebraic Framework

Classical Observables
Classical observables: A is a ∗-algebra with a commutative product.

Can be constructed on the space of configurations as:

A :=
[{

f ∈ C∞(T∗M,C)
}
, fg : T∗q M 3 (q, p) 7→ f (q, p)g(q, p) ∈ C , f ∗ = f

]
Where the configuration space T∗M is the cotangent bundle of a complete Riemannian manifold
M (finite dimensional). Describes a classical system with dimM many degrees of freedom.

Classical states: probability distributions ρ on T∗M:∫
T∗M

ρ(q, p) dvolT∗M = 1 ,

with action as functional:

ωρ(f ) =
∫
T∗M

ρ(q, p)f (q, p) dvolT∗M .

Dynamics described by a Hamiltonian H ∈ C∞(T∗M,R), via Hamilton’s equations:

df
dt

(q, p) =
{
f ,H

}
(q, p) :=

m∑
k=1

(
∂f
∂qk

∂H
∂pk
−
∂H
∂qk

∂f
∂pk

)
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Empirical Evidence

Instability of Atomic Model

By solving the Hamilton’s equations for an orbiting electron around a opposite charged particle,
the solution describes a continuous emission of electromagnetic radiation (Bremsstrahlung). The
orbit, in polar coordinates, (r , θ) is:

r(t) =
(
r30 − 4

(
e2

mec2

)2
ct
)1/3

, θ(t) = θ0 −
8
3

√
1
r7

(
e2

mec2

)5
.

The resulting loss of energy a spiraling orbit.

Instability of the atomic model from the
perspective of classical physics: an electron
should fall on the nucleus in roughly 10−8s
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Empirical Evidence

Spectra of Emission of Atoms

Life jacket: Observed spectra of emission of radiation by atoms are not continuous as predicted
by electrodynamics

Light emitted/absorbed just at certain discretized frequencies.
Problem: Absence of a classical explanation to this phenomenon
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Empirical Evidence

Stern-Gerlach Experiment

Consider a Silver atom (Ag47 has a valence electron) moving in a region with a varying magnetic
field.

Observation: The trajectory is deviated.
Consequence: The Silver atom (its valence electron) has an associated intrinsic angular momentum
(Spin denoted S) coupling with the magnetic field (B) via a force: Fz = Sz ∂Bz

∂z .
Extension: To understand this property consider instead a stream of an ensemble of unpolarized
Silver atoms. If the electron is a classical spinning object, Sz should be a function of position and
momenta (variables of configuration space) varying continuously between |S| and −|S|.
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Quantum Mechanics

Quantum Observables
Quantum Observables: A is a ∗-algebra with a non-commutative product.

Can be obtained from the classical one (when it exist) via a quantization procedure deforming the
classical commutative into a non-commutative product. For A,B ∈ A denoting by Â, B̂ ∈ A:

[Â, B̂] = i~{A,B} ⇒ [q̂x , p̂x ] = i~

where ~ = 6.626× 10−34J · s.

A finitely generated algebra, is represented on a finite dimensional Hilbert space H (GNS) as:

A :=
[
Â ∈ End(H) , ◦ , Â∗ = Â†

]
Here † denotes the operator adjoint.

Quantum State: A density matrix ρ ∈ B(H) positive, symmetric and normalized:

ρ ≥ 0 , ρ† = ρ , Tr(ρ) = 1

Acting as functional: ωρ(Â) = Tr(ρÂ)

Hamilton equations become the Heisenberg equations describing dynamics:

dÂ
dt

=
1
i~

[Â, Ĥ]
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Quantum Mechanics

Copenhagen (Probabilistic) Interpretation of Quantum Mechanics

Born’s rule: The expectation value of an observable A on a state ω is interpreted as the averaged
distribution associated to each possible outcome of the measurement A on the state ω. In particular,
for I, the normalization condition is the normalization of the probability. ω is in a superposition of
the outcomes of A each with a certain associated probability.
Moreover, once a measurement is performed, the state becomes (collapses) to the eigenstate
associated to the outcome of the measurement. Namely, the result on the state of a measurement
is represented by the action of a projection Pai outcome eigenvalue ai .

Quantum Mechanics is intrinsically indeterministic:
In general, the configuration of a system is known only with a certain probability
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Quantum Mechanics

Stern-Gerlach Experiment Revisited

Algebra of observables A = Mat2×2(C) represented over the Hilbert space C2 completed with
respect to the standard inner product. Generators are:

I =
(
1 0
0 1

)
Sz =

~
2

(
1 0
0 −1

)
Sy =

~
2

(
0 −i
i 0

)
Sx =

~
2

(
0 1
1 0

)
The algebra describes a system with two single outcomes for the measurement |+〉 or |−〉,
eigenstates of Sz with associated projections P+,P−, like the outcome of a Stern-Gerlach
experiment.
The state of the Silver beam is described by a density matrix. In particular, considering the
density matrix:

ρ1 =
1
2

(
1 0
0 1

)
describing an unpolarized beam. This follows noticing that both ωρ1 (P+) = ωρ1 (P−) = 1/2 and:

ωρ1 (Sz ) = ωρ1 (Sy ) = ωρ1 (Sx ) = 0
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Quantum Mechanics

Heisenberg Uncertainty Theorem

Uncertainty of a symmetric operator A on H with respect to ψ ∈ H:

(∆ψA)2 :=
〈
(A− 〈A〉ψ1)ψ|(A− 〈A〉ψ1)ψ

〉
= 〈Aψ|Aψ〉 − 〈A〉2ψ

Theorem (Heisenberg Uncertainty)

Suppose A and B are symmetric operators and ψ a unit vector belonging to Dom(AB)∩Dom(BA).
Then:

(∆ψA)2(∆ψB)2 ≥
1
4
∣∣〈[A,B]〉ψ

∣∣2

Idea Proof: A′ := A− 〈A〉ψ1. Cauchy-Schwartz:

〈A′ψ|A′ψ〉〈B′ψ|B′ψ〉 ≥
∣∣〈A′ψ|B′ψ〉∣∣2 ≥ ∣∣Im〈A′ψ|B′ψ〉∣∣2

=
1
4
∣∣〈A′ψ|B′ψ〉 − 〈B′ψ|A′ψ〉∣∣2 =

1
4
∣∣〈ψ|[A′,B′]ψ〉∣∣2

But this is:
(∆ψA)2(∆ψB)2 ≥

1
4
∣∣〈[A,B]〉ψ

∣∣2
Incompatible Observables if they do not commute: we cannot simultaneously know them.
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Quantum Mechanics

Stern-Gerlach: Different Orientations

Example of application of the above theorem is seen when considering again a Stern-Gerlach
apparatus, but with different orientations. In this way, Spin manifests how it is a purely quantum
property of the system

Consistency with Heisenberg uncertainty theorem noticing that:

[Si ,Sj ] = i~εijkSk
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Quantum Mechanics

Gedankenexperiment: Schrödinger’s cat

Nature is not deterministic at the
microscopic scale. Given a system, we
cannot predict the outcome of future
measurements in general. Only the
probability associated to each outcome.

"God does not play with dices" (A. Einstein)

"If it is correct, it signifies the end of
physics as a science" (A. Einstein)

"The ’paradox’ is only a conflict between
reality and your feeling of what reality
’ought to be’" (R. Feynman)

Thank you very much for your attention
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