Motivations

Solving polynomial equations



# Khovanskii bases and how to use them

## Max Planck Institute for Mathematics in the Sciences

# Barbara Betti

25 May 2023

**1** Khovanskii basis

# 2 Motivations

**3** Solving polynomial equations

Why do we write  $x^3y^2 + 2x^2y - x + y + 2$ 

Why do we write  $x^{3}y^{2} + 2x^{2}y - x + y + 2$  and not  $2x^{2}y - x + x^{3}y^{2} + 2 + y$ ?

Why do we write  $x^{3}y^{2} + 2x^{2}y - x + y + 2$  and not  $2x^{2}y - x + x^{3}y^{2} + 2 + y$ ?

**Def.** A *term order* in the polynomial ring  $S = k[x_1, \ldots, x_n]$  is a total order  $\leq$  on the set of monomials of S such that:

- $\leq$  is reflexive, antisymmetric and transitive and total: for each  $m_1, m_2$  monomials then  $m_1 \leq m_2$  or  $m_2 \leq m_1$  (total order).
- If  $m_1 \le m_2$  then  $m \cdot m_1 \le m \cdot m_2$  for every monomial m (compatible with multiplication).
- (a) If  $m_1 \mid m_2$  then  $m_1 \leq m_2$  (  $\iff 1 \leq m$  for every monomial m ).

Why do we write  $x^{3}y^{2} + 2x^{2}y - x + y + 2$  and not  $2x^{2}y - x + x^{3}y^{2} + 2 + y$ ?

**Def.** A *term order* in the polynomial ring  $S = k[x_1, \ldots, x_n]$  is a total order  $\leq$  on the set of monomials of S such that:

- $\leq$  is reflexive, antisymmetric and transitive and total: for each  $m_1, m_2$  monomials then  $m_1 \leq m_2$  or  $m_2 \leq m_1$  (total order).
- **2** If  $m_1 \leq m_2$  then  $m \cdot m_1 \leq m \cdot m_2$  for every monomial m (compatible with multiplication).
- $If m_1 \mid m_2 \text{ then } m_1 \leq m_2 \text{ (} \xleftarrow{(2)}{\longrightarrow} 1 \leq m \text{ for every monomial } m \text{ ).}$

Condition (3) guarantees that every descending chain of monomials is finite  $\Rightarrow$  induction over "the biggest" term of a polynomial.

In k[x] there exists only one term order:  $x^{\alpha} \leq x^{\beta}$  if and only if  $\alpha \leq \beta$ .

In k[x] there exists only one term order:  $x^{\alpha} \leq x^{\beta}$  if and only if  $\alpha \leq \beta$ .

Now we consider  $k[x_1, \ldots, x_n]$  and we write  $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ ,  $\alpha \in \mathbb{N}^n$ .  $x_1 > x_2 > \cdots > x_n$ 

```
Lexicographic

x^{\alpha} \leq_{\text{Lex}} x^{\beta} iff:

\alpha_1 < \beta_1 or

\alpha_1 = \beta_1 and \alpha_2 < \beta_2 or

:

\alpha = \beta.
```

In k[x] there exists only one term order:  $x^{\alpha} \leq x^{\beta}$  if and only if  $\alpha \leq \beta$ .

Now we consider  $k[x_1, \ldots, x_n]$  and we write  $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ ,  $\alpha \in \mathbb{N}^n$ .  $x_1 > x_2 > \cdots > x_n$ 

```
Lexicographic

x^{\alpha} \leq_{\text{Lex}} x^{\beta} iff:

\alpha_1 < \beta_1 or

\alpha_1 = \beta_1 and \alpha_2 < \beta_2 or

:

\alpha = \beta.
```

$$xy^2zt\leq_{\mathsf{Lex}} xy^3\leq_{\mathsf{Lex}} x^3t$$

In k[x] there exists only one term order:  $x^{\alpha} \leq x^{\beta}$  if and only if  $\alpha \leq \beta$ .

Now we consider  $k[x_1, \ldots, x_n]$  and we write  $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ ,  $\alpha \in \mathbb{N}^n$ .  $x_1 > x_2 > \cdots > x_n$ 

```
Lexicographic

x^{\alpha} \leq_{\text{Lex}} x^{\beta} iff:

\alpha_1 < \beta_1 or

\alpha_1 = \beta_1 and \alpha_2 < \beta_2 or

:

\alpha = \beta.
```

 $xy^2zt\leq_{\mathsf{Lex}} xy^3\leq_{\mathsf{Lex}} x^3t$ 

Not compatible with degrees!

In k[x] there exists only one term order:  $x^{\alpha} \leq x^{\beta}$  if and only if  $\alpha \leq \beta$ .

Now we consider  $k[x_1, \ldots, x_n]$  and we write  $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ ,  $\alpha \in \mathbb{N}^n$ .  $x_1 > x_2 > \cdots > x_n$ 

Lexicographic  

$$x^{\alpha} \leq_{\text{Lex}} x^{\beta}$$
 iff:  
 $\alpha_1 < \beta_1$  or  
 $\alpha_1 = \beta_1$  and  $\alpha_2 < \beta_2$  or  
:  
 $\alpha = \beta$ .

Degree Lexicographic  

$$x^{\alpha} \leq_{\mathsf{DegLex}} x^{\beta}$$
 iff:  
 $|\alpha| < |\beta|$  or  
 $|\alpha| = |\beta|$  and  $x^{\alpha} \leq_{\mathsf{Lex}} x^{\beta}$ 

 $xy^2zt\leq_{\mathsf{Lex}} xy^3\leq_{\mathsf{Lex}} x^3t$ 

Not compatible with degrees!

In k[x] there exists only one term order:  $x^{\alpha} \leq x^{\beta}$  if and only if  $\alpha \leq \beta$ .

Now we consider  $k[x_1,\ldots,x_n]$  and we write  $x^{\alpha} := x_1^{\alpha_1}\cdots x_n^{\alpha_n}$ ,  $\alpha \in \mathbb{N}^n$ .  $x_1 > x_2 > \cdots > x_n$ 

Lexicographic  

$$x^{\alpha} \leq_{\text{Lex}} x^{\beta}$$
 iff:  
 $\alpha_1 < \beta_1$  or  
 $\alpha_1 = \beta_1$  and  $\alpha_2 < \beta_2$  or  
:  
 $\alpha = \beta.$ 

$$xy^2zt \leq_{\mathsf{Lex}} xy^3 \leq_{\mathsf{Lex}} x^3t$$

#### Not compatible with degrees!

 $\begin{array}{l} \text{Degree Lexicographic} \\ x^{\alpha} \leq_{\text{DegLex}} x^{\beta} \text{ iff:} \\ |\alpha| < |\beta| \text{ or} \\ |\alpha| = |\beta| \text{ and } x^{\alpha} \leq_{\text{Lex}} x^{\beta} \end{array}$ 

$$xy^3 \leq_{\mathsf{DegLex}} x^3t \leq_{\mathsf{DegLex}} xy^2zt.$$

Reverse Lexicographic  

$$x^{\alpha} \leq_{\mathsf{RLex}} x^{\beta}$$
 iff:  
 $\alpha_n > \beta_n$  or  
 $\alpha_n = \beta_n$  and  $\alpha_{n-1} > \beta_{n-1}$  or  
:  
 $\alpha = \beta$ .

Reverse Lexicographic  

$$x^{\alpha} \leq_{\mathsf{RLex}} x^{\beta}$$
 iff:  
 $\alpha_n > \beta_n$  or  
 $\alpha_n = \beta_n$  and  $\alpha_{n-1} > \beta_{n-1}$  or  
:  
 $\alpha = \beta$ .

 $xy^2zt \leq_{\mathsf{RLex}} x^3t \leq_{\mathsf{RLex}} xy^3.$ 

Reverse Lexicographic  

$$x^{\alpha} \leq_{\mathsf{RLex}} x^{\beta}$$
 iff:  
 $\alpha_n > \beta_n$  or  
 $\alpha_n = \beta_n$  and  $\alpha_{n-1} > \beta_{n-1}$  or  
:  
 $\alpha = \beta$ .

 $xy^2zt\leq_{\mathsf{RLex}} x^3t\leq_{\mathsf{RLex}} xy^3.$ 

Not compatible with degrees!

Reverse Lexicographic  

$$x^{\alpha} \leq_{\mathsf{RLex}} x^{\beta}$$
 iff:  
 $\alpha_n > \beta_n$  or  
 $\alpha_n = \beta_n$  and  $\alpha_{n-1} > \beta_{n-1}$  or  
:  
 $\alpha = \beta$ .

 $\begin{array}{l} \text{Degree Reverse Lexicographic}\\ x^{\alpha} \leq_{\mathsf{DRLex}} x^{\beta} \text{ iff:}\\ |\alpha| < |\beta| \text{ or}\\ |\alpha| = |\beta| \text{ and } x^{\alpha} \leq_{\mathsf{RLex}} x^{\beta} \end{array}$ 

 $xy^2zt \leq_{\mathsf{RLex}} x^3t \leq_{\mathsf{RLex}} xy^3.$ 

Not compatible with degrees!

Reverse Lexicographic  

$$x^{\alpha} \leq_{\mathsf{RLex}} x^{\beta}$$
 iff:  
 $\alpha_n > \beta_n$  or  
 $\alpha_n = \beta_n$  and  $\alpha_{n-1} > \beta_{n-1}$  or  
:  
 $\alpha = \beta$ .

Degree Reverse Lexicographic  $x^{\alpha} \leq_{\mathsf{DRLex}} x^{\beta}$  iff:  $|\alpha| < |\beta|$  or  $|\alpha| = |\beta|$  and  $x^{\alpha} \leq_{\mathsf{RLex}} x^{\beta}$ 

 $xy^2zt \leq_{\mathsf{RLex}} x^3t \leq_{\mathsf{RLex}} xy^3.$ Not compatible with degrees!

$$x^3t \leq_{\mathsf{DRLex}} xy^3 \leq_{\mathsf{DRLex}} xy^2zt.$$

| Khovanskii basis<br>00000000000 | Motivations<br>oo | Solving polynomial equations |
|---------------------------------|-------------------|------------------------------|
|                                 |                   |                              |

## INITIAL TERM

**Def.** Given  $f = \sum c_{\alpha} x^{\alpha} \in k[x_1, \ldots, x_n]$ ,  $f \neq 0$ , and a term order  $\leq$  we define the *initial term* of f as:  $in_{\leq}(f) = max\{x^{\alpha} \mid x^{\alpha} \in Supp(f)\}.$ 

## INITIAL TERM

**Def.** Given  $f = \sum c_{\alpha} x^{\alpha} \in k[x_1, \ldots, x_n]$ ,  $f \neq 0$ , and a term order  $\leq$  we define the *initial term* of f as:

 $\operatorname{in}_{\leq}(f) = \max\{x^{\alpha} \mid x^{\alpha} \in \operatorname{Supp}(f)\}.$ 

Es. x > y > z > t• in  $(x^{3}t + xy^{3} - xy^{2}zt) = x^{3}t$ .

- $in_{\mathsf{RLex}}(x^3t + xy^3 xy^2zt) = xy^3.$
- $\operatorname{in}_{\mathsf{DRLex}}(x^3t + xy^3 xy^2zt) = xy^2zt.$

Let  $S = k[x_1, \ldots, x_n]$  be the polynomial ring.

Def. A polynomial algebra generated by  $\mathcal{F} \subseteq S$  is a subset of the polynomial ring  $R \subseteq S$ 

$$R = \{ p(f_1, \ldots, f_s) \mid s \in \mathbb{N}, p \in k[t_1, \ldots, t_s], f_1, \ldots, f_s \in \mathcal{F} \}.$$

We write  $R = k[\mathcal{F}]$ , or  $k[f_1, \ldots, f_s]$  if  $\mathcal{F}$  is finite and in this case we say that R is *finitely* generated.

Let  $S = k[x_1, \ldots, x_n]$  be the polynomial ring.

Def. A polynomial algebra generated by  $\mathcal{F} \subseteq S$  is a subset of the polynomial ring  $R \subseteq S$ 

$$R = \{ p(f_1, \ldots, f_s) \mid s \in \mathbb{N}, p \in k[t_1, \ldots, t_s], f_1, \ldots, f_s \in \mathcal{F} \}.$$

We write  $R = k[\mathcal{F}]$ , or  $k[f_1, \ldots, f_s]$  if  $\mathcal{F}$  is finite and in this case we say that R is *finitely* generated.

**Def.** Given a term order  $\leq$  and a polynomial algebra  $R \subseteq S$ , the *initial algebra* of R w.r.t.  $\leq$  is:

 $in_{\leq}(R) = k[\{in(f)\}_{f \in R}].$ 

Let  $S = k[x_1, \ldots, x_n]$  be the polynomial ring.

Def. A polynomial algebra generated by  $\mathcal{F} \subseteq S$  is a subset of the polynomial ring  $R \subseteq S$ 

$$R = \{ p(f_1, \ldots, f_s) \mid s \in \mathbb{N}, p \in k[t_1, \ldots, t_s], f_1, \ldots, f_s \in \mathcal{F} \}.$$

We write  $R = k[\mathcal{F}]$ , or  $k[f_1, \ldots, f_s]$  if  $\mathcal{F}$  is finite and in this case we say that R is *finitely* generated.

**Def.** Given a term order  $\leq$  and a polynomial algebra  $R \subseteq S$ , the *initial algebra* of R w.r.t.  $\leq$  is:

$$in_{\leq}(R) = k[\{in(f)\}_{f \in R}].$$

EXAMPLE

• 
$$R = k[x + y + z, xy + xz + yz, xyz]$$
, in $(R) = k[x, xy, xyz]$ .

Let  $S = k[x_1, \ldots, x_n]$  be the polynomial ring.

Def. A polynomial algebra generated by  $\mathcal{F} \subseteq S$  is a subset of the polynomial ring  $R \subseteq S$ 

$$R = \{ p(f_1, \ldots, f_s) \mid s \in \mathbb{N}, p \in k[t_1, \ldots, t_s], f_1, \ldots, f_s \in \mathcal{F} \}.$$

We write  $R = k[\mathcal{F}]$ , or  $k[f_1, \ldots, f_s]$  if  $\mathcal{F}$  is finite and in this case we say that R is *finitely* generated.

**Def.** Given a term order  $\leq$  and a polynomial algebra  $R \subseteq S$ , the *initial algebra* of R w.r.t.  $\leq$  is:

 $in_{\leq}(R) = k[\{in(f)\}_{f \in R}].$ 

EXAMPLE

• 
$$R = k[x + y + z, xy + xz + yz, xyz]$$
, in $(R) = k[x, xy, xyz]$ .

**2**  $R = k[x + y, xy, xy^2]$ , in $(R) = k[x, xy, xy^2, \dots, xy^n, \dots]$ .

## WHAT IS A KHOVANSKII BASIS?

**Def.** Let R be a finitely generated algebra in  $k[x_1, \ldots, x_n]$ . A subset  $\mathcal{F} \subseteq R$  is a *Khovanskii basis* for a term order  $\leq$  if

$$\operatorname{in}_{\leq}(R) = k[\{\operatorname{in}(f)\}_{f \in \mathcal{F}}].$$

## WHAT IS A KHOVANSKII BASIS?

**Def.** Let R be a finitely generated algebra in  $k[x_1, \ldots, x_n]$ . A subset  $\mathcal{F} \subseteq R$  is a *Khovanskii basis* for a term order  $\leq$  if

$$\operatorname{in}_{\leq}(R) = k[\{\operatorname{in}(f)\}_{f \in \mathcal{F}}].$$

We are particularly interested in *finite* Khovanskii bases.

## WHAT IS A KHOVANSKII BASIS?

**Def.** Let R be a finitely generated algebra in  $k[x_1, \ldots, x_n]$ . A subset  $\mathcal{F} \subseteq R$  is a *Khovanskii basis* for a term order  $\leq$  if

 $\operatorname{in}_{\leq}(R) = k[\{\operatorname{in}(f)\}_{f \in \mathcal{F}}].$ 

We are particularly interested in *finite* Khovanskii bases.

#### Es.

- F.g. polynomial algebras in 1 variable have a finite Khovanskii basis
- **2** Polynomial algebras f.g. by monomials have a finite Khovanskii basis.
- Ilementary symmetric polynomials form a Khovanskii basis for the ring of symmetric polynomials:

$$S^{S_n} = k[x_1 + \dots + x_n, x_1x_2 + \dots + x_{n-1}x_n, \dots, x_1 \cdots x_n].$$

Bad news: Finite Khovanskii bases do NOT always exist.

Bad news: Finite Khovanskii bases do NOT always exist.

**Es.** The invariant ring of the alternating group  $A_n$ , that is

$$S^{A_n} = k[x_1 + \dots + x_n, \dots, x_1 \cdots x_n, \prod_{i < j} (x_j - x_i)],$$

does not admit a finite Khovanskii basis with respect to any term order for every  $n \ge 3$  (Göbel).

# Algorithm

#### SUBDUCTION ALGORITHM

Input: A Khovanskii basis  $\mathcal{F}$  for R and  $f \in S$ . Output:

- If  $f \in R$  : A constant and an expression of f as a polynomial in the elements of  $\mathcal{F}$ .
- If  $f \notin R$  a non-constant polynomial.

# Algorithm

#### SUBDUCTION ALGORITHM

Input: A Khovanskii basis  $\mathcal{F}$  for R and  $f \in S$ . Output:

- If  $f \in R$  : A constant and an expression of f as a polynomial in the elements of  $\mathcal{F}$ .
- If  $f \notin R$  a non-constant polynomial.

IS  $\mathcal{F}$  A K.B.?  $\mathcal{F} = \{f_1, \dots, f_s\} \subseteq R.$ 

$$\varphi: k[t_1, \ldots, t_s] \longrightarrow \operatorname{in}(R), \ \varphi(t_i) = \operatorname{in}(f_i).$$

# Algorithm

#### SUBDUCTION ALGORITHM

Input: A Khovanskii basis  $\mathcal F$  for R and  $f \in S$ . Output:

- If  $f \in R$  : A constant and an expression of f as a polynomial in the elements of  $\mathcal{F}$ .
- If  $f \notin R$  a non-constant polynomial.

IS  $\mathcal{F}$  A K.B.?  $\mathcal{F} = \{f_1, \dots, f_s\} \subseteq R.$ 

$$\varphi: k[t_1, \ldots, t_s] \longrightarrow \operatorname{in}(R), \ \varphi(t_i) = \operatorname{in}(f_i).$$

**Theorem.** Consider  $\ker(\varphi) = (g_1, \ldots, g_d)$ . Then  $\mathcal{F}$  is a Khovanskii basis if and only if the subduction algorithm applied to  $g_i(f_1, \ldots, f_s)$  gives a constant for each i.

## HILBERT FUNCTION

Def. The Hilbert function of a  $\mathbb{Z}$ -graded k-algebra  $R = \bigoplus_{d \in \mathbb{Z}} R_d$  is

 $\operatorname{HF}_R : \mathbb{Z} \longrightarrow \mathbb{N}, \ d \longmapsto \dim_k(R_d).$ 

## HILBERT FUNCTION

**Def.** The Hilbert function of a  $\mathbb{Z}$ -graded k-algebra  $R = \bigoplus_{d \in \mathbb{Z}} R_d$  is

$$\operatorname{HF}_R : \mathbb{Z} \longrightarrow \mathbb{N}, \ d \longmapsto \dim_k(R_d).$$

**Theorem.** The Hilbert function can be expressed with a polynomial. There exists a polynomial  $\operatorname{HP}_R(t) \in \mathbb{Q}[t]$  such that  $\operatorname{HF}_R(d) = \operatorname{HP}_R(d)$  for  $d \ge d_0$ . The integer  $d_0$  is the *Hilbert regularity* of R.

### HILBERT FUNCTION

**Def.** The Hilbert function of a  $\mathbb{Z}$ -graded k-algebra  $R = \bigoplus_{d \in \mathbb{Z}} R_d$  is

$$\operatorname{HF}_R : \mathbb{Z} \longrightarrow \mathbb{N}, \ d \longmapsto \dim_k(R_d).$$

**Theorem.** The Hilbert function can be expressed with a polynomial. There exists a polynomial  $\operatorname{HP}_R(t) \in \mathbb{Q}[t]$  such that  $\operatorname{HF}_R(d) = \operatorname{HP}_R(d)$  for  $d \ge d_0$ . The integer  $d_0$  is the *Hilbert regularity* of R.

**Theorem.** A polynomial algebra R and its initial algebra have the same Hilbert function:

 $\operatorname{HF}_R(d) = \operatorname{HF}_{\operatorname{in}(R)}(d)$ , for all  $d \in \mathbb{Z}$ .

As a consequence, we get an easy way to compute a k-basis for  $R_d$ .

As a consequence, we get an easy way to compute a k-basis for  $R_d$ . If  $R = k[\phi_0, \ldots, \phi_\ell] \subseteq k[x_1, \ldots, x_n]$ , where  $\{\phi_0, \ldots, \phi_\ell\}$  is a Khovanskii basis w.r.t.  $\leq$ , we define:

$$A = \{ \alpha_i \mid \text{in}_{\leq}(\phi_i) = x^{\alpha_i} \},\$$
$$d \cdot A = \{ \alpha_{i_1} + \dots + \alpha_{i_d} \mid \alpha_{i_j} \in A \}.$$

As a consequence, we get an easy way to compute a k-basis for  $R_d$ . If  $R = k[\phi_0, \ldots, \phi_\ell] \subseteq k[x_1, \ldots, x_n]$ , where  $\{\phi_0, \ldots, \phi_\ell\}$  is a Khovanskii basis w.r.t.  $\leq$ , we define:

$$A = \{ \alpha_i \mid \text{in}_{\leq}(\phi_i) = x^{\alpha_i} \},\$$
$$d \cdot A = \{ \alpha_{i_1} + \dots + \alpha_{i_d} \mid \alpha_{i_j} \in A \}.$$

Each element in a basis of  $R_d$  corresponds to an element in  $d \cdot A$ :

$$R_d = \langle b_{d,\beta} | \beta \in d \cdot A \rangle_K,$$

where  $b_{d,\beta} = \phi_{i_1} \cdots \phi_{i_d}$  and  $0 \le i_1 \le \cdots \le i_d \le \ell$  are integers such that  $\alpha_{i_1} + \cdots + \alpha_{i_d} = \beta$ .

### EXAMPLE: DEL PEZZO SURFACE

• 
$$R = k[x-y, y^2-y, xy-y, x^2-y, xy^2-y, x^2y-y]$$

• 
$$in(R) = k[x, y^2, xy, x^2, xy^2, x^2y]$$

• 
$$A = \{(1,0), (0,2), (1,1), (2,0), (1,2), (2,1)\}$$

•  $2 \cdot A = \{(2,0), (1,2), (2,1), \dots\}$ 

• 
$$R_2 = \langle (x-y)^2, (x-y)(y^2-y), (x-y)(xy-y), \dots \rangle$$



**1** KHOVANSKII BASIS

# 2 MOTIVATIONS

**3** Solving polynomial equations

| Khovanskii basis<br>000000000000 | Motivations<br>o● | Solving polynomial equations |
|----------------------------------|-------------------|------------------------------|
|                                  |                   |                              |

Extend Gröbner basis theory to subalgebras.

- Extend Gröbner basis theory to subalgebras.
- ② The coordinate ring of a variety is a polynomial algebra.

- Extend Gröbner basis theory to subalgebras.
- Interpretation of a variety is a polynomial algebra.
- **③** Useful to solve polynomial system using computer algebra.

- Extend Gröbner basis theory to subalgebras.
- Interpretation of a variety is a polynomial algebra.
- **③** Useful to solve polynomial system using computer algebra.
- New project computationally possible thanks to Khovansii Basis with M. Panizzut and S. Telen.

**I** KHOVANSKII BASIS

2 Motivations

**3** Solving Polynomial Equations

# Main problem

We consider the problem of finding

$$z \in K^n$$
 such that  $f_1(z) = \cdots = f_s(z) = 0$ ,

where  $f_1, ..., f_s \in K[t_1, ..., t_n]$ .

## MAIN PROBLEM

We consider the problem of finding

$$z \in K^n$$
 such that  $f_1(z) = \cdots = f_s(z) = 0$ ,

where  $f_1, \ldots, f_s \in K[t_1, \ldots, t_n]$ . We suppose that  $\mathbb{V}(f_1, \ldots, f_s) = \{z_1, \ldots, z_\delta\}$ .

## MAIN PROBLEM

We consider the problem of finding

$$z \in K^n$$
 such that  $f_1(z) = \cdots = f_s(z) = 0$ ,

where  $f_1, \ldots, f_s \in K[t_1, \ldots, t_n]$ . We suppose that  $\mathbb{V}(f_1, \ldots, f_s) = \{z_1, \ldots, z_\delta\}$ .

Let  $\phi_0, \ldots, \phi_\ell \in K[t_1, \ldots, t_n]$  be a different list of polynomials and let  $d_1, \ldots, d_s \in \mathbb{N}^*$  be positive integers such that:

$$f_i(t) = \sum_{|\alpha|=d_i} c_{i,\alpha} \phi_0(t)^{\alpha_0} \phi_1(t)^{\alpha_1} \cdots \phi_\ell(t)^{\alpha_\ell}, \quad i = 1, \dots, s.$$

We are "forcing"  $f_i$  to be homogeneous.

Barbara Betti

Motivations

## OUR POINT OF VIEW

We reformulate the problem considering the *unirational variety* X obtained by the closed image of the map

$$\phi: K^n \dashrightarrow \mathbb{P}_K^\ell, \quad t \mapsto (\phi_0(t): \dots : \phi_\ell(t))$$
$$X := \operatorname{Cl}\{(\phi_0(t): \dots : \phi_\ell(t)) \in \mathbb{P}_K^\ell | t \in K^n \setminus \mathbb{V}(\phi_0, \dots, \phi_\ell)\}.$$

Now we look for the *parameterized solutions* :

$$x \in X \subset \mathbb{P}_K^\ell$$
, s.t.  $F_1(x) = \cdots = F_s(x) = 0$ , with  $F_i = \sum_{|\alpha|=d_i} c_{i,\alpha} x^{\alpha}$ .

### OUR POINT OF VIEW

We reformulate the problem considering the *unirational variety* X obtained by the closed image of the map

$$\phi: K^n \dashrightarrow \mathbb{P}_K^\ell, \quad t \mapsto (\phi_0(t): \dots : \phi_\ell(t))$$
$$X := \operatorname{Cl}\{(\phi_0(t): \dots : \phi_\ell(t)) \in \mathbb{P}_K^\ell | t \in K^n \setminus \mathbb{V}(\phi_0, \dots, \phi_\ell)\}.$$

Now we look for the *parameterized solutions* :

$$x \in X \subset \mathbb{P}_K^\ell$$
, s.t.  $F_1(x) = \cdots = F_s(x) = 0$ , with  $F_i = \sum_{|\alpha|=d_i} c_{i,\alpha} x^{\alpha}$ .

We are "replacing" the polynomials  $\phi_i$  with new variables  $x_i$ .

## EXAMPLE: OSCILLATORS

The following system of two equations in two unknowns arises from the Duffing equation modelling damped and driven oscillators (Breiding, Michałek, Monin, Telen).

$$f_1 = 1 + 3t_1 + 5t_2 + 7t_1(t_1^2 + t_2^2), \quad f_2 = 11 + 13t_1 + 17t_2 + 19t_2(t_1^2 + t_2^2).$$

In this case we have  $\phi_0 = 1, \ \phi_1 = t_1, \ \phi_2 = t_2, \ \phi_3 = t_1(t_1^2 + t_2^2), \ \phi_4 = t_2(t_1^2 + t_2^2)$  and

$$f_1 = 1 \cdot \phi_0 + 3 \cdot \phi_1 + 5 \cdot \phi_2 + 7 \cdot \phi_3$$
  
$$f_2 = 11 \cdot \phi_0 + 13 \cdot \phi_1 + 17 \cdot \phi_2 + 19 \cdot \phi_4$$

### EXAMPLE: OSCILLATORS

The following system of two equations in two unknowns arises from the Duffing equation modelling damped and driven oscillators (Breiding, Michałek, Monin, Telen).

$$f_1 = 1 + 3t_1 + 5t_2 + 7t_1(t_1^2 + t_2^2), \quad f_2 = 11 + 13t_1 + 17t_2 + 19t_2(t_1^2 + t_2^2).$$

In this case we have  $\phi_0 = 1, \ \phi_1 = t_1, \ \phi_2 = t_2, \ \phi_3 = t_1(t_1^2 + t_2^2), \ \phi_4 = t_2(t_1^2 + t_2^2)$  and

$$f_1 = 1 \cdot \phi_0 + 3 \cdot \phi_1 + 5 \cdot \phi_2 + 7 \cdot \phi_3$$
  
$$f_2 = 11 \cdot \phi_0 + 13 \cdot \phi_1 + 17 \cdot \phi_2 + 19 \cdot \phi_4$$

The surface X is defined by 3 polynomials:

$$x_1x_4 - x_2x_3 = x_1^2x_2 + x_2^3 - x_4x_1^2 = x_1^3 + x_1x_2^2 - x_3x_0^2 = 0 \quad \text{in } \mathbb{P}^4.$$

The polynomials  $F_i$  are defined as follows:

 $F_1 = x_0 + 3 x_1 + 5 x_2 + 7 x_3, \quad F_2 = 11 x_0 + 13 x_1 + 17 x_2 + 19 x_4.$ 

Motivations

## KHOVANSKII-MACAULAY MATRIX

We use some matrices to compute solutions of  $F_1 = \cdots = F_s = 0$  working directly in K[X]. We call them *Khovanskii-Macaulay matrices*  $M_X(d)$ . In degree d = 2 we get the matrix  $M_X(2)$ 

|                 | $x_{0}^{2}$ | $x_{0}x_{1}$ | $x_{1}^{2}$ | $x_{0}x_{2}$ | $x_{1}x_{2}$ | $x_{2}^{2}$ | $x_{0}x_{3}$ | $x_{1}x_{3}$ | $x_{2}x_{3}$ | $x_{3}^{2}$ | $x_{0}x_{4}$ | $x_{2}x_{4}$ | $x_{3}x_{4}$ | $x_{4}^{2}$ |
|-----------------|-------------|--------------|-------------|--------------|--------------|-------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|-------------|
| $x_0 \cdot F_1$ | 1           | 3            | 0           | 5            | 0            | 0           | 7            | 0            | 0            | 0           | 0            | 0            | 0            | 0 ]         |
| $x_1 \cdot F_1$ | 0           | 1            | 3           | 0            | 5            | 0           | 0            | 7            | 0            | 0           | 0            | 0            | 0            | 0           |
| $x_2 \cdot F_1$ | 0           | 0            | 0           | 1            | 3            | 5           | 0            | 0            | 7            | 0           | 0            | 0            | 0            | 0           |
| $x_3 \cdot F_1$ | 0           | 0            | 0           | 0            | 0            | 0           | 1            | 3            | 5            | 7           | 0            | 0            | 0            | 0           |
| $x_4 \cdot F_1$ | 0           | 0            | 0           | 0            | 0            | 0           | 0            | 0            | 3            | 0           | 1            | 5            | 7            | 0           |
| $x_0 \cdot F_2$ | 11          | 13           | 0           | 17           | 0            | 0           | 0            | 0            | 0            | 0           | 19           | 0            | 0            | 0           |
| $x_1 \cdot F_2$ | 0           | 11           | 13          | 0            | 17           | 0           | 0            | 0            | 19           | 0           | 0            | 0            | 0            | 0           |
| $x_2 \cdot F_2$ | 0           | 0            | 0           | 11           | 13           | 17          | 0            | 0            | 0            | 0           | 0            | 19           | 0            | 0           |
| $x_3 \cdot F_2$ | 0           | 0            | 0           | 0            | 0            | 0           | 11           | 13           | 17           | 0           | 0            | 0            | 19           | 0           |
| $x_4 \cdot F_2$ | 0           | 0            | 0           | 0            | 0            | 0           | 0            | 0            | 13           | 0           | 11           | 17           | 0            | 19          |

For general d, the rows of  $M_X(d)$  are indexed by all multiples  $x^{\alpha} \cdot F_i$ , where  $x^{\alpha}$  runs over a basis of  $K[X]_{d-\deg(F_i)}$ . The columns are indexed by a monomial basis of  $K[X]_d$ .

BARBARA BETTI

# MAIN THEOREM

### QUESTION 1

Which is the degree d that allows us to solve the equations?

# MAIN THEOREM

### QUESTION 1

Which is the degree d that allows us to solve the equations?

We need to understand the *Hilbert regularity* of K[X].

# MAIN THEOREM

### QUESTION 1

Which is the degree d that allows us to solve the equations?

We need to understand the *Hilbert regularity* of K[X].

**Theorem.** Let X be an arithmetically Cohen-Macaulay variety of dimension n and  $I = \langle F_1, \ldots, F_n \rangle \subset K[X]$  be a homogeneous ideal with  $\deg(F_i) = d_i$ , such that  $\dim(V_X(I)) = 0$ . To solve  $F_1 = \cdots = F_s = 0$  we need to compute the Khovanskii-Macaulay matrix in degree  $\sum_{i=1}^n d_i + \operatorname{HReg}(K[X]) + 1$ .

# USING KHOVANSKII BASES

#### QUESTION 2

#### How do we efficiently compute the Khovanskii-Macaulay matrix?

# USING KHOVANSKII BASES

### QUESTION 2

How do we efficiently compute the Khovanskii-Macaulay matrix?

Under the assumption that  $\{\phi_0, \ldots, \phi_\ell\}$  is a Khovanskii basis, we have an easy way to do that!

## USING KHOVANSKII BASES

### QUESTION 2

How do we efficiently compute the Khovanskii-Macaulay matrix?

Under the assumption that  $\{\phi_0, \ldots, \phi_\ell\}$  is a Khovanskii basis, we have an easy way to do that!

Thanks for your attention!