MAX PLANCK INSTITUTE
 FOR MATHEMATICS IN THE SCIENCES

Khovanskii bases and how to use them

Max Planck Institute for Mathematics in the Sciences

Barbara Betti

25 May 2023
(2) Motivations
(3) SOLVING POLYNOMIAL EQUATIONS

LET'S PUT SOME ORDER IN MONOMIALS

Why do we write $x^{3} y^{2}+2 x^{2} y-x+y+2$

Let's put some order in monomials

Why do we write $x^{3} y^{2}+2 x^{2} y-x+y+2$ and not $2 x^{2} y-x+x^{3} y^{2}+2+y$?

LET'S PUT SOME ORDER IN MONOMIALS

Why do we write $x^{3} y^{2}+2 x^{2} y-x+y+2$ and not $2 x^{2} y-x+x^{3} y^{2}+2+y$?

Def. A term order in the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$ is a total order \leq on the set of monomials of S such that:
(1) \leq is reflexive, antisymmetric and transitive and total: for each m_{1}, m_{2} monomials then $m_{1} \leq m_{2}$ or $m_{2} \leq m_{1}$ (total order).
(2) If $m_{1} \leq m_{2}$ then $m \cdot m_{1} \leq m \cdot m_{2}$ for every monomial m (compatible with multiplication).
(3) If $m_{1} \mid m_{2}$ then $m_{1} \leq m_{2}(\stackrel{(2)}{\Longleftrightarrow} 1 \leq m$ for every monomial $m)$.

LET'S PUT SOME ORDER IN MONOMIALS

Why do we write $x^{3} y^{2}+2 x^{2} y-x+y+2$ and not $2 x^{2} y-x+x^{3} y^{2}+2+y$?

Def. A term order in the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$ is a total order \leq on the set of monomials of S such that:
(1) \leq is reflexive, antisymmetric and transitive and total: for each m_{1}, m_{2} monomials then $m_{1} \leq m_{2}$ or $m_{2} \leq m_{1}$ (total order).
(2) If $m_{1} \leq m_{2}$ then $m \cdot m_{1} \leq m \cdot m_{2}$ for every monomial m (compatible with multiplication).
(3) If $m_{1} \mid m_{2}$ then $m_{1} \leq m_{2}(\stackrel{(2)}{\Longleftrightarrow} 1 \leq m$ for every monomial $m)$.

Condition (3) guarantees that every descending chain of monomials is finite \Rightarrow induction over "the biggest" term of a polynomial.

MOST FAMOUS TERM ORDERS
$\ln k[x]$ there exists only one term order: $x^{\alpha} \leq x^{\beta}$ if and only if $\alpha \leq \beta$.

MOST FAMOUS TERM ORDERS

In $k[x]$ there exists only one term order: $x^{\alpha} \leq x^{\beta}$ if and only if $\alpha \leq \beta$.
Now we consider $k\left[x_{1}, \ldots, x_{n}\right]$ and we write $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \alpha \in \mathbb{N}^{n} . x_{1}>x_{2}>\cdots>x_{n}$

$$
\begin{aligned}
& \text { Lexicographic } \\
& x^{\alpha} \leq \text { Lex } x^{\beta} \text { iff: } \\
& \quad \alpha_{1}<\beta_{1} \text { or } \\
& \alpha_{1}=\beta_{1} \text { and } \alpha_{2}<\beta_{2} \text { or } \\
& \vdots \\
& \alpha=\beta .
\end{aligned}
$$

MOST FAMOUS TERM ORDERS

In $k[x]$ there exists only one term order: $x^{\alpha} \leq x^{\beta}$ if and only if $\alpha \leq \beta$.
Now we consider $k\left[x_{1}, \ldots, x_{n}\right]$ and we write $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \alpha \in \mathbb{N}^{n} . x_{1}>x_{2}>\cdots>x_{n}$

$$
\begin{aligned}
& \text { Lexicographic } \\
& x^{\alpha} \leq_{\text {Lex }} x^{\beta} \text { iff: } \\
& \quad \alpha_{1}<\beta_{1} \text { or } \\
& \alpha_{1}=\beta_{1} \text { and } \alpha_{2}<\beta_{2} \text { or } \\
& \vdots \\
& \quad \alpha=\beta \\
& x y^{2} z t \leq \leq_{\text {Lex }} x y^{3} \leq_{\text {Lex }} x^{3} t
\end{aligned}
$$

MOST FAMOUS TERM ORDERS

In $k[x]$ there exists only one term order: $x^{\alpha} \leq x^{\beta}$ if and only if $\alpha \leq \beta$.
Now we consider $k\left[x_{1}, \ldots, x_{n}\right]$ and we write $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \alpha \in \mathbb{N}^{n} . x_{1}>x_{2}>\cdots>x_{n}$

$$
\begin{aligned}
& \text { Lexicographic } \\
& x^{\alpha} \leq \text { Lex }^{x^{\beta}} \text { iff: } \\
& \quad \alpha_{1}<\beta_{1} \text { or } \\
& \quad \alpha_{1}=\beta_{1} \text { and } \alpha_{2}<\beta_{2} \text { or } \\
& \quad \vdots \\
& \quad \alpha=\beta
\end{aligned}
$$

$$
x y^{2} z t \leq_{\text {Lex }} x y^{3} \leq_{\text {Lex }} x^{3} t
$$

Not compatible with degrees!

MOST FAMOUS TERM ORDERS

In $k[x]$ there exists only one term order: $x^{\alpha} \leq x^{\beta}$ if and only if $\alpha \leq \beta$.
Now we consider $k\left[x_{1}, \ldots, x_{n}\right]$ and we write $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \alpha \in \mathbb{N}^{n} . x_{1}>x_{2}>\cdots>x_{n}$

$$
\begin{aligned}
& \text { Lexicographic } \\
& x^{\alpha} \leq_{\text {Lex }} x^{\beta} \text { iff: } \\
& \quad \alpha_{1}<\beta_{1} \text { or } \\
& \alpha_{1}=\beta_{1} \text { and } \alpha_{2}<\beta_{2} \text { or } \\
& \vdots \\
& \quad \alpha=\beta . \\
& x y^{2} z t \leq \text { Lex } x y^{3} \leq_{\text {Lex }} x^{3} t
\end{aligned}
$$

Not compatible with degrees!

MOST FAMOUS TERM ORDERS

In $k[x]$ there exists only one term order: $x^{\alpha} \leq x^{\beta}$ if and only if $\alpha \leq \beta$.
Now we consider $k\left[x_{1}, \ldots, x_{n}\right]$ and we write $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \alpha \in \mathbb{N}^{n} . x_{1}>x_{2}>\cdots>x_{n}$

$$
\begin{aligned}
& \text { Lexicographic } \\
& x^{\alpha} \leq \text { Lex } x^{\beta} \text { iff: } \\
& \qquad \alpha_{1}<\beta_{1} \text { or } \\
& \quad \alpha_{1}=\beta_{1} \text { and } \alpha_{2}<\beta_{2} \text { or } \\
& \quad \vdots \\
& \quad \alpha=\beta
\end{aligned}
$$

$$
x y^{2} z t \leq_{\text {Lex }} x y^{3} \leq_{\text {Lex }} x^{3} t
$$

$$
x^{\alpha} \leq_{\text {DegLex }} x^{\beta} \mathrm{iff}:
$$

$$
|\alpha|<|\beta| \text { or }
$$

$$
|\alpha|=|\beta| \text { and } x^{\alpha} \leq_{\text {Lex }} x^{\beta}
$$

$$
x y^{3} \leq_{\text {DegLex }} x^{3} t \leq_{\text {DegLex }} x y^{2} z t
$$

Not compatible with degrees!

MOST FAMOUS TERM ORDERS

Reverse Lexicographic
$x^{\alpha} \leq_{\mathrm{RLex}} x^{\beta}$ iff:
$\alpha_{n}>\beta_{n}$ or
$\alpha_{n}=\beta_{n}$ and $\alpha_{n-1}>\beta_{n-1}$ or
\vdots
$\alpha=\beta$.

MOST FAMOUS TERM ORDERS

Reverse Lexicographic
$x^{\alpha} \leq_{\mathrm{RLex}} x^{\beta}$ iff:
$\alpha_{n}>\beta_{n}$ or
$\alpha_{n}=\beta_{n}$ and $\alpha_{n-1}>\beta_{n-1}$ or
\vdots
$\alpha=\beta$.
$x y^{2} z t \leq_{\text {RLex }} x^{3} t \leq_{\text {RLex }} x y^{3}$.

MOST FAMOUS TERM ORDERS

Reverse Lexicographic

$$
\begin{aligned}
& x^{\alpha} \leq \text { RLex } x^{\beta} \text { iff: } \\
& \\
& \quad \alpha_{n}>\beta_{n} \text { or } \\
& \\
& \alpha_{n}=\beta_{n} \text { and } \alpha_{n-1}>\beta_{n-1} \text { or } \\
& \\
& \quad \vdots \\
& \\
& \\
& \alpha=\beta .
\end{aligned}
$$

$$
x y^{2} z t \leq_{\text {RLex }} x^{3} t \leq_{\text {RLex }} x y^{3} .
$$

Not compatible with degrees!

MOST FAMOUS TERM ORDERS

Reverse Lexicographic
$x^{\alpha} \leq_{\mathrm{RLex}} x^{\beta}$ iff:

$$
\begin{aligned}
& \alpha_{n}>\beta_{n} \text { or } \\
& \alpha_{n}=\beta_{n} \text { and } \alpha_{n-1}>\beta_{n-1} \text { or }
\end{aligned}
$$

$$
\vdots
$$

$$
\alpha=\beta
$$

$x y^{2} z t \leq_{\text {RLex }} x^{3} t \leq_{\text {RLex }} x y^{3}$.
Not compatible with degrees!

Degree Reverse Lexicographic

 $x^{\alpha} \leq_{\text {DRLex }} x^{\beta}$ iff:$|\alpha|<|\beta|$ or
$|\alpha|=|\beta|$ and $x^{\alpha} \leq_{\text {RLex }} x^{\beta}$

MOST FAMOUS TERM ORDERS

Reverse Lexicographic

$$
\begin{aligned}
& x^{\alpha} \leq \operatorname{RLex} x^{\beta} \text { iff: } \\
& \quad \alpha_{n}>\beta_{n} \text { or } \\
& \quad \alpha_{n}=\beta_{n} \text { and } \alpha_{n-1}>\beta_{n-1} \text { or }
\end{aligned}
$$

$$
\vdots
$$

$$
\alpha=\beta
$$

$$
x y^{2} z t \leq_{\text {RLex }} x^{3} t \leq_{\text {RLex }} x y^{3} .
$$

Not compatible with degrees!

Degree Reverse Lexicographic $x^{\alpha} \leq_{\text {DRLex }} x^{\beta}$ iff: $|\alpha|<|\beta|$ or

$$
|\alpha|=|\beta| \text { and } x^{\alpha} \leq_{\mathrm{RLex}} x^{\beta}
$$

$x^{3} t \leq_{\text {DRLex }} x y^{3} \leq_{\text {DRLex }} x y^{2} z t$.

INITIAL TERM

Def. Given $f=\sum c_{\alpha} x^{\alpha} \in k\left[x_{1}, \ldots, x_{n}\right], f \neq 0$, and a term order \leq we define the initial term of f as:

$$
\operatorname{in}_{\leq}(f)=\max \left\{x^{\alpha} \mid x^{\alpha} \in \operatorname{Supp}(f)\right\}
$$

INITIAL TERM

Def. Given $f=\sum c_{\alpha} x^{\alpha} \in k\left[x_{1}, \ldots, x_{n}\right], f \neq 0$, and a term order \leq we define the initial term of f as:

$$
\operatorname{in}_{\leq}(f)=\max \left\{x^{\alpha} \mid x^{\alpha} \in \operatorname{Supp}(f)\right\}
$$

Es. $\quad x>y>z>t$

- $\operatorname{in}_{\text {Lex }}\left(x^{3} t+x y^{3}-x y^{2} z t\right)=x^{3} t$.
- $\operatorname{in}_{\text {RLex }}\left(x^{3} t+x y^{3}-x y^{2} z t\right)=x y^{3}$.
- $\operatorname{in}_{\text {DRLex }}\left(x^{3} t+x y^{3}-x y^{2} z t\right)=x y^{2} z t$.

Initial Algebra

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring.
Def. A polynomial algebra generated by $\mathcal{F} \subseteq S$ is a subset of the polynomial ring $R \subseteq S$

$$
R=\left\{p\left(f_{1}, \ldots, f_{s}\right) \mid s \in \mathbb{N}, p \in k\left[t_{1}, \ldots, t_{s}\right], f_{1}, \ldots, f_{s} \in \mathscr{F}\right\} .
$$

We write $R=k[\mathscr{F}]$, or $k\left[f_{1}, \ldots, f_{s}\right]$ if \mathscr{F} is finite and in this case we say that R is finitely generated.

Initial Algebra

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring.
Def. A polynomial algebra generated by $\mathcal{F} \subseteq S$ is a subset of the polynomial ring $R \subseteq S$

$$
R=\left\{p\left(f_{1}, \ldots, f_{s}\right) \mid s \in \mathbb{N}, p \in k\left[t_{1}, \ldots, t_{s}\right], f_{1}, \ldots, f_{s} \in \mathscr{F}\right\} .
$$

We write $R=k[\mathscr{F}]$, or $k\left[f_{1}, \ldots, f_{s}\right]$ if \mathscr{F} is finite and in this case we say that R is finitely generated.

Def. Given a term order \leq and a polynomial algebra $R \subseteq S$, the initial algebra of R w.r.t. \leq is:

$$
\operatorname{in}_{\leq}(R)=k\left[\{\operatorname{in}(f)\}_{f \in R}\right] .
$$

Initial Algebra

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring.
Def. A polynomial algebra generated by $\mathcal{F} \subseteq S$ is a subset of the polynomial ring $R \subseteq S$

$$
R=\left\{p\left(f_{1}, \ldots, f_{s}\right) \mid s \in \mathbb{N}, p \in k\left[t_{1}, \ldots, t_{s}\right], f_{1}, \ldots, f_{s} \in \mathscr{F}\right\} .
$$

We write $R=k[\mathscr{F}]$, or $k\left[f_{1}, \ldots, f_{s}\right]$ if \mathscr{F} is finite and in this case we say that R is finitely generated.

Def. Given a term order \leq and a polynomial algebra $R \subseteq S$, the initial algebra of R w.r.t. \leq is:

$$
\operatorname{in}_{\leq}(R)=k\left[\{\operatorname{in}(f)\}_{f \in R}\right] .
$$

Example

(1) $R=k[x+y+z, x y+x z+y z, x y z], \operatorname{in}(R)=k[x, x y, x y z]$.

Initial Algebra

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring.
Def. A polynomial algebra generated by $\mathcal{F} \subseteq S$ is a subset of the polynomial ring $R \subseteq S$

$$
R=\left\{p\left(f_{1}, \ldots, f_{s}\right) \mid s \in \mathbb{N}, p \in k\left[t_{1}, \ldots, t_{s}\right], f_{1}, \ldots, f_{s} \in \mathscr{F}\right\} .
$$

We write $R=k[\mathscr{F}]$, or $k\left[f_{1}, \ldots, f_{s}\right]$ if \mathscr{F} is finite and in this case we say that R is finitely generated.

Def. Given a term order \leq and a polynomial algebra $R \subseteq S$, the initial algebra of R w.r.t. \leq is:

$$
\operatorname{in}_{\leq}(R)=k\left[\{\operatorname{in}(f)\}_{f \in R}\right] .
$$

Example

(1) $R=k[x+y+z, x y+x z+y z, x y z], \operatorname{in}(R)=k[x, x y, x y z]$.
(2) $R=k\left[x+y, x y, x y^{2}\right], \operatorname{in}(R)=k\left[x, x y, x y^{2}, \ldots, x y^{n}, \ldots\right]$.

What is A Khovanskil Basis?

Def. Let R be a finitely generated algebra in $k\left[x_{1}, \ldots, x_{n}\right]$. A subset $\mathcal{F} \subseteq R$ is a Khovanskii basis for a term order \leq if

$$
\operatorname{in}_{\leq}(R)=k\left[\{\operatorname{in}(f)\}_{f \in \mathscr{F}}\right]
$$

What is A Khovanskil Basis?

Def. Let R be a finitely generated algebra in $k\left[x_{1}, \ldots, x_{n}\right]$. A subset $\mathcal{F} \subseteq R$ is a Khovanskii basis for a term order \leq if

$$
\operatorname{in}_{\leq}(R)=k\left[\{\operatorname{in}(f)\}_{f \in \mathscr{F}}\right]
$$

We are particularly interested in finite Khovanskii bases.

What is A Khovanskil Basis?

Def. Let R be a finitely generated algebra in $k\left[x_{1}, \ldots, x_{n}\right]$. A subset $\mathcal{F} \subseteq R$ is a Khovanskii basis for a term order \leq if

$$
\operatorname{in}_{\leq}(R)=k\left[\{\operatorname{in}(f)\}_{f \in \mathcal{F}}\right] .
$$

We are particularly interested in finite Khovanskii bases.

Es.

(1) F.g. polynomial algebras in 1 variable have a finite Khovanskii basis
(2) Polynomial algebras f.g. by monomials have a finite Khovanskii basis.
(3) Elementary symmetric polynomials form a Khovanskii basis for the ring of symmetric polynomials:

$$
S^{S_{n}}=k\left[x_{1}+\cdots+x_{n}, x_{1} x_{2}+\cdots+x_{n-1} x_{n}, \ldots, x_{1} \cdots x_{n}\right] .
$$

Bad news: Finite Khovanskii bases do NOT always exist.

Bad news: Finite Khovanskii bases do NOT always exist.
Es. The invariant ring of the alternating group A_{n}, that is

$$
S^{A_{n}}=k\left[x_{1}+\cdots+x_{n}, \ldots, x_{1} \cdots x_{n}, \prod_{i<j}\left(x_{j}-x_{i}\right)\right]
$$

does not admit a finite Khovanskii basis with respect to any term order for every $n \geq 3$ (Göbel).

Algorithm

Subduction Algorithm

Input: A Khovanskii basis \mathcal{F} for R and $f \in S$.

Output:

- If $f \in R:$ A constant and an expression of f as a polynomial in the elements of \mathscr{F}.
- If $f \notin R$ a non-constant polynomial.

Algorithm

Subduction ALGORITHM

Input: A Khovanskii basis \mathcal{F} for R and $f \in S$.

Output:

- If $f \in R:$ A constant and an expression of f as a polynomial in the elements of \mathcal{F}.
- If $f \notin R$ a non-constant polynomial.

Is \mathcal{F} A K.B.?
$\mathscr{F}=\left\{f_{1}, \ldots, f_{s}\right\} \subseteq R$.

$$
\varphi: k\left[t_{1}, \ldots, t_{s}\right] \longrightarrow \operatorname{in}(R), \varphi\left(t_{i}\right)=\operatorname{in}\left(f_{i}\right) .
$$

AlGORITHM

Subduction ALGORITHM

Input: A Khovanskii basis \mathscr{F} for R and $f \in S$.

Output:

- If $f \in R:$ A constant and an expression of f as a polynomial in the elements of \mathscr{F}.
- If $f \notin R$ a non-constant polynomial.

Is \mathcal{F} A K.B.?
$\mathscr{F}=\left\{f_{1}, \ldots, f_{s}\right\} \subseteq R$.

$$
\varphi: k\left[t_{1}, \ldots, t_{s}\right] \longrightarrow \operatorname{in}(R), \varphi\left(t_{i}\right)=\operatorname{in}\left(f_{i}\right) .
$$

Theorem. Consider $\operatorname{ker}(\varphi)=\left(g_{1}, \ldots, g_{d}\right)$. Then \mathcal{F} is a Khovanskii basis if and only if the subduction algorithm applied to $g_{i}\left(f_{1}, \ldots, f_{s}\right)$ gives a constant for each i.

Hilbert function

Def. The Hilbert function of a \mathbb{Z}-graded k-algebra $R=\bigoplus_{d \in \mathbb{Z}} R_{d}$ is

$$
\operatorname{HF}_{R}: \mathbb{Z} \longrightarrow \mathbb{N}, d \longmapsto \operatorname{dim}_{k}\left(R_{d}\right) .
$$

Hilbert function

Def. The Hilbert function of a \mathbb{Z}-graded k-algebra $R=\underset{d \in \mathbb{Z}}{\bigoplus_{d}} R_{d}$ is

$$
\operatorname{HF}_{R}: \mathbb{Z} \longrightarrow \mathbb{N}, d \longmapsto \operatorname{dim}_{k}\left(R_{d}\right) .
$$

Theorem. The Hilbert function can be expressed with a polynomial. There exists a polynomial $\operatorname{HP}_{R}(t) \in \mathbb{Q}[t]$ such that $\mathrm{HF}_{R}(d)=\operatorname{HP}_{R}(d)$ for $d \geq d_{0}$. The integer d_{0} is the Hilbert regularity of R.

Hilbert function

Def. The Hilbert function of a \mathbb{Z}-graded k-algebra $R=\bigoplus_{d \in \mathbb{Z}} R_{d}$ is

$$
\operatorname{HF}_{R}: \mathbb{Z} \longrightarrow \mathbb{N}, d \longmapsto \operatorname{dim}_{k}\left(R_{d}\right) .
$$

Theorem. The Hilbert function can be expressed with a polynomial. There exists a polynomial $\operatorname{HP}_{R}(t) \in \mathbb{Q}[t]$ such that $\mathrm{HF}_{R}(d)=\operatorname{HP}_{R}(d)$ for $d \geq d_{0}$. The integer d_{0} is the Hilbert regularity of R.

Theorem. A polynomial algebra R and its initial algebra have the same Hilbert function:

$$
\operatorname{HF}_{R}(d)=\operatorname{HF}_{\mathrm{in}(R)}(d), \text { for all } d \in \mathbb{Z}
$$

As a consequence, we get an easy way to compute a k-basis for R_{d}.

As a consequence, we get an easy way to compute a k-basis for R_{d}. If $R=k\left[\phi_{0}, \ldots, \phi_{\ell}\right] \subseteq k\left[x_{1}, \ldots, x_{n}\right]$, where $\left\{\phi_{0}, \ldots, \phi_{\ell}\right\}$ is a Khovanskii basis w.r.t. \leq, we define:

$$
\begin{aligned}
A & =\left\{\alpha_{i} \mid \operatorname{in}_{\leq}\left(\phi_{i}\right)=x^{\alpha_{i}}\right\}, \\
d \cdot A & =\left\{\alpha_{i_{1}}+\cdots+\alpha_{i_{d}} \mid \alpha_{i_{j}} \in A\right\} .
\end{aligned}
$$

As a consequence, we get an easy way to compute a k-basis for R_{d}. If $R=k\left[\phi_{0}, \ldots, \phi_{\ell}\right] \subseteq k\left[x_{1}, \ldots, x_{n}\right]$, where $\left\{\phi_{0}, \ldots, \phi_{\ell}\right\}$ is a Khovanskii basis w.r.t. \leq, we define:

$$
\begin{aligned}
A & =\left\{\alpha_{i} \mid \operatorname{in}_{\leq}\left(\phi_{i}\right)=x^{\alpha_{i}}\right\}, \\
d \cdot A & =\left\{\alpha_{i_{1}}+\cdots+\alpha_{i_{d}} \mid \alpha_{i_{j}} \in A\right\} .
\end{aligned}
$$

Each element in a basis of R_{d} corresponds to an element in $d \cdot A$:

$$
R_{d}=\left\langle b_{d, \beta} \mid \beta \in d \cdot A\right\rangle_{K},
$$

where $b_{d, \beta}=\phi_{i_{1}} \cdots \phi_{i_{d}}$ and $0 \leq i_{1} \leq \cdots \leq i_{d} \leq \ell$ are integers such that $\alpha_{i_{1}}+\cdots+\alpha_{i_{d}}=\beta$.

Example: Del Pezzo surface

- $R=k\left[x-y, y^{2}-y, x y-y, x^{2}-y, x y^{2}-y, x^{2} y-y\right]$
- $\operatorname{in}(R)=k\left[x, y^{2}, x y, x^{2}, x y^{2}, x^{2} y\right]$
- $A=\{(1,0),(0,2),(1,1),(2,0),(1,2),(2,1)\}$
- $2 \cdot A=\{(2,0),(1,2),(2,1), \ldots\}$
- $R_{2}=\left\langle(x-y)^{2},(x-y)\left(y^{2}-y\right),(x-y)(x y-y), \ldots\right\rangle$

(2) Motivations

Motivations

- Extend Gröbner basis theory to subalgebras.

Motivations

(1) Extend Gröbner basis theory to subalgebras.
(2) The coordinate ring of a variety is a polynomial algebra.

Motivations

(1) Extend Gröbner basis theory to subalgebras.
(2) The coordinate ring of a variety is a polynomial algebra.
(3) Useful to solve polynomial system using computer algebra.

Motivations

(1) Extend Gröbner basis theory to subalgebras.
(2) The coordinate ring of a variety is a polynomial algebra.
(3) Useful to solve polynomial system using computer algebra.
(1) New project computationally possible thanks to Khovansii Basis with M. Panizzut and S. Telen.

MAIN PROBLEM

We consider the problem of finding

$$
z \in K^{n} \quad \text { such that } \quad f_{1}(z)=\cdots=f_{s}(z)=0
$$

where $f_{1}, \ldots, f_{s} \in K\left[t_{1}, \ldots, t_{n}\right]$.

MAIN PROBLEM

We consider the problem of finding

$$
z \in K^{n} \quad \text { such that } \quad f_{1}(z)=\cdots=f_{s}(z)=0
$$

where $f_{1}, \ldots, f_{s} \in K\left[t_{1}, \ldots, t_{n}\right]$. We suppose that $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\left\{z_{1}, \ldots, z_{\delta}\right\}$.

MAIN PROBLEM

We consider the problem of finding

$$
z \in K^{n} \quad \text { such that } \quad f_{1}(z)=\cdots=f_{s}(z)=0
$$

where $f_{1}, \ldots, f_{s} \in K\left[t_{1}, \ldots, t_{n}\right]$. We suppose that $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\left\{z_{1}, \ldots, z_{\delta}\right\}$.

Let $\phi_{0}, \ldots, \phi_{\ell} \in K\left[t_{1}, \ldots, t_{n}\right]$ be a different list of polynomials and let $d_{1}, \ldots, d_{s} \in \mathbb{N}^{*}$ be positive integers such that:

$$
f_{i}(t)=\sum_{|\alpha|=d_{i}} c_{i, \alpha} \phi_{0}(t)^{\alpha_{0}} \phi_{1}(t)^{\alpha_{1}} \cdots \phi_{\ell}(t)^{\alpha_{\ell}}, \quad i=1, \ldots, s
$$

We are "forcing" f_{i} to be homogeneous.

OUR POINT OF VIEW

We reformulate the problem considering the unirational variety X obtained by the closed image of the map

$$
\begin{aligned}
\phi: K^{n} \cdots \mathbb{P}_{K}^{\ell}, \quad t & \mapsto\left(\phi_{0}(t): \cdots: \phi_{\ell}(t)\right) \\
X:=\operatorname{Cl}\left\{\left(\phi_{0}(t): \cdots: \phi_{\ell}(t)\right)\right. & \left.\in \mathbb{P}_{K}^{\ell} \mid t \in K^{n} \backslash \mathbb{V}\left(\phi_{0}, \ldots, \phi_{\ell}\right)\right\} .
\end{aligned}
$$

Now we look for the parameterized solutions :

$$
x \in X \subset \mathbb{P}_{K}^{\ell}, \quad \text { s.t. } \quad F_{1}(x)=\cdots=F_{s}(x)=0, \quad \text { with } F_{i}=\sum_{|\alpha|=d_{i}} c_{i, \alpha} x^{\alpha}
$$

OUR POINT OF VIEW

We reformulate the problem considering the unirational variety X obtained by the closed image of the map

$$
\begin{aligned}
\phi: K^{n} \cdots \mathbb{P}_{K}^{\ell}, \quad t & \mapsto\left(\phi_{0}(t): \cdots: \phi_{\ell}(t)\right) \\
X:=\operatorname{Cl}\left\{\left(\phi_{0}(t): \cdots: \phi_{\ell}(t)\right)\right. & \left.\in \mathbb{P}_{K}^{\ell} \mid t \in K^{n} \backslash \mathbb{V}\left(\phi_{0}, \ldots, \phi_{\ell}\right)\right\} .
\end{aligned}
$$

Now we look for the parameterized solutions :

$$
x \in X \subset \mathbb{P}_{K}^{\ell}, \quad \text { s.t. } \quad F_{1}(x)=\cdots=F_{s}(x)=0, \quad \text { with } F_{i}=\sum_{|\alpha|=d_{i}} c_{i, \alpha} x^{\alpha} .
$$

We are "replacing" the polynomials ϕ_{i} with new variables x_{i}.

EXAMPLE: OSCILLATORS

The following system of two equations in two unknowns arises from the Duffing equation modelling damped and driven oscillators (Breiding, Michałek, Monin, Telen).

$$
f_{1}=1+3 t_{1}+5 t_{2}+7 t_{1}\left(t_{1}^{2}+t_{2}^{2}\right), \quad f_{2}=11+13 t_{1}+17 t_{2}+19 t_{2}\left(t_{1}^{2}+t_{2}^{2}\right)
$$

In this case we have $\phi_{0}=1, \phi_{1}=t_{1}, \phi_{2}=t_{2}, \phi_{3}=t_{1}\left(t_{1}^{2}+t_{2}^{2}\right), \phi_{4}=t_{2}\left(t_{1}^{2}+t_{2}^{2}\right)$ and

$$
\begin{aligned}
& f_{1}=1 \cdot \phi_{0}+3 \cdot \phi_{1}+5 \cdot \phi_{2}+7 \cdot \phi_{3} \\
& f_{2}=11 \cdot \phi_{0}+13 \cdot \phi_{1}+17 \cdot \phi_{2}+19 \cdot \phi_{4} .
\end{aligned}
$$

EXAMPLE: OSCILLATORS

The following system of two equations in two unknowns arises from the Duffing equation modelling damped and driven oscillators (Breiding, Michałek, Monin, Telen).

$$
f_{1}=1+3 t_{1}+5 t_{2}+7 t_{1}\left(t_{1}^{2}+t_{2}^{2}\right), \quad f_{2}=11+13 t_{1}+17 t_{2}+19 t_{2}\left(t_{1}^{2}+t_{2}^{2}\right) .
$$

In this case we have $\phi_{0}=1, \phi_{1}=t_{1}, \phi_{2}=t_{2}, \phi_{3}=t_{1}\left(t_{1}^{2}+t_{2}^{2}\right), \phi_{4}=t_{2}\left(t_{1}^{2}+t_{2}^{2}\right)$ and

$$
\begin{aligned}
& f_{1}=1 \cdot \phi_{0}+3 \cdot \phi_{1}+5 \cdot \phi_{2}+7 \cdot \phi_{3} \\
& f_{2}=11 \cdot \phi_{0}+13 \cdot \phi_{1}+17 \cdot \phi_{2}+19 \cdot \phi_{4} .
\end{aligned}
$$

The surface X is defined by 3 polynomials:

$$
x_{1} x_{4}-x_{2} x_{3}=x_{1}^{2} x_{2}+x_{2}^{3}-x_{4} x_{1}^{2}=x_{1}^{3}+x_{1} x_{2}^{2}-x_{3} x_{0}^{2}=0 \quad \text { in } \mathbb{P}^{4}
$$

The polynomials F_{i} are defined as follows:

$$
F_{1}=x_{0}+3 x_{1}+5 x_{2}+7 x_{3}, \quad F_{2}=11 x_{0}+13 x_{1}+17 x_{2}+19 x_{4} .
$$

Khovanskir-Macaulay matrix

We use some matrices to compute solutions of $F_{1}=\cdots=F_{s}=0$ working directly in $K[X]$. We call them Khovanskii-Macaulay matrices $M_{X}(d)$. In degree $d=2$ we get the matrix $M_{X}(2)$

	x_{0}^{2}	$x_{0} x_{1}$	x_{1}^{2}	$x_{0} x_{2}$	$x_{1} x_{2}$	x_{2}^{2}	$x_{0} x_{3}$	$x_{1} x_{3}$	$x_{2} x_{3}$	x_{3}^{2}	$x_{0} x_{4}$	$x_{2} x_{4}$	$x_{3} x_{4}$	x_{4}^{2}
$x_{0} \cdot F_{1}$	[1	3	0	5	0	0	7	0	0	0	0	0	0	0
$x_{1} \cdot F_{1}$	0	1	3	0	5	0	0	7	0	0	0	0	0	0
$x_{2} \cdot F_{1}$	0	0	0	1	3	5	0	0	7	0	0	0	0	0
$x_{3} \cdot F_{1}$	0	0	0	0	0	0	1	3	5	7	0	0	0	0
$x_{4} \cdot F_{1}$	0	0	0	0	0	0	0	0	3	0	1	5	7	0
$x_{0} \cdot F_{2}$	11	13	0	17	0	0	0	0	0	0	19	0	0	0
$x_{1} \cdot F_{2}$	0	11	13	0	17	0	0	0	19	0	0	0	0	0
$x_{2} \cdot F_{2}$	0	0	0	11	13	17	0	0	0	0	0	19	0	0
$x_{3} \cdot F_{2}$	0	0	0	0	0	0	11	13	17	0	0	0	19	0
$x_{4} \cdot F_{2}$	0	0	0	0	0	0	0	0	13	0	11	17	0	19

For general d, the rows of $M_{X}(d)$ are indexed by all multiples $x^{\alpha} \cdot F_{i}$, where x^{α} runs over a basis of $K[X]_{d-\operatorname{deg}\left(F_{i}\right)}$. The columns are indexed by a monomial basis of $K[X]_{d}$.

Main Theorem

Question 1
Which is the degree d that allows us to solve the equations?

Main Theorem

Question 1

Which is the degree d that allows us to solve the equations?
We need to understand the Hilbert regularity of $K[X]$.

Main Theorem

Question 1

Which is the degree d that allows us to solve the equations?
We need to understand the Hilbert regularity of $K[X]$.
Theorem. Let X be an arithmetically Cohen-Macaulay variety of dimension n and $I=\left\langle F_{1}, \ldots, F_{n}\right\rangle \subset K[X]$ be a homogeneous ideal with $\operatorname{deg}\left(F_{i}\right)=d_{i}$, such that $\operatorname{dim}\left(V_{X}(I)\right)=0$. To solve $F_{1}=\cdots=F_{s}=0$ we need to compute the Khovanskii-Macaulay matrix in degree $\sum_{i=1}^{n} d_{i}+\operatorname{HReg}(K[X])+1$.

Using Khovanskil Bases

Question 2

How do we efficiently compute the Khovanskii-Macaulay matrix?

Using Khovanskil bases

Question 2

How do we efficiently compute the Khovanskii-Macaulay matrix?

Under the assumption that $\left\{\phi_{0}, \ldots, \phi_{\ell}\right\}$ is a Khovanskii basis, we have an easy way to do that!

Using Khovanskil bases

Question 2

How do we efficiently compute the Khovanskii-Macaulay matrix?

Under the assumption that $\left\{\phi_{0}, \ldots, \phi_{\ell}\right\}$ is a Khovanskii basis, we have an easy way to do that!

Thanks for your attention!

