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Khovanskii basis Motivations Solving polynomial equations

Let’s put some order in monomials

Why do we write x3y2 + 2x2y − x+ y + 2

and not 2x2y − x+ x3y2 + 2 + y?

Def. A term order in the polynomial ring S = k[x1, . . . , xn] is a total order ≤ on the set of
monomials of S such that:

1 ≤ is reflexive, antisymmetric and transitive and total: for each m1,m2 monomials then
m1 ≤ m2 or m2 ≤ m1 (total order).

2 If m1 ≤ m2 then m ·m1 ≤ m ·m2 for every monomial m (compatible with multiplication).

3 If m1 | m2 then m1 ≤ m2 (
(2)⇐=⇒ 1 ≤ m for every monomial m ).

Condition (3) guarantees that every descending chain of monomials is finite ⇒ induction over
"the biggest" term of a polynomial.
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Khovanskii basis Motivations Solving polynomial equations

Most famous term orders

In k[x] there exists only one term order: xα ≤ xβ if and only if α ≤ β.

Now we consider k[x1, . . . , xn] and we write xα := xα1
1 · · ·xαn

n , α ∈ Nn. x1 > x2 > · · · > xn

Lexicographic
xα ≤Lex x

β iff:
α1 < β1 or
α1 = β1 and α2 < β2 or
...
α = β.

xy2zt ≤Lex xy
3 ≤Lex x

3t

Not compatible with degrees!

Degree Lexicographic
xα ≤DegLex x

β iff:
|α| < |β| or
|α| = |β| and xα ≤Lex x

β

xy3 ≤DegLex x
3t ≤DegLex xy

2zt.
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Most famous term orders

Reverse Lexicographic
xα ≤RLex x

β iff:
αn > βn or
αn = βn and αn−1 > βn−1 or
...
α = β.

xy2zt ≤RLex x
3t ≤RLex xy

3.

Not compatible with degrees!

Degree Reverse Lexicographic
xα ≤DRLex x

β iff:
|α| < |β| or
|α| = |β| and xα ≤RLex x

β

x3t ≤DRLex xy
3 ≤DRLex xy

2zt.
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Initial term

Def. Given f =
∑

cαx
α ∈ k[x1, . . . , xn], f ̸= 0, and a term order ≤ we define the initial term

of f as:
in≤(f) = max{xα | xα ∈ Supp(f)}.

Es. x > y > z > t

inLex(x
3t+ xy3 − xy2zt) = x3t.

inRLex(x
3t+ xy3 − xy2zt) = xy3.

inDRLex(x
3t+ xy3 − xy2zt) = xy2zt.
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Initial Algebra

Let S = k[x1, . . . , xn] be the polynomial ring.

Def. A polynomial algebra generated by F ⊆ S is a subset of the polynomial ring R ⊆ S

R = {p(f1, . . . , fs) | s ∈ N, p ∈ k[t1, . . . , ts], f1, . . . , fs ∈ F}.

We write R = k[F], or k[f1, . . . , fs] if F is finite and in this case we say that R is finitely
generated.

Def. Given a term order ≤ and a polynomial algebra R ⊆ S, the initial algebra of R w.r.t. ≤ is:

in≤(R) = k[{in(f)}f∈R].

Example
1 R = k[x+ y + z, xy + xz + yz, xyz], in(R) = k[x, xy, xyz].
2 R = k[x+ y, xy, xy2], in(R) = k[x, xy, xy2, . . . , xyn, . . . ].
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What is a Khovanskii basis?

Def. Let R be a finitely generated algebra in k[x1, . . . , xn]. A subset F ⊆ R is a Khovanskii
basis for a term order ≤ if

in≤(R) = k[{in(f)}f∈F].

We are particularly interested in finite Khovanskii bases.

Es.
1 F.g. polynomial algebras in 1 variable have a finite Khovanskii basis
2 Polynomial algebras f.g. by monomials have a finite Khovanskii basis.
3 Elementary symmetric polynomials form a Khovanskii basis for the ring of symmetric

polynomials:

SSn = k[x1 + · · ·+ xn, x1x2 + · · ·+ xn−1xn, . . . , x1 · · ·xn].
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Bad news: Finite Khovanskii bases do NOT always exist.

Es. The invariant ring of the alternating group An, that is

SAn = k[x1 + · · ·+ xn, . . . , x1 · · ·xn,
∏
i<j

(xj − xi)],

does not admit a finite Khovanskii basis with respect to any term order for every n ≥ 3 (Göbel).
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Algorithm

Subduction algorithm
Input: A Khovanskii basis F for R and f ∈ S.
Output:

If f ∈ R : A constant and an expression of f as a polynomial in the elements of F.
If f ̸∈ R a non-constant polynomial.

Is F a K.B.?
F = {f1, . . . , fs} ⊆ R.

φ : k[t1, . . . , ts] −→ in(R), φ(ti) = in(fi).

Theorem. Consider ker(φ) = (g1, . . . , gd). Then F is a Khovanskii basis if and only if the
subduction algorithm applied to gi(f1, . . . , fs) gives a constant for each i.
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Hilbert function

Def. The Hilbert function of a Z−graded k−algebra R =
⊕
d∈Z

Rd is

HFR : Z −→ N, d 7−→ dimk(Rd).

Theorem. The Hilbert function can be expressed with a polynomial. There exists a polynomial
HPR(t) ∈ Q[t] such that HFR(d) = HPR(d) for d ≥ d0. The integer d0 is the Hilbert regularity
of R.

Theorem. A polynomial algebra R and its initial algebra have the same Hilbert function:

HFR(d) = HFin(R)(d), for all d ∈ Z.
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As a consequence, we get an easy way to compute a k−basis for Rd.

If R = k[ϕ0, . . . , ϕℓ] ⊆ k[x1, . . . , xn], where {ϕ0, . . . , ϕℓ} is a Khovanskii basis w.r.t. ≤, we
define:

A = {αi | in≤(ϕi) = xαi},
d ·A = {αi1 + · · ·+ αid | αij ∈ A}.

Each element in a basis of Rd corresponds to an element in d ·A:

Rd = ⟨bd,β|β ∈ d ·A⟩K ,

where bd,β = ϕi1 · · ·ϕid and 0 ≤ i1 ≤ · · · ≤ id ≤ ℓ are integers such that αi1 + · · ·+ αid = β.
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Each element in a basis of Rd corresponds to an element in d ·A:

Rd = ⟨bd,β|β ∈ d ·A⟩K ,

where bd,β = ϕi1 · · ·ϕid and 0 ≤ i1 ≤ · · · ≤ id ≤ ℓ are integers such that αi1 + · · ·+ αid = β.
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Example: del Pezzo surface

R = k[x−y, y2−y, xy−y, x2−y, xy2−y, x2y−y]

in(R) = k[x, y2, xy, x2, xy2, x2y]

A = {(1, 0), (0, 2), (1, 1), (2, 0), (1, 2), (2, 1)}

2 ·A = {(2, 0), (1, 2), (2, 1), . . . }

R2 = ⟨(x−y)2, (x−y)(y2−y), (x−y)(xy−y), . . . ⟩
y

z

x
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Motivations

1 Extend Gröbner basis theory to subalgebras.

2 The coordinate ring of a variety is a polynomial algebra.

3 Useful to solve polynomial system using computer algebra.

4 New project computationally possible thanks to Khovansii Basis with M. Panizzut and S.
Telen.
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Main problem

We consider the problem of finding

z ∈ Kn such that f1(z) = · · · = fs(z) = 0,

where f1, . . . , fs ∈ K[t1, . . . , tn].

We suppose that V(f1, . . . , fs) = {z1, . . . , zδ}.

Let ϕ0, . . . , ϕℓ ∈ K[t1, . . . , tn] be a different list of polynomials and let d1, . . . , ds ∈ N∗ be
positive integers such that:

fi(t) =
∑

|α|=di

ci,α ϕ0(t)
α0ϕ1(t)

α1 · · ·ϕℓ(t)
αℓ , i = 1, . . . , s.

We are "forcing" fi to be homogeneous.
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Our point of view

We reformulate the problem considering the unirational variety X obtained by the closed image
of the map

ϕ : Kn 99K Pℓ
K , t 7→ (ϕ0(t) : · · · : ϕℓ(t))

X := Cl{(ϕ0(t) : · · · : ϕℓ(t)) ∈ Pℓ
K | t ∈ Kn \ V(ϕ0, . . . , ϕℓ)}.

Now we look for the parameterized solutions :

x ∈ X ⊂ Pℓ
K , s.t. F1(x) = · · · = Fs(x) = 0, with Fi =

∑
|α|=di

ci,α x
α.

We are "replacing" the polynomials ϕi with new variables xi.
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Example: oscillators

The following system of two equations in two unknowns arises from the Duffing equation
modelling damped and driven oscillators (Breiding, Michałek, Monin, Telen).

f1 = 1 + 3t1 + 5t2 + 7t1(t
2
1 + t22), f2 = 11 + 13t1 + 17t2 + 19t2(t

2
1 + t22).

In this case we have ϕ0 = 1, ϕ1 = t1, ϕ2 = t2, ϕ3 = t1(t
2
1 + t22), ϕ4 = t2(t

2
1 + t22) and

f1 = 1 · ϕ0 + 3 · ϕ1 + 5 · ϕ2 + 7 · ϕ3

f2 = 11 · ϕ0 + 13 · ϕ1 + 17 · ϕ2 + 19 · ϕ4.

The surface X is defined by 3 polynomials:

x1x4 − x2x3 = x21x2 + x32 − x4x
2
1 = x31 + x1x

2
2 − x3x

2
0 = 0 in P4.

The polynomials Fi are defined as follows:

F1 = x0 + 3x1 + 5x2 + 7x3, F2 = 11x0 + 13x1 + 17x2 + 19x4.

Barbara Betti Solving polynomial equations 19 / 22



Khovanskii basis Motivations Solving polynomial equations

Example: oscillators

The following system of two equations in two unknowns arises from the Duffing equation
modelling damped and driven oscillators (Breiding, Michałek, Monin, Telen).

f1 = 1 + 3t1 + 5t2 + 7t1(t
2
1 + t22), f2 = 11 + 13t1 + 17t2 + 19t2(t

2
1 + t22).

In this case we have ϕ0 = 1, ϕ1 = t1, ϕ2 = t2, ϕ3 = t1(t
2
1 + t22), ϕ4 = t2(t

2
1 + t22) and

f1 = 1 · ϕ0 + 3 · ϕ1 + 5 · ϕ2 + 7 · ϕ3

f2 = 11 · ϕ0 + 13 · ϕ1 + 17 · ϕ2 + 19 · ϕ4.

The surface X is defined by 3 polynomials:

x1x4 − x2x3 = x21x2 + x32 − x4x
2
1 = x31 + x1x

2
2 − x3x

2
0 = 0 in P4.

The polynomials Fi are defined as follows:

F1 = x0 + 3x1 + 5x2 + 7x3, F2 = 11x0 + 13x1 + 17x2 + 19x4.

Barbara Betti Solving polynomial equations 19 / 22



Khovanskii basis Motivations Solving polynomial equations

Khovanskii-Macaulay matrix

We use some matrices to compute solutions of F1 = · · · = Fs = 0 working directly in K[X]. We
call them Khovanskii-Macaulay matrices MX(d). In degree d = 2 we get the matrix MX(2)



x2
0 x0x1 x2

1 x0x2 x1x2 x2
2 x0x3 x1x3 x2x3 x2

3 x0x4 x2x4 x3x4 x2
4

x0·F1 1 3 0 5 0 0 7 0 0 0 0 0 0 0
x1·F1 0 1 3 0 5 0 0 7 0 0 0 0 0 0
x2·F1 0 0 0 1 3 5 0 0 7 0 0 0 0 0
x3·F1 0 0 0 0 0 0 1 3 5 7 0 0 0 0
x4·F1 0 0 0 0 0 0 0 0 3 0 1 5 7 0
x0·F2 11 13 0 17 0 0 0 0 0 0 19 0 0 0
x1·F2 0 11 13 0 17 0 0 0 19 0 0 0 0 0
x2·F2 0 0 0 11 13 17 0 0 0 0 0 19 0 0
x3·F2 0 0 0 0 0 0 11 13 17 0 0 0 19 0
x4·F2 0 0 0 0 0 0 0 0 13 0 11 17 0 19


.

For general d, the rows of MX(d) are indexed by all multiples xα ·Fi, where xα runs over a basis
of K[X]d−deg(Fi). The columns are indexed by a monomial basis of K[X]d.
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Main Theorem

Question 1
Which is the degree d that allows us to solve the equations?

We need to understand the Hilbert regularity of K[X].

Theorem. Let X be an arithmetically Cohen-Macaulay variety of dimension n and
I = ⟨F1, . . . , Fn⟩ ⊂ K[X] be a homogeneous ideal with deg(Fi) = di, such that
dim(VX(I)) = 0. To solve F1 = · · · = Fs = 0 we need to compute the Khovanskii-Macaulay

matrix in degree
n∑

i=1
di +HReg(K[X]) + 1.
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Using Khovanskii bases

Question 2
How do we efficiently compute the Khovanskii-Macaulay matrix?

Under the assumption that {ϕ0, . . . , ϕℓ} is a Khovanskii basis, we have an easy way to do that!

Thanks for your attention!
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