LEAN: The future of Mathematics

Ignacio Muñoz Jiménez

Università di Genova

2024

Ignacio Muñoz Jiménez (UniGe)

LEAN: The future of Mathematics

▶ < ≣ ▶ < ≣ ▶</p>
2024

1/23

Topic: computers in mathematical research.

LEAN: proof verifier / proof assistant.

Contents

- What is a proof verifier?
- 2 LEAN. How does it work?
- Try it yourself!
- Examples and projects.
- **•** The future of mathematics.

A B A A B A

Motivation and Context

Four Color Theorem

Proved by Keneth Appel and Wolfgang Hanken (1997).

Checking 633 configurations using a computer.

通 ト イ ヨ ト イ ヨ ト

2024

4/23

э

Ignacio Muñoz Jiménez (UniGe)

LEAN: The future of Mathematics

2024

イロト イヨト イヨト イヨト

5/23

Ignacio Muñoz Jiménez (UniGe)

LEAN: The future of Mathematics

2024

イロト イヨト イヨト イヨト

6/23

What is a proof verifier?

Remarks

- The proof must be written in a LANGUAGE computers can understand.
- The computers must be able to check logic implications. This include the choice of axioms.

→ Ξ →

What is NOT a proof verifier?

It does NOT prove the theorems for you!!

LEAN: The future of Mathematics

What is NOT a proof verifier?

It does NOT prove the theorems for you!!

for now

Ignacio Muñoz Jiménez (UniGe)

LEAN: The future of Mathematics

< 回 ト く 注 ト く 注 ト 2024

8 / 23

What is LEAN?

- LEAN is a proof verifier (proof assistant).
- Developed in 2013 by Leonardo de Moura at Microsoft Research (now Amazon Web Services).
- It is open sourced.

•			co_squares	
	≣ gcd/i	aan × 🖀 🗆 …		
			▼ ocd.lean;6:48	ar +e ii to 6
		import data.nat.modeq	▼ Tactic state	without
			1 goai	
		lenna div_algo (a b: N): 3 (q : N) , a+b+q+(a%b) :=	5 - N	
			ti : b l a - a b b	
		have ti: 0 1 a-lawd), apply hat.ovd_sub_nod,	= 3 (o : N), a = b + o + a & b	
		cases ti with x y, use x, PW + y,		
		appry increde_nac_bij, pusicast, iw bicrede_nac_sub (nacinou_te a bi,	 All Messages (0) 	
		lenna fib pos : V m: N. fib(m+1) >8:=		
		apply nat.two step induction,		
		(simp),		
		(simp),		
		{intros, simp,linarith}		
		lerna luc_pos : V m: N, luc(n) >0:=		
		appty hat.two_step_induction,		
		(sim)		
		(intros. rw luc add, linarith)		
		lemma gcd_add (a b c: N) (h: a = b +c): nat.gcd a b = nat.gcd b c:=		
		cases nat.gcd_dvd b c,		
		<pre>{apply dvd_add, exact left, exact right},</pre>		
	master* 4	○ ○ 0 △ 0 ½ 0 Lean: ✓ (checking visible files)	Ln 6, Col 49 Spaces: 4 UTF-	I CRLF Lean G Spell ⊘ Prettier

Ignacio Muñoz Jiménez (UniGe)

LEAN: The future of Mathematics

How does it work?

Logic exercise

Ignacio Muñoz Jiménez (UniGe)

LEAN: The future of Mathematics

2024

10 / 23

Logic exercise

Let P, Q be propositions.	variables (P Q : Prop)	
Lemma 1. (Logic Exercise) $P \to (Q \to P)$.	lemma logic_exercise: P->Q->P	
<i>Proof.</i> Assume P is True (Hypothesis P). Then we have to prove $Q \to P$.	begin	
Assume P is Two (Hunsthesis Q) Then we	intro hP,	
Assume P is frue (hypothesis Q). Then we have to prove P .	intro hQ,	
We know by Hypothesis P that P is True. This finishes the proof. \Box	exact hP,	
	end	

2024

<ロト < 四ト < 三ト < 三ト

≣ ৩৭৫ 10/23

Example 1

Ignacio Muñoz Jiménez (UniGe) LEAN: The fu

LEAN: The future of Mathematics

< □ > < □ > < □ > < □ > < □ > < □ >
 2024

Some basic *tactics*

exact (+hypothesis)

Provides the exact proof of the goal.

Example:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Some basic tactics

intro (+hypothesis' name)

Given a goal $P \rightarrow Q$, it introduces P as an hypothesis and turns the goal into Q.

Example:

LEAN: The future of Mathematics

・ 何 ト ・ ヨ ト ・ ヨ ト

Some basic tactics

apply (+hypothesis)

Given a goal $P \rightarrow Q$ and a hypothesis $Q \rightarrow P$,turns the goal into P.

Example:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Try it yourself!

https://shorturl.at/bikrG

Ignacio Muñoz Jiménez (UniGe)

LEAN: The future of Mathematics

2024

<ロト < 四ト < 三ト < 三ト

15 / 23

э

Example 2

Ignacio Muñoz Jiménez (UniGe)

イロト イヨト イヨト イヨト

People and Projects

Kepler Conjecture. Sphere Packaging in 3 dimensions. Minimizing a function of 150 variables.

People and Projects

Kepler Conjecture. Sphere Packaging in 3 dimensions. Minimizing a function of 150 variables.

Kevin Buzzard (ICL)→ **Xena's Project**. Formalize the Imperial's Undergraduate Curriculum.

LEAN: The future of Mathematics

2024

• • = • • = •

The library

MATHLIB

- Unified library of mathematics.
- Nov. 2023: +127.000 theorems, +70.000 definitions.

Compare to Wikipedia or The Stacks project.

Ignacio Muñoz Jiménez (UniGe)

LEAN: The future of Mathematics

2024

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

18 / 23

Dependency graph

3

イロト 不得 トイヨト イヨト

The future

Use LEAN to generate new knowledge. Proof assistant.

- **1**LEAN + AI.
- 2 LEAN on publishing articles.
- IEAN on education.

★ ∃ ► < ∃ ►</p>

The future

Artificial Intelligence

- Solves very easy proofs.
- Uncover hidden connections.
- Propose proof strategies.

The future

Research and scientific articles

Education: Xena's Project: LEAN as a game.

Ignacio Muñoz Jiménez (UniGe)

LEAN: The future of Mathematics

2024

22 / 23

э

To learn more

More info about LEAN:

- Lean Webpage: https://lean-lang.org
- Lean Comunity / Mathlib: https://leanprover-community.github.io
- The Xena Project: https://www.ma.imperial.ac.uk/~buzzard/xena/

Where to learn LEAN:

- Natural Number Game: https://adam.math.hhu.de
- More references:

https://leanprover-community.github.io/learn.html

Videos about LEAN:

- Terence Tao, "Machine Assisted Proof": https://www.youtube.com/watch?v=AayZuuDDKP0
- Microsoft research: https://www.microsoft.com/en-us/research/project/lean/____