Post-Quantum Cryptography: an Overview

Andrea Sanguineti

PhD Seminars
University of Genoa, DIMA

4 May 2023

(1) Introduction
(2) Lattice-Based Cryptography
(3) Isogeny-Based Cryptography
(4) Code-Based Cryptography
(5) Multivariate Cryptography

"Classical" Cryptography - An Example

- Let's consider an ubiquitous "classical" cryptosystem: RSA (Rivest-Shamir-Adleman).
Bob's Key Generation:
- Bob selects two different large primes p and q and calculates $n:=p \cdot q$.
- He calculates $\phi(n)=(p-1)(q-1)$ (Euler's totient function).
- He selects an integer e such that $\operatorname{gcd}(\phi(n), e)=1$ and $1<e<\phi(n)$.
- He calculates d such that $d \cdot e=1 \bmod \phi(n)$ via the Euclidean algorithm.
- He publishes (e, n) as the public key and keeps (d, p, q) as the private key.

"Classical" Cryptography - An Example

- Suppose Alice wants to send a message (plaintext) $M<n$ to Bob.
- To encrypt it, she uses Bob's public key e and calculates $C:=M^{e} \bmod n($ ciphertext $)$.
- Then, Alice sends C to Bob.
- Bob can recover M decrypting C with his private key d : $C^{d}=\left(M^{e}\right)^{d}=M \bmod n$.
- Bob's decryption is successful thanks to Fermat's little theorem and the Chinese remainder theorem.

Why do we need Post-Quantum Cryptography?

- RSA's security is based on the computational hardness of finding the factorization of n (namely p and p).
- In particular, we don't know how to factor n in polynomial time with a classical algorithm.
- But...
- ..there exists a quantum computer algorithm that allows us to calculate p and q in polynomial time!

Shor's Algorithm (1994)
It uses quantum mechanics postulates such as entanglement and measure theory.

Post-Quantum Cryptography

- A solution to this problem is finding new cryptosystems that aren't affected by the introduction of quantum algorithms.
\longrightarrow Post-Quantum Cryptography.
- It can be divided in five main areas:
- Lattice-Based Cryptography (CRYSTALS-Dilithium, CRYSTALS-Kyber, FALCON, NTRU).
- Isogeny-Based Cryptography (SIKE (broken), SIDH (broken), SQISign).
- Code-Based Cryptography (Classic McEliece, BIKE).
- Multivariate Cryptography (Unbalanced oil and vinegar, Rainbow (broken)).
- Hash-Based Cryptography (SPHINCS+).

Lattice-Based Cryptography

- Some of the most promising cryptosystems that are thought to be unvulnerable against quantum attacks are in this category, and have already been selected by NIST.
- Lattice-Based Cryptography is based on the hardness of solving problems within the context of lattices.

Definition (Lattice)

A lattice L in \mathbb{R}^{n} is a discrete additive subgroup of \mathbb{R}^{n} of full rank, or, equivalently, is the set of linear combinations with coefficients in \mathbb{Z} of a basis of $\mathbb{R}^{n} v_{1}, \ldots, v_{n}$:

$$
L:=\left\{\sum_{i=1}^{n} a_{i} v_{i} \mid a_{1}, \ldots, a_{n} \in \mathbb{Z}\right\} .
$$

- v_{1}, \ldots, v_{n} is the basis for the lattice L.

A Lattice in \mathbb{R}^{2} with basis v_{1}, v_{2}

SVP

Definition (Shortest Vector Problem)

Given a Lattice L in a basis v_{1}, \ldots, v_{n} find its shortest non-zero vector, namely $0 \neq v \in L$ such that $\|v\|$ is the smallest possible.

CVP

Definition (Closest Vector Problem)

Given a Lattice L in a basis v_{1}, \ldots, v_{n} and a vector $w \in \mathbb{R}^{n}$, find the vector in L closest to w.

CRYSTRALS-Dilithium

- CRYSTALS-Dilithium is a NIST-standardized (2022) signature scheme based on the hardness of these lattice problems.

- It was developed by Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler and Damien Stehlé in 2017.

CRYSTRALS-Dilithium (No $p k$ Compression)

Key generation, S

$$
\begin{array}{ll}
1: & A \leftarrow M_{k, l}\left(R_{q}\right) \\
2: & \left(s_{1}, s_{2}\right) \leftarrow R_{q_{(\eta)}}^{l} \times R_{q_{(\eta)}}^{k} \\
3: & t:=A s_{1}+s_{2} \\
4: & p k:=(A, t), s k:=\left(s_{1}, s_{2}\right)
\end{array}
$$

Signing, $S, s k, m$
$1: \quad y \leftarrow R_{q_{\left(\gamma_{1}-1\right)}}^{l}$;
2: $\quad w_{1}:=\operatorname{HighBits}\left(A y, 2 \gamma_{2}\right)$;
3: $c:=H\left(m, w_{1}\right)$;
4: $z:=y+c \cdot s_{1}$;
$5: \quad$ if $\|z\|_{\infty} \geq \gamma_{1}-\beta$ or $\left\|\operatorname{LowBits}\left(A y-c \cdot s_{2}, 2 \gamma_{2}\right)\right\|_{\infty} \geq \gamma_{2}-\beta$ then;
6: restart from 1 ;
$R_{q}=\left\{f=\sum_{i=0}^{n-1} a_{i} X^{\mid} \mid a_{i} \in \mathbb{Z}_{q} \forall i=0, \ldots, n-1\right\}$

$$
R_{q(\gamma)}:=\left\{f \in R_{q} \mid\|f\|_{\infty} \leq \gamma\right\}
$$

7: endif;
8: return $\sigma:=(z, c)$.

Verifying, $V, p k, m, \sigma$
1: $\quad w_{1}^{\prime}:=\operatorname{HighBits}\left(A z-c \cdot t, 2 \gamma_{2}\right)$;
2: if $\|z\|_{\infty} \geq \gamma_{1}-\beta$ and $c==H\left(m, w_{1}^{\prime}\right)$ then ;
3 : accept;
4: else ;
5: reject.

Isogeny-Based Cryptography

- Although some cryptosystems in this category have been broken (SIKE, SIDH) the underlying difficult problem is still hard and, to me, is the most fascinating.
- This hard problem consist in finding a path of isogenies of certain degrees between two known elliptic curves.

Definition (Isogeny)

Given two elliptic curves E_{1}, E_{2} over a field K an isogeny over K between E_{1} and E_{2} is a surjective morphism of curves $\varphi: \overline{E_{1} \longrightarrow} E_{2}$ which is also a group homomorphism.

- The basic example of these types of crystosystems is the Rostovtsev-Stolbunov key-exchange (2006) (which is the Diffie-Hellman key-exchange for elliptic curves).

Rostovtsev-Stolbunov key-exchange

Public parameters

An elliptic curve E on a finite field \mathbb{F}_{q}, D_{π}, the discriminant of the Frobenius endomorphism of E, A set of primes $L=\left\{l_{1}, \ldots, l_{m}\right\}$ such that $\left(\frac{D_{\pi}}{l_{i}}\right)=1$,
An eigenvalue of the Frobenius λ_{i} for all l_{i}

Protocol	Alice	Bob
Selection of the secret path	$\rho_{A} \in L^{*}$	$\rho_{B} \in L^{*}$
Computation of the public curve	$E_{A}=\rho_{A}(E)$	
Exchange of the curves	$E_{A} \rightarrow \leftarrow E_{B}$	
Computation of the common secret curve	$E_{A B}=\rho_{A}\left(E_{B}\right)$	

Rostovtsev-Stolbunov key-exchange and SIDH

- Even if other systems have been successfully attacked, this key exchange is still secure.
- However, it is not used because its running time is in the order of seconds, so it is not practical for everyday use.
- SIDH, which stands for Supersingular Isogeny Diffie-Hellman, is an evoultion of this scheme, which relies on more interesting mathematical structure (Isogeny Volcanoes! (see Silvia Sconza Master Thesis)).
- Unfortunately, SIDH was broken in 2022 by an attack of Wouter Castryck and Thomas Decru, which was generalized by Luciano Maino and Chloe Martindale.

Code-Based Cryptography

- Some other NIST candidates are in this category.
- These cryptosystems are based on the hardness of decoding a general linear code.

Definition

A linear code of length n and dimension k is a linear subspace C with dimension k of the vector space \mathbb{F}_{q}^{n} where \mathbb{F}_{q} is the finite field with q elements.

- An example of such a scheme is the McEliece Cryptosystem.

McEliece Cryptosystem

Key generation:

- The principle is that Alice chooses a linear code C from some family of codes for which she knows an efficient decoding algorithm, and to make C public knowledge but keep the decoding algorithm secret.
- Alice selects a binary (n, k) linear code C capable of (efficiently) correcting t errors from some large family of codes.
- This choice should give rise to an efficient decoding algorithm A.
- Let also G be any generator matrix for C.
- Alice selects a random $k \times k$ binary invertible matrix S.
- Alice selects a random $n \times n$ permutation matrix P.
- Alice computes the $k \times n$ matrix $\hat{G}=S G P$.
- Alice's public key is (\hat{G}, t). The secret key is (S, P, A).

McEliece Cryptosystem

Message Encryption:

- Bob wants to send a message m to Alice, whose public key is (\hat{G}, t).
- Bob encodes the message m as a binary string of length k.
- Bob computes the vector $c^{\prime}=m \hat{G}$.
- Bob generates a random n bit vector z containing exactly t ones.
- Bob computes the ciphertext as $c=c^{\prime}+z$, and sends it to Alice.

McEliece Cryptosystem

Message Decryption:

- After having received c, Alice decrypts the message in the folloing way.
- Alice computes the inverses of P and $S \cdot G$ (i.e P^{-1} and the right inverse $(S \cdot G)^{-1}$).
- Alice computes $\hat{c}=c P^{-1}$.
- Alice uses the decoding algorithm A to decode \hat{c} to \hat{m}.
- Alice computes $m=\hat{m}(S \cdot G)^{-1}$.

Code-Based NIST Round 4 Submissions

The Code-Based NIST Round 4 Submissions are:

- BIKE (Bit Flipping Key Encapsulation).
- Classic McEliece (which is based on the algorithm presented before).
- HQC (Hamming Quasi-Cyclic).

Multivariate Cryptography

- The hardness of these cryptosystems is based on the hardness of the following problem.
- Given a finite field of q elements \mathbb{F}_{q} and m quadratic polynomials $p_{1}, \ldots, p_{m} \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$ in n variables, find a solution $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$ of the system of equations

$$
p_{i}\left(X_{1}, \ldots, X_{n}\right)=0, i=1, \ldots, m
$$

Multivariate Cryptography

In a multivariate public key cryptosystem we have the following.

- The public key $p k=\left(p_{1}, \ldots, p_{m}\right)$ consists of a m-tuple of quadratic polynomials $p_{1}, \ldots, p_{m} \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$ in n variables.
- The encryption function is the polynomial map $E: \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}^{m}$ defined by

$$
E\left(X_{1}, \ldots, X_{n}\right)=\left(p_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, p_{m}\left(X_{1}, \ldots, X_{n}\right)\right)
$$

- The secret key consists of data on how p_{1}, \ldots, p_{m} have been generated (it depends on the cryptosystem) and makes possible to easily invert E using the decryption function.

Multivariate Cryptography

- Direct attacks to these types of schemes mainly employ the calculation of Gröebner basis.
- The easisest algorithm to compute them is Buchberger's algorithm, but it is also the slowest.
- Many improved methods have been proposed, in particular the F_{4} and F_{5} algorithms, due to Faugére, and their many variations.

The SIKE Song

Eurocrypt 2023 - Lyon, France - Rump Session https://youtu.be/b_AuzlaIxLs
 Credits: The Isogeny Club.

Thanks for your attention!

