Università di Genova

A Relatively General Introduction to General Relativity Mathematical Relativity for Pedestrians

Gabriel Schmid ${ }^{1}$
${ }^{1}$ Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy

February 23, 2023

Spacetime in Classical Physics: Galilei and Newton (17th Century)

Postulate (Principle of Relativity, Galilei 1632)

Laws of physics take the same form in every inertial frame of reference ${ }^{\text {a }}$.
${ }^{a}=$ reference frame with no acceleration ("free" particles are at rest or move with constant velocity)

Postulate (Principle of Absolute Time, Newton 1687)

Time is absolute, i.e. $t=t^{\prime}$ for all inertial frames $\mathcal{S}, \mathcal{S}^{\prime}$.

$$
(\Rightarrow A=1 \text { and } B=0)
$$

Proposition (Galilei Transformations)

If an observer \mathcal{S}^{\prime} moves with constant speed v in x direction with respect to observer \mathcal{S}, then

$$
\begin{aligned}
t^{\prime} & =t \\
x^{\prime} & =x-v t
\end{aligned}
$$

Note: Two invariants: $\Delta t:=t_{2}-t_{1}$ and $\Delta r^{2}:=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}$ for two events $\left(t_{i}, x_{i}, y_{i}, z_{i}\right)$. Summary: Space and time in Galilei-Newton Theory: $\mathbb{R} \times \mathbb{R}^{3}$ with Euclidean distance.

Einstein's Special Theory of Relativity I: Basics

\hookrightarrow Speed of light is finite. In vacuum: $c=299792458 \mathrm{~m} / \mathrm{s}$
(Rømer 1676, Huygens 1678)
\hookrightarrow Around 1900, both theoretical considerations (Maxwell, Lorentz, Poincaré...) and experiments (Michelson-Morley, Fizeau...) lead to:

Postulate (Principle of Constant Speed of Light, Einstein 1905)

The speed of light (in vacuum) is independent of the inertial frame of reference.
Together with Principle of Relativity \Rightarrow Einstein's Special Theory of Relativity.

Proposition (Lorentz Transformations; Larmor, Lorentz and Poincaré around 1900)

If an observer \mathcal{S}^{\prime} moves with speed $0<v<c$ in x direction with respect to observer \mathcal{S}, then

$$
\begin{aligned}
t^{\prime} & =\gamma(v)\left(t-v x / c^{2}\right) \\
x^{\prime} & =\gamma(v)(x-v t) \quad \text { with } \quad \gamma(v):=\left(1-v^{2} / c^{2}\right)^{-1 / 2}
\end{aligned}
$$

Note: Only invariant: $\Delta s^{2}:=-\Delta t^{2}+\Delta x^{2}+\Delta y^{2}+\Delta z^{2}!\quad \Rightarrow$ $\Rightarrow \quad$ Spacetime!

Einstein's Special Theory of Relativity II: Geometric Formulation

In special relativity, time and space is combined in a spacetime, mathematically described by a Minkowski Space:

Definition (Minkowski Space, Minkowski 1907)

Minkowski space is $\mathbb{M}^{4} \cong \mathbb{R}^{4}$ equipped with the non-degenerate bilinear form

$$
\eta(x, y):=\sum_{\mu, \nu=0}^{3} \eta_{\mu \nu} x^{\mu} y^{\mu}=-x^{0} y^{0}+\sum_{i=1}^{3} x^{i} y^{i} \quad \text { with } \quad \eta:=\operatorname{diag}(-1,1,1,1)
$$

Different types of vectors $x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(c t, x, y, z)$:

$$
\begin{aligned}
& \hookrightarrow \eta(x, x)>0 \ldots \text { spacelike } \\
& \hookrightarrow \eta(x, x)<0 \ldots \text { timelike } \\
& \hookrightarrow \eta(x, x)=0 \ldots \text { lightlike }
\end{aligned}
$$

Events whose distance vector is ...

Einstein's Special Theory of Relativity III: Time Dilation

Example: Time Dilation: Time (and length) are observer dependent:

Cock at rest in \mathcal{S}^{\prime} moving with speed $0<v<c$ in x-direction in \mathcal{S}.
\hookrightarrow Time between two "ticks" at t_{1}^{\prime} and t_{2}^{\prime} in $\mathcal{S}^{\prime}: \Delta t^{\prime}:=t_{2}^{\prime}-t_{1}^{\prime}$.
\hookrightarrow Time recorded in \mathcal{S} :

$$
t_{i}=\gamma(v)\left(t_{i}^{\prime}+\frac{v x_{i}^{\prime}}{c^{2}}\right) \quad \text { with } \quad \gamma(v):=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}>1
$$

Since the clock is at rest in $\mathcal{S}^{\prime}\left(x_{1}^{\prime}=x_{2}^{\prime}\right)$ the time measured in \mathcal{S} is

$$
\Delta t:=t_{2}-t_{1}=\gamma(v) \Delta t^{\prime} \quad \Rightarrow \quad \frac{\Delta t}{\Delta t^{\prime}}=\gamma(v)>1
$$

\Rightarrow "Moving clocks tick slower for stationary observer"!

Definition (Proper Time)

The proper time of some timelike curve is the time measured by a clock moving on this curve.

From Special to General: The Equivalence Principle

Postulate (Einstein Principle of Equivalence, Einstein 1907)

In small enough regions of spacetime, the laws of physics reduce to those of special relativity
\Rightarrow Natural description of spacetime such that equivalence principle holds:

- Smooth manifold \mathcal{M}
- Lorentzian metric g on \mathcal{M}
(locally Euclidean)
(metric of signature $(-,+,+,+)$ on tangent space)
\Rightarrow locally like Minkowski!

Key Idea of Einstein:

Gravity should no longer be regarded as a force in the conventional sense but rather as a manifestation of the curvature of spacetime, being induced by the presence of matter.

Taken by A. Sesse (1951). Source: en.wikipedia.org

Lorentzian Geometry I: Basics

Let \mathcal{M} be a smooth manifold of dimension $d \in \mathbb{N}$.

Definition (Pseudo-Riemannian Metric)

A pseudo-Riemannian metric on \mathcal{M} is a smooth symmetric rank 2-tensor field $g \in \Gamma^{\infty}\left(T \mathcal{M}^{\otimes}{ }_{s}{ }^{2}\right)$, such that $g_{p}: T_{p} \mathcal{M} \times T_{p} \mathcal{M} \rightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form for each $p \in T_{p} \mathcal{M}$.

By Sylvester's Law of Inertia (1852), for every symmetric non-degenerate bilinear form B : $V \times V \rightarrow \mathbb{R}$ on a finite-dimensional \mathbb{R}-vector space V, there exists a basis such that

$$
B=\operatorname{diag}(-1, \ldots,-1,1, \ldots, 1) \quad \ldots \text { signature of } B
$$

\hookrightarrow A metric g of signature $(+, \ldots,+)$ is called Riemannian.
\hookrightarrow A metric g of signature $(-,+, \ldots,+)$ is called Lorentzian.

If (U, φ) is a local chart of \mathcal{M}, locally:

$$
\left.g\right|_{U}=\sum_{\mu, \nu} g_{\mu \nu} \mathrm{d} x^{\mu} \otimes \mathrm{d} x^{\nu}
$$

for components $g_{\mu \nu} \in C^{\infty}(U)$, where $x^{\mu}:=\operatorname{pr}^{\mu} \circ \varphi$ denote the coordinates.

Lorentzian Geometry II: Examples

Examples of Lorentzian Manifolds:

(1) Minkowski space: $\mathcal{M} \cong \mathbb{R}^{4}$ with Minkowski metric $\eta_{p}:=\operatorname{diag}(-1,1,1,1)$ on each tangent space $T_{p} \mathcal{M} \cong \mathbb{R}^{4}$, i.e.

$$
\eta=-\mathrm{d} t \otimes \mathrm{~d} t+\sum_{i=1}^{3} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{i}
$$

(2) Let $\mathcal{M} \cong I \times \Sigma$ with $I \subset \mathbb{R}$, where (Σ, h) is a 3D Riemannian manifold. Then

$$
g:=-N^{2} \mathrm{~d} t \otimes \mathrm{~d} t+h
$$

with $N \in C^{\infty}(\mathcal{M})$ and $N>0$ (called lapse) is a Lorentzian manifold.
\Rightarrow Manifolds of this type are called globally hyperbolic.
\Rightarrow Play an important role in the Cauchy problem of general relativity and in Quantum Field Theory on Curved Spacetime.
(3) In general, every non-compact and connected manifold admits a Lorentzian metric. In the compact case, there are topological obstructions:

Example

Only spheres \mathbb{S}^{n} with $n \in \mathbb{N}$ odd admit Lorentzian metrics.

Lorentzian Geometry III: Causality

Let (\mathcal{M}, g) be a Lorentzian manifold. Tangent vectors $v \in T_{p} \mathcal{M}$ can be divided as follows:

$$
\begin{aligned}
& \hookrightarrow g_{p}(v, v)>0 \ldots \text { spacelike } \\
& \hookrightarrow g_{p}(v, v)<0 \ldots \text { timelike } \\
& \hookrightarrow g_{p}(v, v)=0 \ldots \text { lightlike }
\end{aligned}
$$

Using this, we can define at every point a corresponding light cone $V_{p} \subset T_{p} \mathcal{M}$:

A vector field $X: \mathcal{M} \rightarrow T \mathcal{M}$ is called space/time/lightlike if it is so at every point. In general, there is no global notion of time. If this is the case, (\mathcal{M}, g) is called time-orientable:

Definition (Time-Orientation)

A global timelike vector field X on \mathcal{M} is called "time-orientation". If such a vector field exists, (\mathcal{M}, g) is called "time-orientable".

Note: Both a topological and geometrical concept!

Lorentzian Geometry IV: Curvature

(\mathcal{M}, g) has a unique connection $\nabla: \mathfrak{X}(\mathcal{M}) \times \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M})$ called Levi-Civita connection.

$$
\nabla_{X} Y \ldots \text { directional derivative of } Y \text { w.r.t. } X
$$

Curvature Tensor :

$$
\operatorname{Riem}_{g}(X, Y, Z):=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

Parallel Transport: shift vector parallel along a curve

$\operatorname{Riem}\left(g_{2}\right)=0$

$$
92)-0
$$

3

Proposition

A Lorentzian manifold is flat $\left(\mathrm{Riem}_{g}=0\right)$ if and only if it is locally isometric to Minkowski space.
\hookrightarrow Curvature tensor can be identified with a smooth rank 4 tensor field \Rightarrow Locally: $R_{\alpha \beta \gamma \delta}$.
\hookrightarrow Other important curvature tensors ($g^{\mu \nu}$ denotes the components of the inverse metric):

$$
\begin{aligned}
\operatorname{Ric}(g)_{\mu \nu} & :=g^{\mu \nu} R_{\alpha \mu \beta \nu} \ldots \text { Ricci tensor } \\
\operatorname{Scal}(g) & :=g^{\mu \nu} \operatorname{Ric}(g)_{\mu \nu} \ldots \text { scalar curvature }
\end{aligned}
$$

Einstein Equations

In the following, let (\mathcal{M}, g) be a 4D Lorentzian manifold.

Definition (Einstein's Field Equations, Einstein 1915)

Let T be a smooth divergence-free 2-tensor field and $\Lambda \in \mathbb{R}$. Einstein's field equations are

$\hookrightarrow T$ describes the matter content. Energy-momentum conservation: $\nabla^{\lambda} T_{\lambda \nu}=0$.
\hookrightarrow LOVELOCK'S THEOREM (1971): LHS is only symmetric divergent-free 2 -tensor field constructed out of g involving only up to second derivatives
\hookrightarrow Equations reduce to Poisson Equations of Newtonian gravity in appropriate limit.
\Rightarrow Special case: Vacuum $T=0$. In this case, Einstein equations equivalent to

$$
\operatorname{Ric}(g)=\Lambda g
$$

Side Fact: (\mathcal{M}, g) with g such that $\operatorname{Ric}(g) \propto g$ are called Einstein manifolds.
\hookrightarrow Many applications in differential geometry, but examples hard to find!
"[..] try to find one yourself [an example] which is not in our book. And if you succeed, please write to us immediately! [...] The author will be happy to stand you a meal in a starred restaurant in exchange for one of these!"

- Besse in Einstein manifolds, Springer, 1987.

Cauchy Problem for Einstein's Equations I

Einstein's Field Equations on $\mathcal{M} \widehat{=}$ highly non-trivial 2nd order system of quasilinear PDE's for components $g_{\mu \nu}$

Leading order contribution:

$$
\begin{aligned}
\operatorname{Ric}(g)_{\mu \nu} & -\frac{1}{2} \operatorname{Scal}(g) g_{\mu \nu}+\Lambda g_{\mu \nu}= \\
= & \frac{1}{2} \sum_{\alpha, \beta} g^{\alpha \beta}\left(\partial_{\alpha} \partial_{\nu} g_{\mu \beta}+\partial_{\mu} \partial_{\beta} g_{\alpha \nu}-\partial_{\alpha} \partial_{\beta} g_{\mu \nu}-\partial_{\mu} \partial_{\nu} g_{\alpha \beta}\right) \\
& -\frac{1}{2} g_{\mu \nu} \sum_{\alpha \beta, \rho, \sigma} g^{\alpha \beta} g^{\rho \sigma}\left(\partial_{\alpha} \partial_{\rho} g_{\sigma \beta}-\partial_{\alpha} \partial_{\beta} g_{\rho \sigma}\right) \\
& + \text { many lower order terms involving } g \text { and } \partial g .
\end{aligned}
$$

\hookrightarrow neither hyperbolic, elliptic nor parabolic!
\Rightarrow Key observation: Heavily overdetermined system (16 equations for 10 unknowns)
("general covariance")
\Rightarrow In a clever coordinate system, Einstein equations become hyperbolic:

$$
\operatorname{Ric}(g)_{\mu \nu}=-\frac{1}{2} \square_{g}^{S} g_{\mu \nu}+\text { terms involving } g \text { and } \partial g
$$

where $\square_{g}^{S}:=g^{\alpha \beta} \nabla_{\alpha} \nabla_{\beta}$ denotes wave operator acting on scalars.

Cauchy Problem for Einstein's Equations II

General relativity as an initial value problem:
\hookrightarrow Initial Data: 3D Riemannian manifold (Σ, h) and 2-tensor field k on Σ, satisfying constraints.
\hookrightarrow A Cauchy development of (Σ, h, k) is a 4D Lorentzian manifold (\mathcal{M}, g) solving Einstein's equations, such that
(1) $\mathcal{M} \cong I \times \Sigma$ with $I \subset \mathbb{R}$ ("time") and such that Σ is a spacelike embedded hypersurface.
(2) $i^{*} g=h$ with embedding $i: \Sigma \rightarrow \mathcal{M}$ and k is the extrinsic curvature of hypersurface Σ in \mathcal{M}.

Theorem (Choquet-Bruhat (1952); Choquet-Bruhat, Geroch (1969))

Let (Σ, h, k) be an admissible set of initial data. Then there exists a Cauchy development (\mathcal{M}, g), which is unique up to isometry.

Note: Unlike other PDEs formulated on fixed background we are solving for spacetime itself ! Example: Initial data $\left(\mathbb{R}^{3}, \delta, 0\right)$ leads to Minkowski space $\left(\mathbb{R}^{4}, \eta\right)$.

The Schwarzschild Solution and Black Holes

First (vacuum) solution: Schwarzschild 1916 (during world war I): Manifold $\mathbb{R} \times \mathbb{R}_{>0} \times \mathbb{S}^{2}$ with

$$
g=-c^{2}\left(1-\frac{2 G M}{c^{2} r}\right) \mathrm{d} t \otimes \mathrm{~d} t+\left(1-\frac{2 G M}{c^{2} r}\right)^{-1} \mathrm{~d} r \otimes \mathrm{~d} r+r^{2} \mathrm{~d} \Omega_{\mathbb{S}^{2}}^{2}
$$

where $\mathrm{d} \Omega_{\mathbb{S}^{2}}^{2}$ denotes the standard Riemannian metric of the 2 -sphere \mathbb{S}^{2} and $M \in \mathbb{R}>0$ a mass.
\Rightarrow For $r>R$ describes gravitational field outside of a spherically symmetric object of mass M and radius R (star, planets, ...)

Theorem (Birkhoff 1923)

The Schwarzschild metric is the only spherically symmetric vacuum solution with $\Lambda=0$.
Something strange happens at $r_{s}:=2 G M / c^{2}$:

Questions: What happens if an object is so massive that its radius R is $R<r_{s}$? \Rightarrow Black Hole

Accurate Sketch of a Black Hole

Accurate and detailed sketch of a black hole:

Source: Scholtz, Unwin: What if Planet 9 is a Primordial Black Hole? Physical Review Letters 125, 2020. Preprint: arXiv:1909.11090 [hep-th].

Physical Evidence of Black Holes

(1) Indirect (Genzel, Ghez et al.):

(2) Indirect (LIGO \& Virgo):

(3) Direct (EHT):

Sources:

(1) Eisenhauer et al.: SINFONI in the Galactic Center: young stars and IR flares in the central light month. The Astrophysical Journal 628(1), pages 246-259, 2005. Preprint: arXiv:astro-ph/0502129 [astro-ph].
(2) LIGO Scientific and Virgo collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116, 2016. Preprint: arXiv:1602.03837 [gr-qc].
(3) The EHT collaboration: First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. The Astrophysical Journal Letters 875(1), 2019. Preprint: arXiv:1906.11238 [astro-ph.GA].
The EHT collaboration: First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. The Astrophysical Journal Letters 930(2), 2022.

Mathematical Results: Singularity Theorems

In a Schwarzschild black hole ...
... no observer or light-ray entering the region $r<r_{s}$ can leave.
\ldots any causal curve starting in region $r<r_{s}$ terminates at $r=0$ in finite proper time.
... Curvature invariants diverge at $r=0$, e.g.

$$
\left\|\operatorname{Riem}_{g}\right\|_{g}^{2}=\sum_{\alpha, \beta \gamma \delta} R^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta}=\frac{12 r_{s}^{2}}{r^{6}} \xrightarrow{r \rightarrow 0} \infty
$$

\Rightarrow Prototypical example of gravitational singularity!

Question: Are gravitational singularities mathematical artifacts or physical predictions?

Theorem (Penrose 1965)

Let (\mathcal{M}, g) be a solution of Einstein's equations with energy-momentum tensor T. Under certain (reasonable) assumptions on T ("energy conditions") and certain (reasonable) causality assumptions, (\mathcal{M}, g) is lightlike geodesically incomplete whenever it admits a closed trapped surface ${ }^{a}$.

[^0]Remark: Similar theorem for timelike geodesically incompleteness (Hawking 1966). (Cosmology)

Real Life Application: GPS (Global Positioning System, 1970s)

Metric of earth can be approximated as $\left(r>R_{\oplus}\right)$

$$
g=-c^{2}\left(1+\frac{2 \Phi(r)}{c^{2}}\right) \mathrm{d} t \otimes \mathrm{~d} t+\left(1-\frac{2 \Phi(r)}{c^{2}}\right)(\mathrm{d} x \otimes \mathrm{~d} x+\mathrm{d} y \otimes \mathrm{~d} y+\mathrm{d} z \otimes \mathrm{~d} z)
$$

with gravitational potential $\Phi(r)=-G M_{\oplus} / r$ and $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
\Rightarrow Proper Time difference between (stationary) receiver and satellite:

$$
\frac{\Delta \tau_{r}}{\Delta \tau_{s}} \cong(1+\underbrace{\frac{\Phi\left(r_{\oplus}\right)-\Phi\left(r_{\oplus}+h\right)}{c^{2}}}_{\text {gravitational time dilation }}+\underbrace{\frac{1}{2} \frac{v^{2}}{c^{2}}}_{\text {special relativistic time dilation }})
$$

Example: Satellite with $\mathrm{v}=14000 \mathrm{~km} / \mathrm{h}$ and $\mathrm{h}=20200 \mathrm{~km}$. After one day on earth $\left(\Delta \tau_{r}=24 \mathrm{~h}\right)$:

$$
\delta \tau=\Delta \tau_{r}-\Delta \tau_{s} \cong-38.5 \mu \mathrm{~s}= \begin{cases}-45.7 \mu \mathrm{~s} & \text { gravitational time dilation } \\ +7.3 \mu \mathrm{~s} & \text { special relativistic time dilation }\end{cases}
$$

\Rightarrow Without taking $\delta \tau$ into account, we have a distance deviation of $|c \cdot \delta \tau| \cong 11.5 \mathrm{~km}$ per day!

Conclusion and Outlook

\hookrightarrow General relativity is a well-established theory with many applications in physics, pure mathematics and in our daily life.
\hookrightarrow Many more topics and applications (Numerical Relativity, Cosmology, ...)
\hookrightarrow General relativity is not the end of the story!
\Rightarrow not compatible with the "second half of modern physics": Quantum Field Theory
\Rightarrow The ultimate quest for a

```
Quantum Theory of Gravity.
```

\Rightarrow Many candidates: (partially related)

- String Theory
- Loop Quantum Gravity
- Spin Foam Models
- Group Field Theory
- ...
- Matrix and Tensor Models
- Simplicial Quantum Gravity
- Causal Dynamical Triangulation
- Causal Set Theory
- Causal Fermion Systems
- Asymptotic Safety for Gravity
- Noncommutative Geometry
- Twistor Theory
\Rightarrow Many open questions. One Step back: Perturbative Quantum Gravity (=linearized gravity as perturbative quantum field theory), Semiclassical Gravity, Quantum Field Theory on Curved Spacetime, . . .
"In so far as theories of mathematics speak about reality, they are not certain, and in so far as they are certain, they do not speak about reality."
- Einstein in Geometrie und Erfahrung, Springer, 1921.

[^0]: ${ }^{a}$ Roughly speaking: surface where the gravitational field is so strong that outgoing photons are dragged inwards.

