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Riemannian Geometry

Points x elements of a smooth (topological) manifold M.

Tangent spaces at each points TxM.

Positive definite inner product gx on TxM called metric tensor.

→ g𝜇𝜈 = g(𝜕𝜇, 𝜕𝜈 ) where 𝜕𝜇, 𝜕𝜈 ∈ TM.

Riemannian manifold (M, g) → infinitesimal length ds2 = g𝝁𝝂dx𝝁dx𝝂 with dx𝜇 ∈ T ∗M.

The distance between two points x1 and x2 of M is d (x1, x2) = inf
∫ x2

x1
ds.

Observable (any physical quantity that can be measured) ≡ f (x) ∈ C∞(M).

→ Partial differential equations for mechanics, locality principle...

→ Classical Mechanics.
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Geometry and Physics

Geometry in physics:

Geometry is a representation where the processes of reality are made intelligible.

It encodes mathematically what we know about spacetime.

Spacetime is a concept that comes from our observations of the world.

Two ways to see geometry with respect to observables:

Experimental way: observables collected in C∞(M)
deduction−−−−−−−→ geometry of spacetime (M, g).

Intuitive way: geometry of spacetime (M, g)
then−−−→ observables in C∞(M) defined on M.

→ Problem: Spacetime is not an observable.

Useful generalisations of geometry in physics:

Euclidean geometry to Riemannian geometry: General Relativity.
Many arguments to generalise again our geometrical framework...

⇝ Good candidate: Noncommutative Geometry.
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Quantum Mechanics (QM)

Observables became operators ∼ C∞(M) is replaced by a noncommutative algebra A.

→ Uncertainty principle.

A can be represented as acting on a Hilbert space H.

a ∈ A represent a physical observable (position, momentum, spin..).

𝜓 ∈ H represent the physical state whose evolution is given by Schrödinger equation.

→New mechanics, superposition principle and entanglement.

Processes in M → Processes in H
The theory is non deterministic (collapse of𝜓 during the measurement process).

→ Expectation value of an observable a for a quantum state𝜓 is ⟨𝜓, a𝜓 ⟩.
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The novelty in Quantum Mechanics (QM)

Observables: functions f of Classical Mechanics (CM) → operators a in an algebra A.

⇝ Non-commuting observables ([a, b] ≠ 0).

Physical states: Points in phase space → elements in a Hilbert space H.

⇝ Feeling of a new notion of space/geometry (to be discovered).
(at least for phase space.)

⇝ How to extract information about an underlying space from the observables (A)?

Ground of the framework: a C∗-Algebra A.
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C∗-Algebras and Hilbert spaces

Starting from a C∗-Algebra A→ the link with Hilbert spaces:

Theorem (Gelfand-Naimark)
Every abstract C∗-algebra A is isometrically ∗-isomorphic to a concrete C∗-algebras of bounded
operators on a Hilbert space H.

a ∈ A a C∗-algebra ↔ bounded operator in B(H) ≡ Observable in QM

⇝ Does A and H contain information on an underlying "space"?
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The connection with Topology

Theorem (Gelfand-Naimark theorem (1943))
If a C∗-algebra is commutative then it is an algebra of continuous functions on some (locally
compact, Hausdorff) topological space.

Gelfand transform: A → C0(M(A)) M(A) ≡ topological space

Algebra Topology
Commutative C∗-algebra A Topological space M

Projectionless Connectedness
Projection/Pure states Point

Isomorphism Homeomorphism
Unital Compact

tensor product Cartesian product

Figure: Equivalences between algebraic and topological properties.

⇝What happens with noncommutative algebras?
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Noncommutative Topology

C and NC: Commutative and NonCommutative.

⇝ How to obtain something like a (differential) geometry?
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How to get a “Geometry” from (A,H)?

Answer: Introduce a Differential Structure!

Differential Structure → study of observable/function/operator’s variations.

Two main kinds of differential structures in NCG:

Those resulting from variations in the algebra A:
The derivation-based differential structures.
Dubois-Violette, Kerner, Madore, Masson, Michor, 1988

Those resulting from variations in the Hilbert space H:
The Spectral triples-based differential structures.
Connes, Lott ∼ 1990

The differential structure will play the (equivalent) role of tangent spaces in geometry.

→ Define a metric on it.

→ Define differential forms on it. . .
Gaston Nieuviarts Introduction to Noncommutative Geometry in Physics (8 / 29)



Spectral Triples

Definition (Spectral triple)
A Spectral triple (A,H,D) is the data of an involutive unital algebra A represented by bounded
operators on a Hilbert space H, and of a self-adjoint operator D acting on H such that the
resolvent (i + D2)−1 is compact and that for any a ∈ A, [D, a] is a bounded operator.

Real (J) and Even (𝛾 ) Spectral triple (A,H,D, 𝛾, J):

J anti-unitary operator ⟨J𝜓1, J𝜓2⟩ = ⟨𝜓2,𝜓1⟩:
J2 = 𝜖

JD = 𝜖′DJ
J𝛾 = 𝜖′′𝛾 J
𝜖, 𝜖′, 𝜖′′ = ±1 → define the KO dimension.

𝛾 a Z2-grading on H, ∀a ∈ A:

𝛾2 = 1
𝛾† = 𝛾

𝛾D + D𝛾 = 0
𝛾𝜋 (a) = 𝜋 (a)𝛾

Commutant property: [a, Jb∗J−1] = 0.

First-order condition [[D, a], Jb∗J−1] = 0.
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Connes Reconstruction Theorem

Hint: The Dirac operator /𝜕 ≡ −i𝛾𝜇𝜕𝜇 embodies the metric properties of the manifold through
the relation {𝛾𝜇, 𝛾 𝜈 } = 2g𝜇𝜈12m .

Theorem (Connes Reconstruction Theorem)
There is a one-to-one correspondence between commutative even real spectral triples

(A = C∞
(M), H = L2

(M,S), D = /𝝏, J, 𝜸)

(that respect the five conditions given in A. Connes (2008): On the spectral characterization of
manifolds. (arXiv:0810.2088)), and smooth oriented compact Riemannian spin manifolds M.

→ Study of Riemannian spin manifolds through spectral triples.

→ Riemannian spin manifolds are important objects in physics.

→ The differential is 𝛿 (f )𝜓 = [−i𝛾𝜇𝜕𝜇, f ]𝜓 = −i𝛾𝜇𝜕𝜇 (f )𝜓 with f ∈ C∞(M)
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What does this mean for Physicists?

We are now free to forget the idea of a Riemannian (spin) manifolds with points as being
the primary structure on which functions can take values as a secondary object.

f ∈ A → f (x) → x̂ (f ) ≡ A → C∞(M) → M

The algebra of function together with the Dirac operator and the Hilbert space of bi-spinors
can be taken as first, and the Riemannian (spin) manifold as second deduction.

→ Spectral description of the Riemannian (spin) manifolds.

This algebraic "view" permit to go beyond the classical geometrical (Riemannian) picture.

⇝What happens if we consider NC algebras A?
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Noncommutative Space

The matrix space:

(AF , HAF , DAF , JAF , 𝛾AF )

Finite dimensional algebra AF = Mn(C)

𝜓 ∈ HAF ≡ (𝜓1, . . .𝜓n)

DAF is a matrix acting on elements of HAF .

Derivation 𝛿 (a) = [DAF , a] for a ∈ AF .

Axioms of spectral triples.

→ Finite noncommutative space
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Distance Formula in Noncommutative Geometry

Points ↔ pure states through Gelfand Naimark theorem.

→ Distance between states.

Taking two states𝜓1 and𝜓2 with𝜓 (1,2) : A → C, we can define the distance between
these two states:

d (𝜓1,𝜓2) = sup{|𝜓1(a) −𝜓2(a) |; a ∈ A, | | [D, a] | | ≤ 1}

Consider the commutative algebra A = C∞(M), and the usual Dirac operator DM = i𝛾𝜇𝜕𝜇 .

→ Pure states ≡ points via Gelfand duality𝜓x (f ) = f (x) so that𝜓1,2 → x1,2 ∈ M.

→ We then we recover the usual distance corresponding to the metric g on M:

dg (x1, x2) = sup{|f (x1) − f (x2) |; f ∈ C∞(M), | | [DM, f ] | | ≤ 1}.
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Why NCG is interesting?

Reformulation and generalization of the geometric framework.

→ Inspired by QM’s formalism.

→ Complete reformulation of Riemannian geometry in NCG.

New way to see geometry starting from what we can observe (The algebra of Observables).

Quantum gravitation’s problem: which variables to quantize?

→ NCG: start from the observables (of matter), which became quantized in QM.

→ The choice is given by physics (non ad-hoc one).

The full geometrization of all forces in one framework was (almost) done in NCG.
(does not include Lorentzian spaces)

Mathematical naturalness. . .
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What is a Gauge Field Theory (GFT)?

"Force" is the concept that explain the trajectories of material objects.
→ The trajectories are determined by the forces the material object undergo.

For fundamental particles (described by states𝜓 ), trajectories are determined by the
interference pattern of the particle’s state𝜓 in space-time.
→ The particle’s trajectory is where𝜓𝜓 † is high.

This interference pattern is derived from the knowledge of the phase 𝜃 (x) the physical
state takes over all space i.e. 𝜓 (x) ∝ exp(i𝜃 (x)).
The evolution of the phase is given by the gauge field A𝝁 (x):

𝜓 (x + dx𝜇) = exp(i(e/ℏ)A𝝁 (x)dx𝜇)𝜓 (x)

→ The gauge field encode fundamental interactions/forces.
General covariant derivative: D𝝁 = 𝝏𝝁 + (ie/ℏℏℏ)A𝝁 .
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What is a Gauge Field Theory (GFT)?

Phase accumulation around an infinitesimal loop given by the square of sides (dx𝜇, dx𝜈 ):

𝜓 (x) = (1 + (ie/ℏ)F𝝁𝝂dx𝜇dx𝜈 )𝜓 (x)

With F𝝁𝝂 = (𝜕𝜇A𝜈 − 𝜕𝜈A𝜇) − i(e/ℏ) [A𝜇,A𝜈 ] the curvature of the gauge potential.

→ This fundamental quantity is invariant under natural symmetries of the theory.

Let G be a finite-dimensional compact Lie group ≡ symmetry group.

𝜓 (x) is a multiplet representation of G.

Fundamental quantities such as the Lagrangian must be invariant under the action of G:

L(𝜓,D𝜓 ) = L(g𝜓, gD𝜓 ) ∀g ∈ G

This is the gauge principle.
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Yang–Mills theory

g ∈ SU (n) → gauge transformations A → Ã = gAg−1 + g𝝏g−1.

𝜓 (x) =
©­­«
𝜓1(x)

...

𝜓n(x)

ª®®¬ ; A𝜇 (x) = Aa
𝜇 (x)T a; g(x) = ei𝛼a (x )T a

.

The Lagrangian of the SMPP is the following:

L = −1
4

F𝜇𝜈F 𝜇𝜈 + i𝜓 /D𝜓 +𝜓 iyijΦ𝜓j + h.c. + |D𝜇Φ|2 + 𝜆Φ2 + 𝜇Φ4

with𝜓 = 𝜓 †𝛾0, /D = i𝛾𝜇D𝜇 , yij the Yukawa coupling matrix, Φ the Higgs field.

= Yang–Mills Higgs theory
→ Full understanding of particles physics and fundamental interactions.
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NCG and Gauge Field Theory

Usual framework for Yang–Mills Higgs theory: Vector bundles.

Theorem (Serre-Swan theorem (1962))
Any vector bundle on a smooth compact manifold M defines a C∞(M)-projective module of
finite type on the algebra C∞(M) by considering the set of smooth sections of this vector bundle.

→ Possibility to naturally implement the gauge principle in NCG.

Strategy to create Non-Commutative Gauge Field Theories (NCGFTs):

Find a differential

structure linked to

Degrees Of Freedom

(DOF) associated

with some "space"

Build connection to

implement parallel trans-

port along these DOF

Find an automorphism

invariant scalar built

from this connection
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How to model a NCGFT?

Strategy to create Noncommutative Gauge Field Theories (NCGFTs):

The basic ingredient is an associative algebra A. Then:

Representation theory: a (projective finitely generated) module M over A.

Gauge group: U (A) or Aut(M).
Differential structure: any differential calculus defined on top of A.

The derivation-based differential calculus canonically associated to A.
Spectral triple (A,H,D): need supplementary structures, and M = H.

Covariant derivative: A NC connection on M based on the differential calculus.

Action functional: An automorphism invariant scalar built from this connection.
Derivations: Hodge star operator and NC-integration → action functional.
Spectral triples: Spectral and Fermionic actions.
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Gauge Theory in the Spectral Triples Framework

The A-bimodule of Connes’s differential one-forms is given by

Ω1
D (A) :=

{∑︁
k

ak [D, bk] : ak, bk ∈ A
}
.

𝛿 : A → Ω1(A) with 𝛿 (.) = [D, .] and 𝛿2 ≠ 0.

u ∈ U (A) defines the unitary U = 𝜋 (u)J𝜋 (u)J−1 : H → H.

𝜔 ∈ Ω1
D (A) → Fluctuated Dirac operator:

D𝝎 = D + 𝝎 + 𝝐′J𝝎J−1.

Inner fluctuation: UDU† = (D𝜔 )u = UD𝜔U∗.

Equivalence with gauge transformation: 𝜔u = u𝜔u∗ + udUu∗ ↔ (D𝝎)
u = D𝝎u .
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Spectral and Fermionic Actions

Lets consider the spectral triple (A, H, D, J, 𝛾).
The fluctuated Dirac operator D𝜔 = D + 𝜔 + 𝜖′J𝜔J−1 with 𝜔 ∈ Ω1

D (A).
The fermionic action is defined by:

Sf [D𝜔 ,𝜓 ] =
1
2
⟨J𝜓,D𝜔𝜓 ⟩H̃.

with𝜓 an element of the Grassmann vector space H̃ associated with H = L2(M,S).
The spectral action is given by:

S [D] = Tr f (D𝜔D†
𝜔/Λ2)

The spectral action can be expanded using heat kernel expansion:

S [D] = lim
Λ→∞

Tr exp(−D2/Λ2) ≃
∑︁
n≥0

Λ2m−nan(D2)

with an the Seeley-de Witt Coefficients.
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Spectral Action for the Manifold

If we take the spectral triple (A = C∞(M), H = L2(M,S), D = /𝜕, J, 𝛾), we obtain:

D2 = ΔS + 1
4

s with the scalar curvature s = R𝜇𝜈g𝜇𝜈 .

The non-zero contributions are given by the Seeley-de Witt Coefficients:

a0 (D2) = 1
(2𝜋)m

∫
M

dvol

a2 (D2) = − 1
12(2𝜋)m

∫
M

s dvol ∼ Einstein–Hilbert action

a4 (D2) = 1
360(2𝜋)m

∫
M
( 5
4

s2 − 2R𝜇𝜈R𝜇𝜈 + 2R𝜇𝜈𝜆𝜌R𝜇𝜈𝜆𝜌 + 30ΩS
𝜇𝜈 (ΩS )𝜇𝜈 )dvol

→ Spectral invariant associated with the geometry of the manifold.
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The Almost Commutative Manifold

NC extention of the manifold inside the framework of even and real spectral triples.

Simple choice → almost commutative manifold M × F with F a finite space.

The corresponding spectral triple is (Â, HÂ, DÂ, JÂ, 𝛾Â) with:

Â = C∞(M) ⊗ AF JÂ = JM ⊗ JAF

HÂ = L2(M, S) ⊗ HAF 𝛾Â = 𝛾M ⊗ 𝛾AF

DÂ = DM ⊗ 1 + 𝛾M ⊗ DAF .

→ Computation of the fluctuated Dirac operator: DÂ,𝜔
= DM ⊗ 1 + 𝛾𝜇 ⊗ A𝜇 + 𝛾M ⊗ Φ.

→ Computation of the associated Spectral and Fermionic actions ≡ NCGFTÂ’s Lagrangian.

→ Yang–Mills–Higgs type theory coupled to Gravitation.

→ Example: AF = Mn(C) so that dim(F ) = n is the dimension of the fiber.

Gaston Nieuviarts Introduction to Noncommutative Geometry in Physics (23 / 29)



The NonCommutative Standard Model (NCSM)

NCGFT which reproduces the standard model Lagrangian coupled to Gravity
(Chamseddine, Connes, Lott, Marcolli. . . 1996→ 2012)
→ Based on the model of AC Manifold M × F .

→ Rely on a good choice of an even real Spectral triple.

Gives the Lagrangian of the SM coupled to gravity from pure geometry.

M̂ = M×F → Â = C∞(M) ⊗AF

M → C DoFs
(along spacetime directions)

F → NC DoFs
(along algebraic directions)

→ All interactions arise from an underlying NCG.
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The NonCommutative Standard Model (NCSM)

The crucial role is played by AF = ASM := C ⊕ H ⊕ M3(C).

The symmetry group of the spectral action is G = Map(M,G) ⋊ Diff (M).
→ Diff (M) the diffeomorphism group.

→ Map(M,G) the gauge group of second kind with G = U (1) × SU (2) × SU (3).

In this way, NCG provides a unified framework to describe both Einstein-Hilbert
gravity (in Euclidean signature) and classical gauge theories.

It gives an elegant description of the SMPP, including Higgs mechanism and neutrino
mixing, as “gravity” on an AC-manifold.

The fermionic masses are encoded into DAF , so that the masses of the Higgs boson and the
ones of fermions became related, offering a prediction for Higgs mass.
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Missing Points and Outlook

Main advantage of the NCSM: very constrained description of the SMPP

→ Go beyond the SMPP (GUT, ...).

The signature problem: the model is inherently Euclidean (positive definite signature)

→ Find a "Lorentzian" approach to NCG.

The Higgs mass problem: wrong prediction for the Higgs mass.

→ Attempts to modify the spectral triple axioms to obtain the correct Higgs mass.

The fermion doubling problem: too many degrees of freedom for fermionic fields
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Thank you
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