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Purpose and Terminology

The purpose of cryptography is to find ways (protocols) to communicate
securely, assuming the presence of eavesdroppers (Eve).

We want to transform our messages (Encryption) in such a way that
opponents will find it to be unintelligible text and only the predestined
receiver will be able to trace the original message (Decryption).

In order to carry out encryption and decryption, we need so-called
cryptographic keys.
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Purpose and Terminology

Alice Encryption Decryption Bob

Key Key

Eve

Message
Chiper

message Message
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Types and keys

Two main types of cryptography:

• Symmetric-Key Cryptography: same secret key to encrypt and
decrypt the message;

• Public-Key Cryptography: two keys involved: a public one known to
all and a private one known only to the owner.

• Key Exchange Problem: how can two parties exchange keys in such a
way as to establish a secure communication channel?
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Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange (DHKE), 1976
1. Alice and Bob publicly agree on a cyclic finite group G and a

generator g .
2. Alice chooses a ∈ {1, . . . , ord(G)}, computes ga and sends it to Bob.

Her secret key is a.
3. Bob chooses b ∈ {1, . . . , ord(G)}, computes gb and sends it to Alice.

His secret key is b.
4. Alice computes (gb)a = gba.
5. Bob computes (ga)b = gab .

The secret common key is gba = gab .

• Diffie-Hellman Problem (DHP): Let G be a finite cyclic group and let g
be a generator. Given ga and gb , find gab .
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Diffie-Hellman Key Exchange

[Picture from Borradaile, G. ”Defend Dissent.” Corvallis: Oregon State University, 2021.]
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Post-Quantum Cryptography

1994: The security of current cryptosystems is based on the difficulty of
integer factorisation and the discrete logarithm. Both problems can
be solved in polynomial time using Shor’s algorithm for a sufficiently
large quantum computer.

2016: The National Institute of Standards and Technology (NIST) opens a
call for standardization asking for post-quantum cryptographic
algorithms.
Proposals:

• Lattice-based Crypto
• Code-based Crypto
• Multivariate Crypto

• Isogeny-based Crypto
• Hash-based Crypto
• Others
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Elliptic Curves

An elliptic curve is a pair (E ,OE ), where E is a nonsingular projective
curve of genus 1 and OE ∈ E is a fixed point.

Weierstrass form: y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
If char(k) 6= 2, 3: y2 = x3 + Ax + B
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Elliptic curves

The discriminant of E is ∆(E) = −(4A3 + 27B2).

The j-invariant of E is

j(E) = 1728 4A3

4A3 + 27B2 .

Properties
• A curve given by a Weierstrass equation is nonsingular if and only if

∆(E) 6= 0.
• Two elliptic curves are isomorphic over k if and only if they have the

same j-invariant.
• Let j0 ∈ k. There exists an elliptic curve defined over k(j0) whose

j-invariant is j0.
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Group Law

Group law:
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Isogenies

An isogeny between two elliptic curves E1 and E2 is a morphism
φ : E1 → E2 such that φ(OE1) = OE2 .

An isogeny is a group homomorphism.
We indicate the set (group) of such isogenies with Hom(E1,E2). Moreover
End(E) = Hom(E ,E) has a ring structure.

An example of isogeny is the multiplication-by-m with m ∈ Z:

[m] : E → E
P 7→ P + · · ·+ P
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Isogenies

Definition
Two elliptic curves E ,E ′ are `-isogenous if there exists an isogeny
ϕ : E → E ′ of degree `.
An isogeny of degree ` is called `-isogeny.

Theorem
Let ϕ : E → E ′ be an isogeny of degree `. Then there exists an isogeny
ϕ̂ : E ′ → E of degree `, called dual isogeny, such that

ϕ ◦ ϕ̂ = [`] and ϕ̂ ◦ ϕ = [`].
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Ordinary and Supersingular EC

Elliptic curves can be partitioned into two families: the ordinary EC and
the supersingular EC.

Properties:
• If char(k) = 0, then all the elliptic curves are ordinary.
• If char(k) = p and E is a supersingular elliptic curve, then j(E) ∈ Fp2 .
• Tate’s Theorem: If two elliptic curves are isogenous, then they are

of the same type.
• The endomorphism ring of an ordinary elliptic curve is commutative.

The endomorphism ring of a supersingular elliptic curve is
noncommutative.
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Underlying Problems

In order to well-define a cryptosystem, we need to base it on a hard
mathematical problem.

• General Isogeny Problem: Given two isogenous elliptic curves, find an
isogeny between them.

• `-Isogeny Problem: Given two `-isogenous elliptic curves, find an
`-isogeny between them.
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Isogeny graphs

Definition
Let ` be a prime number such that ` 6= char(k).
An `-isogeny graph G`(k) is a graph whose vertices are j-invariants of
elliptic curves defined over k and whose edges are `-isogenies defined over
k between them.

Thanks to the existence of dual isogeny, we can see this graph as
undirected.

It follows from Tate’s theorem that the graph G`(k) can always be
partitioned into ordinary and supersingular components.

Silvia Sconza A (hopefully) friendly introduction to Isogeny-Based Cryptography 18
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Ordinary case

Given an `-isogeny of two ordinary elliptic curves, it could be horizontal,
ascending or descending, depending on the relation between the
endomorphism rings of the two curves.

Thanks to David Kohel, we know
exactly how many `-isogenies of each type we have.

Definition
An `-volcano is a connected undirected graph whose vertices are
partitioned into one or more levels V0, . . . ,Vd such that:
(i) the subgraph on V0 (the surface) is a regular graph of degree at most

2;
(ii) for i > 0, each vertex in Vi has exactly one neighbor in level Vi−1;
(iii) for i < d , each vertex in Vi has degree `+ 1.

We call d the depth of the volcano and we call Vd the floor.
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Ordinary Case

• V0 regular graph of degree at most 2;
• each vertex in Vi has exactly one neighbor in Vi−1, for i > 0;
• each vertex in Vi has degree `+ 1, for i < d .

• An ordinary component of G`(Fq) is an `-volcano.

Silvia Sconza A (hopefully) friendly introduction to Isogeny-Based Cryptography 20



Isogeny-Based Cryptography University of Zurich

Ordinary Case

• V0 regular graph of degree at most 2;
• each vertex in Vi has exactly one neighbor in Vi−1, for i > 0;
• each vertex in Vi has degree `+ 1, for i < d .

• An ordinary component of G`(Fq) is an `-volcano.
Silvia Sconza A (hopefully) friendly introduction to Isogeny-Based Cryptography 20



Isogeny-Based Cryptography University of Zurich

An example

• V = {set of generators of a
cyclic group of order 11};

• S = {3, 5, 7, 3−1, 5−1, 7−1}
⊆ (Z/11Z)×.
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An example

Key exchange protocol (Couveignes, 2006)
I Public parameters

• A group G of prime order p and a generator g ;

• A generating set D ⊆ (Z/pZ)× such that σ ∈ D ⇒ σ−1 6∈ D.
I Protocol

1. Alice chooses a random succession ρA of elements in D and Bob
chooses a random succession ρB of elements in D;

2. Alice computes gA = ρA(g) and sends it to Bob;
3. Bob computes gB = ρB(g) and sends it to Alice;
4. Alice computes gAB = ρA(gB) and Bob computes gAB = ρB(gA).
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An example

In the figure, Alice’s route is represented by continuous lines, Bob’s route
by dashed lines.

The order of the steps in a route does not matter: what counts is only
how many times each element of D appears in the route.
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Ordinary Case

Key exchange protocol (Rostovtsev-Stolbunov, 2006)
I Public parameters

• A large finite field Fq and an ordinary elliptic curve E over Fq;

• A set L = {`1, . . . , `m} of prime numbers;
• For each prime number `i , a positive direction chosen at random.

I Protocol
1. Alice chooses a random succession ρA of elements in L and Bob

chooses a random succession ρB of elements in L;
2. Alice computes EA = ρA(E) and sends it to Bob;
3. Bob computes EB = ρB(E) and sends it to Alice;
4. Alice computes EAB = ρA(EB) and Bob computes

EAB = ρB(EA).

N.B. The cryptosystem works because we are in a commutative
environment.
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Supersingular Case

In the supersingular case:
• The j-invariants (and so the vertices of the isogeny-graph) are

elements in Fp2 ;

• The isogeny graph is a Ramanujan graph.
N.B. Since we are in a noncommutative environment, Rostovtsev-
Stolbunov protocol does not work.

2011: De Feo and Jao propose Supersingular Isogeny Diffie Hellman
(SIDH), but to make it work they need to make extra information
public.
2022: Castryck and Decru use these extra information to broke the
cryptosystem.
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Supersingular Case

Restriction to Fp

If we consider just the j-invariants in Fp and the `-isogenies defined over
Fp , then the corresponding isogeny graph is a volcano.

In particular, under this restriction, we can apply the Rostovsev-Stolbunov
protocol!

N.B. The problem with the RS protocol on ordinary elliptic curves is that
it takes several minutes per key exchange. In the supersingular case this
efficiency problem does not occur!
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Thanks for your attention!
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