Hadamard states for quantum Abelian duality Joint work with Becker, Capoferri, Dappiaggi, Schenkel, Szabo.

Marco Benini
Universität Potsdam
Institut für Mathematik

Microlocal analysis: a tool to explore the quantum world, Genova, 13.01.2017

Goals:

- Implement electromagnetic duality in a natural way
- Construct Hadamard states that unitarily implement duality

Outline:

1. Abelian duality via differential cohomology
2. Cauchy problem, observables and duality
3. Quantization and states
4. A sketch of the construction
5. Example: $M=\mathbb{R} \times S^{1}$

Abelian duality via differential cohomology

Electromagnetism (generalized):
Yang-Mills (bundle + connection) Aharonov-Bohm effect
$M \mathrm{~g}$. h. spacetime, $m:=\operatorname{dim} M$

Differential cohomology

 $h \in \hat{H}^{k}(M ; \mathbb{Z})$Duality in Maxwell's equation:

$$
F \longleftrightarrow * F
$$

$$
\begin{gathered}
(h, \tilde{h}) \in \hat{\mathrm{H}}^{k}(M ; \mathbb{Z}) \times \hat{\mathrm{H}}^{m-k}(M ; \mathbb{Z}) \\
h \longleftrightarrow \widetilde{h}
\end{gathered}
$$

Configuration space:
Abelian group, no vector space!

$$
\mathfrak{C}^{k}(M)=\left\{(h, \tilde{h}) \in \hat{H}^{k}(M ; \mathbb{Z}) \times \hat{\mathrm{H}}^{m-k}(M ; \mathbb{Z}): \operatorname{curv} h=* \operatorname{curv} \tilde{h}\right\}
$$

Remark: (h, \tilde{h}) carries curvature + Chern class, occurring in dual copies.

Cauchy problem, observables and duality

This system has a well-posed Cauchy pbl. on a g. h. spacetime M:

$$
\begin{gathered}
\operatorname{curv} h=* \operatorname{curv} \tilde{h}, \quad i_{\Sigma}^{*} h=h_{0}, \quad i_{\Sigma}^{*} \tilde{h}=\tilde{h}_{0} \\
i_{\Sigma}: \Sigma \rightarrow M \text { Cauchy surface embedding, }\left(h_{0}, \tilde{h}_{0}\right) \in \hat{\mathrm{H}}^{k}(\Sigma ; \mathbb{Z}) \times \hat{\mathrm{H}}^{m-k}(\Sigma ; \mathbb{Z}) .
\end{gathered}
$$

Symplectic structure:
(Σ compact to avoid technicalities)

$$
\sigma: \mathfrak{C}^{k}(M) \times \mathfrak{C}^{k}(M) \longrightarrow \mathbb{T}, \quad \sigma\left((h, \tilde{h}),\left(h^{\prime}, \tilde{h}^{\prime}\right)\right)=\int_{\Sigma} \tilde{h} \cdot h^{\prime}-\tilde{h}^{\prime} \cdot h
$$

We regard $\sigma(\cdot,(h, \tilde{h}))$ as observables.
Duality: $\quad \mathfrak{C}^{k}(M) \longrightarrow \mathfrak{C}^{m-k}(M), \quad(h, \tilde{h}) \longmapsto\left(\tilde{h},(-1)^{k(m-k)+1} h\right)$
It preserves σ, most interesting case: $m:=\operatorname{dim} M=2 k$)
CCR-quantization: $W(h, \tilde{h}) W\left(h^{\prime}, \tilde{h}^{\prime}\right)=e^{2 \pi i \sigma\left((h, \tilde{h}),\left(h^{\prime}, \tilde{h}^{\prime}\right)\right)} W\left(h+h^{\prime}, \tilde{h}+\tilde{h}^{\prime}\right)$

Decomposition

$M=\mathbb{R} \times \Sigma, \Sigma$ compact, $g=-\mathrm{d} t \otimes \mathrm{~d} t+h_{\Sigma}$ ultrastatic.
$\operatorname{Topf}^{k}(M)_{1} \longleftrightarrow C \longrightarrow \operatorname{Dyn}^{k}(M)$
Symplectic decomposition:
$\mathfrak{C}^{k}(M) \simeq \operatorname{Dyn}^{k}(M)$ $\oplus \operatorname{Topf}^{k}(M) \oplus \operatorname{Topt}^{k}(M)$

Topt $^{k}(M) \longmapsto D \longrightarrow \operatorname{Topf}^{k}(M)_{2}$
Symplectic Abelian group $\mathfrak{C}^{k}(M)$ split into 3 symplectic sectors:
$\operatorname{Dyn}^{k}(M)$: Sector controlled by a PDE
Topf $^{k}(M)$, Topt ${ }^{k}(M)$: Characteristic classes and flat connections

Which states?

Symplectic decomposition $\Longrightarrow C^{*}$-algebra factorization
To assign a state for the full theory, we assign one for each factor and combine them (with some care with the choice of tensor product). We aim at:

Hadamard Microlocal spectrum condition for the dynamical sector
Duality The state for each factor should be duality invariant \Longrightarrow Duality unitarily implemented on the GNS triple

Remarks:

- Finitely generated topological sectors (quantum mechanics-like)
- microlocal spectrum condition only for the dynamical sector

Oscillatory degrees of freedom, typical of QFT, are combined to QM-like topological degrees of freedom (electric/magnetic fluxes, Aharonov-Bohm configurations).

How to get such states?

1. Decompose the theory into dynamical and topological sectors via a symplectically orthogonal and duality compatible splitting (non-unique, non-canonical choice of splitting)
2. Assign a duality-invariant state to each sector

Dynamical sector: Hodge decomposition on Σ (compact) and (a bit of) microlocal analysis
Topological sectors: several possibilities (e.g. particles on a circle)
3. State on the full theory as tensor product of states on sectors (some care with tensor products of C^{*}-algebras required)
4. Associated GNS triple and unitary operator implementing duality

2D example

$$
M=\mathbb{R} \times S^{1}, g=-\mathrm{d} t \otimes \mathrm{~d} t+d \theta \otimes d \theta
$$

$$
\mathfrak{C}^{1}(M)=\left\{(h, \tilde{h}) \in C^{\infty}(M ; \mathbb{T})^{2}: d \log h=* d \log \tilde{h}\right\}
$$

$$
\simeq \underbrace{\mathrm{d} C^{\infty}(M) \cap * \mathrm{~d} C^{\infty}(M)}_{\text {dynamical }} \oplus \underbrace{\mathbb{T}^{2} \oplus \mathbb{Z}^{2}}_{\text {topological }}
$$

$$
h(t, \theta)=h_{0}+z \theta-\left(\tilde{z} t+\sum_{k \geq 1}\left(c_{k}^{+} \cos (2 \pi k(t+\theta))+c_{k}^{-} \cos (2 \pi k(t-\theta))\right.\right.
$$

$$
\left.\left.-s_{k}^{+} \sin (2 \pi k(t+\theta))-s_{k}^{-} \sin (2 \pi k(t-\theta))\right) \quad \bmod \mathbb{Z}\right)
$$

$$
\tilde{h}(t, \theta)=\tilde{h}_{0}+\tilde{z} \theta-\left(z t+\sum_{k \geq 1}\left(-c_{k}^{+} \cos (2 \pi k(t+\theta))+c_{k}^{-} \cos (2 \pi k(t-\theta))\right.\right.
$$

$$
\left.\left.+s_{k}^{+} \sin (2 \pi k(t+\theta))-s_{k}^{-} \sin (2 \pi k(t-\theta))\right) \quad \bmod \mathbb{Z}\right)
$$

$$
k \geq 1 \Longrightarrow \text { no zero-modes in the dynamical sector! }
$$

2D example: state on the dynamical sector

$M=\mathbb{R} \times S^{1}, g=-\mathrm{d} t \otimes \mathrm{~d} t+d \theta \otimes d \theta$
Formula for the two-point function:

$$
\begin{aligned}
\omega_{2}\left(\rho, \rho^{\prime}\right) & =\sum_{k \geq 1}(4 \pi k)^{-1}\left(\widehat{\delta \rho}(k, k) \widehat{\delta \rho^{\prime}}(-k,-k)+\widehat{\delta \rho}(k,-k) \widehat{\delta \rho^{\prime}}(-k, k)\right) \\
& =\sum_{k \geq 1} \pi k\left(c_{k}^{+} c_{k}^{\prime+}+c_{k}^{-} c_{k}^{\prime-}+s_{k}^{+} s_{k}^{\prime+}+s_{k}^{-} s_{k}^{\prime-}\right)
\end{aligned}
$$

Remarks:
Line 1 Observables labelled by 1-forms $\rho \in \Omega_{c}^{1}(M)$. ω_{2} fulfils the microlocal spectrum condition.
Line 2 Fourier coefficients $c_{k}^{ \pm}, s_{k}^{ \pm}$from the previous slide. 0 -modes None! (treated separately in the topological sector). 0-modes are evil!

2D example: topological sector

$M=\mathbb{R} \times S^{1} \Longrightarrow \operatorname{Topf}^{1}(M) \simeq \mathrm{H}^{1}(M ; \mathbb{T})^{2} \oplus \mathrm{H}^{1}(M ; \mathbb{Z})^{2} \simeq \mathbb{T}^{2} \otimes \mathbb{Z}^{2}$
Symplectic structure:

$$
\sigma_{T}\left((u, \tilde{u}, z, \tilde{z}),\left(u^{\prime}, \tilde{u}^{\prime}, z^{\prime}, \tilde{z}^{\prime}\right)\right)=\tilde{u} z^{\prime}-u^{\prime} \tilde{z}-\tilde{u}^{\prime} z+u \tilde{z}^{\prime} \in \mathbb{T}
$$

State: two particles on a circle, initial positions u, ũ, discrete momenta z, z̃.

$$
\omega_{T}(W(u, \tilde{u}, z, \tilde{z}))= \begin{cases}1, & \text { if } z=0=\tilde{z} ; \\ 0, & \text { otherwise }\end{cases}
$$

Momenta label a basis $\{|z, \tilde{z}\rangle\}$ of the GNS-Hilbert space.
Unitary operator for duality: $U|z, \tilde{z}\rangle=|\tilde{z}, z\rangle$
(flipping momenta)
Self-adj. momentum observables: $P|z, \tilde{z}\rangle=z|z, \tilde{z}\rangle, \tilde{P}|z, \tilde{z}\rangle=\tilde{z}|z, \tilde{z}\rangle$ (spectra given by the values of momenta)

Conclusions

- Differential cohomology encodes Chern classes (topological fluxes), flat connections (Aharonov-Bohm effect), ...
- Abelian duality is implemented naturally.
- Splitting the model into dynamical and topological sectors leads to a factorization of the observable algebra.
- States can be obtained by assigning a state on each sector: Dynamical sector Ground state, microlocal spectrum condition. Topological sector Quantum mechanics-like (e.g. particles on S^{1}).
- The GNS triple implements Abelian duality as a unitary operator.

Conclusions

- Differential cohomology encodes Chern classes (topological fluxes), flat connections (Aharonov-Bohm effect), ...
- Abelian duality is implemented naturally.
- Splitting the model into dynamical and topological sectors leads to a factorization of the observable algebra.
- States can be obtained by assigning a state on each sector:

Dynamical sector Ground state, microlocal spectrum condition. Topological sector Quantum mechanics-like (e.g. particles on S^{1}).

- The GNS triple implements Abelian duality as a unitary operator.

> Thank you for your attention!

