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Goals:
• Implement electromagnetic duality in a natural way

• Construct Hadamard states that unitarily implement duality

Outline:
1. Abelian duality via differential cohomology

2. Cauchy problem, observables and duality

3. Quantization and states

4. A sketch of the construction

5. Example: M = R× S1



Abelian duality via differential cohomology

Electromagnetism (generalized): M g. h. spacetime, m := dimM

Yang-Mills (bundle + connection)
Aharonov-Bohm effect

Differential cohomology
h ∈ Ĥk(M;Z)

Duality in Maxwell’s equation:

F ←→ ∗F (h, h̃) ∈ Ĥk(M;Z)× Ĥm−k(M;Z)
h←→ h̃

Configuration space: Abelian group, no vector space!

Ck(M) =
{

(h, h̃) ∈ Ĥk(M;Z)× Ĥm−k(M;Z) : curv h = ∗ curv h̃
}

Remark: (h, h̃) carries curvature + Chern class, occurring in dual copies.



Cauchy problem, observables and duality

This system has a well-posed Cauchy pbl. on a g. h. spacetime M:

curv h = ∗ curv h̃, i∗Σh = h0, i∗Σh̃ = h̃0

iΣ : Σ→ M Cauchy surface embedding, (h0, h̃0) ∈ Ĥk(Σ;Z)× Ĥm−k(Σ;Z).

Symplectic structure: (Σ compact to avoid technicalities)

σ : Ck(M)× Ck(M) −→ T, σ
(
(h, h̃), (h′, h̃′)

)
=

∫
Σ
h̃ · h′ − h̃′ · h

We regard σ(·, (h, h̃)) as observables.

Duality: Ck(M) −→ Cm−k(M), (h, h̃) 7−→ (h̃, (−1)k(m−k)+1h)
It preserves σ, most interesting case: m := dimM = 2k)

CCR-quantization: W (h, h̃)W (h′, h̃′) = e2πiσ((h,h̃),(h′,h̃′)) W (h + h′, h̃ + h̃′)



Decomposition

M = R× Σ, Σ compact, g = −d t ⊗ d t + hΣ ultrastatic.

Topfk(M)1
// //
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A // //
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Ck(M) // //
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Toptk(M) // //

BB

D // // Topfk(M)2

ee

Symplectic decomposition:

Ck(M) ' Dynk(M)
⊕Topfk(M)⊕ Toptk(M)

Symplectic Abelian group Ck(M) split into 3 symplectic sectors:

Dynk(M): Sector controlled by a PDE

Topfk(M),Toptk(M): Characteristic classes and flat connections

Splitting compatible with duality!



Which states?

Symplectic decomposition =⇒ C∗-algebra factorization

To assign a state for the full theory, we assign one for each factor and
combine them (with some care with the choice of tensor product). We aim at:

Hadamard Microlocal spectrum condition for the dynamical sector

Duality The state for each factor should be duality invariant
=⇒ Duality unitarily implemented on the GNS triple

Remarks:

• Finitely generated topological sectors (quantum mechanics-like)

• microlocal spectrum condition only for the dynamical sector

Oscillatory degrees of freedom, typical of QFT, are combined to
QM-like topological degrees of freedom (electric/magnetic fluxes,
Aharonov-Bohm configurations).



How to get such states?

1. Decompose the theory into dynamical and topological sectors via a
symplectically orthogonal and duality compatible splitting

(non-unique, non-canonical choice of splitting)

2. Assign a duality-invariant state to each sector

Dynamical sector: Hodge decomposition on Σ (compact)
and (a bit of) microlocal analysis

Topological sectors: several possibilities (e.g. particles on a circle)

3. State on the full theory as tensor product of states on sectors
(some care with tensor products of C∗-algebras required)

4. Associated GNS triple and unitary operator implementing duality



2D example

M = R× S1, g = −d t ⊗ d t + dθ ⊗ dθ

C1(M) =
{

(h, h̃) ∈ C∞(M;T)2 : d log h = ∗d log h̃
}

' dC∞(M) ∩ ∗ dC∞(M)︸ ︷︷ ︸
dynamical

⊕ T2 ⊕ Z2︸ ︷︷ ︸
topological

h(t, θ) = h0 + z θ −
(
z̃ t+

∑
k≥1

(
c+
k cos(2πk(t + θ)) + c−k cos(2πk(t − θ))

−s+
k sin(2πk(t + θ))− s−k sin(2πk(t − θ))

)
mod Z

)
h̃(t, θ) = h̃0 + z̃ θ −

(
z t+

∑
k≥1

(
− c+

k cos(2πk(t + θ)) + c−k cos(2πk(t − θ))

+s+
k sin(2πk(t + θ))− s−k sin(2πk(t − θ))

)
mod Z

)
k ≥ 1 =⇒ no zero-modes in the dynamical sector!



2D example: state on the dynamical sector

M = R× S1, g = −d t ⊗ d t + dθ ⊗ dθ
Formula for the two-point function:

ω2(ρ, ρ′) =
∑
k≥1

(4πk)−1
(
δ̂ ρ(k, k) δ̂ ρ′(−k ,−k) + δ̂ ρ(k,−k) δ̂ ρ′(−k , k)

)
=
∑
k≥1

πk
(
c+
k c ′+k + c−k c ′ −k + s+

k s ′+k + s−k s ′ −k
)

Remarks:

Line 1 Observables labelled by 1-forms ρ ∈ Ω1
c(M).

ω2 fulfils the microlocal spectrum condition.

Line 2 Fourier coefficients c±k , s
±
k from the previous slide.

0-modes None! (treated separately in the topological sector).
0-modes are evil!



2D example: topological sector

M = R× S1 =⇒ Topf1(M) ' H1(M;T)2 ⊕H1(M;Z)2 ' T2 ⊗ Z2

Symplectic structure:

σT ((u, ũ, z , z̃), (u′, ũ′, z ′, z̃ ′)) = ũ z ′ − u′ z̃ − ũ′ z + u z̃ ′ ∈ T

State: two particles on a circle, initial positions u, ũ, discrete momenta z , z̃ .

ωT (W (u, ũ, z , z̃)) =

{
1, if z = 0 = z̃ ;

0, otherwise.

Momenta label a basis {|z , z̃〉} of the GNS-Hilbert space.

Unitary operator for duality: U|z , z̃〉 = |z̃ , z〉 (flipping momenta)

Self-adj. momentum observables: P|z , z̃〉 = z |z , z̃〉, P̃|z , z̃〉 = z̃ |z , z̃〉
(spectra given by the values of momenta)



Conclusions

• Differential cohomology encodes Chern classes (topological fluxes),
flat connections (Aharonov-Bohm effect), . . .

• Abelian duality is implemented naturally.

• Splitting the model into dynamical and topological sectors leads to
a factorization of the observable algebra.

• States can be obtained by assigning a state on each sector:

Dynamical sector Ground state, microlocal spectrum condition.
Topological sector Quantum mechanics-like (e.g. particles on S1).

• The GNS triple implements Abelian duality as a unitary operator.

Thank you for your attention!
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