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Plan of the talk

e Motivations and basic ideas:
o Casimir effect, delta-type potentials and zeta regularization.

e General formalism:
o functional spaces, Schrodinger-type operators, integral kernels;
o zeta regularization of a Wightman scalar field.

e Delta-type potentials:
o singular perturbations of self-adjoint operators;
o an explicitly solvable example.

e Further developments and outlook.
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Motivations and basic ideas.
Casimir effect

e Generalized terminology: physical phenomena related to the vacuum
state of a quantum field confined by classical boundaries/potentials or
living on curved /topologically non-trivial background spacetimes.
[Bordag, Dowker, Elizalde, Fulling, Kirsten, Milton, Moretti, Zerbini, ...

... Dappiaggi, Nosari, Pinamonti]
o No self-interaction of the field.
o No back-reaction effects.

= Free theory: effective interaction with a fixed classical background.

Conceptual relevance: it involves the renormalization of UV divergences.
e Delta-type potentials are likely to give a more realistic mathematical

description of the physical confinement (semi-trasparent boundaries).

o Rigorous formulation in terms of self-adjoint extensions of symmetric
operators — explicit constructions using resolvent techniques.
[Albeverio, Birman, Dell' Antonio, Exner, Hgegh-Krohn, Posilicano, Yafaev, ... ]

o Could lead to a possible solution of the issue of boundary divergences.
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Zeta regularization

e Basic idea: to give meaning via analytic continuation to ill-defined
expressions appearing in mathematics and physics.

o To study regularity properties of pseudo-diff. operators and
geometric invariants. [Minakshisundaram, Pleijel, Seeley, Ray, Singer]

o To define renormalized (Vacuum) Expectation Values of local/global
observables in QFT (effective action, total energy, stress-energy tensor).

[Dowker, Critchley ('75); Hawking ('77); Zimerman et al. ('77); Wald ('79)]
[Albeverio, Actor, Cognola, Elizalde, Kirsten, Moretti, Spreafico, Zerbini, ... ]

e Constructive zeta approach in the framework of Wightman quantization:
o introduce a zeta-reg. Wightman scalar field using complex powers of
the Schrodinger-type operator which determines the Klein-Gordon eq.
— well-def. pointwise evaluation of the field operator;
o generate a zeta-reg. algebra of polynomial observables
— define renormalized VEVs via analytic continuation;

o use the resolvent operator to obtain the analytic continuation.
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Abstract functional framework.

Basic elements

o (H,{|), )=H = separable Hilbert space with conjugation.

o A:DomA C H — H strictly positive, self-adjoint, s.t. Af= Af.

o A* (s€C), (A—z) " (zep(A), neN), defined via spectral theorem.
¢ In applications:
o H = single-particle Hilbert space in Fock space formulation;
o = structure necessary to define a C-linear Wightman field;

o A = Schrédinger-type operator giving rise to the Klein-Gordon eq.

(A > 0 to avoid infrared divergences).

Functional spaces

o H':= completion of DomA"/? w.rt. (g|f),:=(A7?g|A?f) (reR).
= HO=H and HEEHuif r=u.

o HT:=),egM" with Fréchet topology induced by ( | ), (n€N).

o H™ > :=,crH" with inductive limit topology.

. dense dense dense ___ dense o
= Infinite scale: HT>® < H" < H — H" = H> (r>0).
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Extended structures
o A (]):U,epH "xH"— C extens. of the inner product on H s.t. the

restrictions ( | ) [H~"xH" are continuous, sesqui-lin. Hermitian forms.
isom

= HT = (H") = topol. dual of H" (r € RU{+o0}).
o3l H X H > = :H —H"isa conjugation, (g|f)=/(g|f).
o FAS, (A—2z)"": H > — H > continuous extensions

= A~ H'—H2R (reR) is an Hilbertian isomorphism.

= {Rs>o0} = B(H,H ), s— A is analytic.

Cauchy’s integral representation

A7 = — .(n—1)| /dz Zot (A - 2)7F
2mi [10=1 (s — £)

o Gelfand-Pettis integral, holding in H*

o Descending from Cauchy's formula:
z—° with the determination argz € C\ (—o0,0];
« ) = Hankel contour around o(A) (o(A)Cle, +00), £>0);
. regular at s =1,...,n—1 (no poles).
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Integral kernels and their analytic continuation.

The case of Schrodinger-type operators
o H = L%(Q), with QCR9 any open domain (or Riemannian manifold).
o A= (=A+V) Dy, with A=Laplacian, Ve C>(Q),
D4 CL%(Q) = domain of self-adjointness (V,D. s.t. A>0).
= H — HL (Q) < C/(Q) forjeN,reR with r > j+d/2.

loc
Integral kernels and regularity (Note: ( | ) = extens. of inner prod. on H.)
o 3! Dirac delta ox € H™>° (x€Q) s.t. (&|f)=Ff(x) (FeEH r>d/2).
o A7*(x,y):= (| A™%dy) = Dirichlet ker., well-def. for Rs>d /2.
= s — A7°(x,y) is analytic, for any x,y€Q.
= A(,)ed(QxQ) if Rs>(j+d)/2.
— It relates to propagator’s diagonal evaluation.
o (A=2z)""(x,y):=(0x|(A—z)""dy) = resolvent ker., well-def. for n>d /2.
= p(A)2z — (A—2z)""(x,y) is analytic, for any x,y€Q.
= (A—2)7"(,)ed(QxQ) if n>(j+d)/2.
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The spectral kernel
o The abstract Cauchy’s representation implies, for s, n>d/2,

(n—=1)!
A—s , -\ ) /d —s+n—1 A —n , )
R e e Rk 2)"(x.y)

. It follows from the def. of Gelfand-Pettis int. and integral kernels.
. Valid for any x,y€Q: also fory=x€Q.

o Introduce the spectral kernel of order n

E"(\ x,y) = 2i lim [(A—)x—f—is)_”(x,y) — (A=X—ie)7"(x,y)] .

Tl e—=0*
. A “limiting absorption principle” type computation
< evaluation of the jump discontinuity of the resolvent on o(.A).
. 2z (A—2)7"(x,y) analytic on p(A) = suppE"( ;x,y)Co(A).
. For ®s,n > d/2, the Cauchy’s repres. gives (A\o:=info(A) > 0)

(n—1)! Foo

= AT(xy) = = dA AL E (A x,y) -
i=1(s =) I
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Analytic continuation of the diagonal Dirichlet kernel

o Assume there holds the large A\ asymptotic expansion, for some K €N,
K—1
E"(X;x,x) = A\¥/27n Z ex(X) A\TK2 4 Re(X\;x),  where
k=1
. x€Q is fixed (diagonal case of interest for Casimir-type applications);
. €,...,ex_1:Q2—R (continuous functions);
« Re(\x) = O(/\fK/2) for A— 400 (remainder function).
¢ Often fulfilled in the case of elliptic operators [Agmon, Hormander
< more general cases handled similarly.

o]

o Then, Cauchy's representation can be re-expressed as

K—1\ —s+(d—k)/
(n—1)! )\0 (d=h)/2

“S(x.x) = s+n—1 X
A7 (x,x) Ty | 2 s(a- k/2 /d)\/\ Rk(\;x)|.

. Derived for $s > d/2 — makes sense for s > d/2—K/2.
< analytic continuation to a meromorphic function
with possible simple poles at s = (d—k)/2 (ke{1,...,K—1}).
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Zeta-regularized Wightman scalar field.

Fock space quantization
o §V(H):= @, ;M "= bosonic Fock space (V := symm. tens. prod.)

To (H):= finite particle subspace (feFy(H)).
vi=1¢& C=H"° vacuum state.

o Time zero Wightman field
B(h) = I3 (5 (ATT77R) + 5+ (A4h))
. &t h) = eatlon/annlhllatlon operators on Fy (H), def. for he H
([8%(h), 85(K1CO, [a-(h),a*(K)]C (hk)I; & (h)v:=0).
= @(h) well-defined for test-elements heH 172,
= conjugation s.t. Af = Af = h+ $(h) C-linear.

o Time evolution via second quantization of e=™VA (t R = time)
Pe(h) = T(2) p(h)T(e™H)  (her 1),
« R FY(H), t— @e(h)fis of class C", for heH 2",
. Strong form of the Klein-Gordon eq., for he H#3/2 (c=h=1):
[0eepe(h) + @e(Ah)| f = 0.

Davide Fermi
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Zeta-regularized field

o Of interest for applications: pointwise evaluation “@(x) := ¢(0x)"
< ill-defined since 05 ¢ H™? (5x€H ™", r>d/2).
o Consider the zeta-regularized Dirac delta (A’SH”iS&mHMS”)
6 = (A/RY) Y45, € HTP for Ru>d—2p,
kE€R = renormalization mass parameter .
Define the zeta-regularized field at x = (t,x) € RxQ
PU(x) = ¢e(dy) for Ru>d—1.
.« u=0 ¢ non-regularized theory.
. Generate an algebra of zeta-reg. polynomial observables on Fy (H).

o The zeta-reg. two-point function is (v = vacuum state)

utl

(v]|@“(x)pU(y)v) = %u (6« | (efi\/Z(tft’)A* 5 )5y> )

. It determines any polynomial obs. VEV (free theory — Wick's thm).

. Differentiable function of x,y € RxQ: of class C" for Ru>2n+d—1
= evaluation along the diagonal y = x makes sense.
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Renormalization by analytic continuation (a case study)
o The zeta-reg. vacuum polarization is given by

(vIg"(Ex)v) = S A

u+1

2 (x,x) .

« No normal ordering to make connection with the Casimir effect.
o u (v]RU(E,x)%v) = (v|pY(x)?v) is analytic for Ru>d —1 (fixed x€Q).

u+l

o Express A7z (x,x) in terms of E"(\; x,x) via Cauchy'’s identity and
use asymptotics of the spectral function E(")()\; x,x) for A = +o0.
= Explicit analytic extension of v+ (v|3Y(x)?v) (fixed x€Q),

meromorphic near u =0 (possible pole singularity) .

o The renormalized vacuum polarization is (x € Q)

(V[@(x)? V)ren := RP,_o (v|2“(x)?v) ,
RP\UZ0 := regular part of the Laurent expansion at u=10.
« No pole at u=0 = finite result independent of k,
without subtraction of divergent expressions.

. Pole at u=0 = minimal subtraction scheme [Wald, Blau,Visser, Wipf, ...]
<> addition of local counter-terms (explicit dependence on k).
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Delta-type potentials.

Preliminary remarks

o Study Casimir-type configurations with “semi-trasparent boundaries”:
likely, a more realistic mathematical description of field confinement.
[Mamaev, Trunov ('81), Bordag et al. ('92), Milton ('04), ... : local obs., 1D models]
[Spreafico, Zerbini ('09), Albeverio et al. ('10-'15), ... : global obs., 3D models]

o Heuristic formulation:
A'=" —An+ad on H=IL*RY),

« — A= —/A+m?: distributional Laplacian (m>0 to avoid IR diverg.);
« a€R: coupling constant (~ inverse scattering length in QM);
. Or: Dirac delta supported on a smooth hypersurface I C RY.

o Note: &r not a regular perturbation of —/\,, (3 DomACH).
(6r as “limit" of sharply peaked potentials — nontrivial subject.)

o Rigorous results:
. A = self-adjoint extension of the symmetric op. (=) [ HZ(RY\T).
o co-dim. (M) <3 ((=Am)[HE(RI\T) ess. self-adj. for co-dim. > 3).
« Explicit Krein-type relations for resolvent operators.
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A Krein-type approach

o Von Neumann theory: —A,,>0 = 3 self-adj. extensions
< non-trivial construction if deficiency subspaces are co—dim.

= Equiv. characterization using a Krein-type approach [Posilicano].
Case study: co-dim.(I') = 1 (generalization to co-dim.(I')=2,3).
o Basic elements:
« Ao = (—Am) | H?(RY), free Laplacian (ess. self-adj. on L2(R9));
. v H2(RY) — H3/2(T'), trace on ' (T regular enough, vf=flr);
. S = Aol H3(RY\T), closed, densely defined, symmetric operator.
< Self-ad]. extensions of S as restrictions of the adjoint ST.
(DomSt = {f € L2(RI\T) | Anf €L2(RI\T)} = HZ(RY\T).)
o Single layer operator (z € p(Ag) = C\[m?, +0)):
G, = (y(Ao—2) 1)1 HT3/2(T) — L[*(RY)

« (Ao—2)G,"="6r (indeed, by def., {(Ao—2)G.g, f)pa= (g, VF)r);
. Related operators: (G;)! : [2(R?) — H3/2(I),
vG, : Dom(vG,) C L3(T) — L*(T).
< All explicitly determined in terms of (Ag—z)~! and 7.
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Delta potentials as self-adjoint extensions
o The self-adj. extensions of S corresponding to delta-type potentials are:
A= ST[{U+G)\oq | ue Hz(Rd)7 quom(’yG)\o)7 ’“/(U-FG)\OC]) = - ailq} ’
.A(u+G,\0q) = Aou+ MGy, q -
« Mo €p(Ap) fixed arbitrarily — def. of A independent of Ag.
« Heuristic computation = A “=" Ag + «(r, ) dr on DomA.
« The parameter a€R: o < 0 — delta-well (“attractive potential”);

a=0 — A= Ay (free Laplacian);
a =+oo — Dirichlet b.c.on T.

o The resolvent of A is given by the Krein formula
(A-2)"' = (A —2) = G (o +4G,) HG)T .
«z€p(A) D {z€p(Ao) st. (a t+7G,)" ! is bounded} .

. Ua.c.(A) = Uess(A) = O'(.Ao) = [m2, -I-OC)
«op(A) = {AeR\o(Ap) s.t. 0€0,(a14+vGr)} — possible resonances.

= A>0 not granted a priori (can be enforced with m large enough).
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An example: delta-potential supported on a plane in R3,

Description of the model

o Case study: computation of (v|3(x)?V),e, for a massive scalar field on R®
with background delta potential on the plane 7= {x!=0}.
[Mamaev, Trunov ('81), Bordag et al. ('92), Milton ('04), Khusnutdinov ('06), ... ]

o Field theory determined by A = A; @, +1;®A4, on L2(R)®L23(R?):
« A ="Ao+al(do, Yo (Ao =(—011+m?)|H*(R), a €R, §p =delta at x'=0)
< rigorous def. of A; as self-adj. extension of Ag[H3(R\{0});
« Ay i= (—00n—033) | H*(R?) — free theory on R? = R3/7.

o General identities for Dirichlet kernels [D.F., L. Pizzocchero ('14)]:

A75(x,x) = I;(Sr_(l)) Ap (s= 1)( xLxl) (xeR3, x'eR, Rs>3/2)
K u—1 1
S (v E R = %A (i) (Rus2).

= It suffices to consider the 1D problem determined by A; on L*(R).
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The reduced 1D problem
o Let S:=Ap[H3(R\{0}) and consider (G, me%méiz z€C\[m?+c0))

Ar = ST{u+Goq|ue H*(R), g €C, u(0)+ 5 =2}, Ai(u+Gog)=Aou.

2m
v Oac (A1) = [m?, +00), f _. Ai>0iff (@>0 A m>0)
if >0
N {{m o) :fg<0 or (<0 A m>|al/2).

o d=1 = consider the diagonal resolvent kernel (z€ p(A1), x*€R):
; . ani\xl\\/m
2Vz—m?  2/z—m? (2Vz—n? +ia)
o The spectral kernel is determined by the jump discontinuities of /z—m?:
EY(\ xt xb) = eo(A) + ep( A xb) + e c (N xY)
X(m2,+oo)()\) i ) —lax! a2
Xt o) o= 2 e s (57,
1 20/ A—mZ sin(2|x! [V A—m?) — a? cos(2|x* |V A—m2)
eE-C‘()‘;X ) = 2 X(m2,+oo)()‘) .
8V A—m? (A—m2+ (%))

< Use their large \ asymptotics to anaytically continue s — A;°(x!, x").

(As —Z)fl(xl7 Xl) =

a(N) = lal=a
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The renormalized vacuum polarization
o Previous results =- by analytic continuation at u = 0 one gets

(V[B(x)V) ren = Fo + Fp(x") + Fac.(x')

m? m 1 la|—a | 02 jaxt
. — 2_ & mlaxt]
Fo= 8772[|n(2f<c) 1]’ Folx) : r V7 g€ ’
o2

2m
1 L _ _2m
Fac(x7) == 672 [smh(y)Is(y) cosh(y) Zc(y) . Ki(y )]y:Qm‘X1‘+
_ +°;>\Q e ()\'Xl) _ asm(2|x |\/—) 052C05(2|X1|\/m)
L 4mA 8T A3/2
Y h -1 y inh
(Ic(}/) = yem + logy +/ dw W 2 Zs(y) ::/ dw M) '
0 w o w

o Fy = free massive theory contribution (by subtraction of pole singularity) ;
Fp/a.c. = point/continuous spectrum contribution (by pure an. cont.).

(Fa.c. by explicit integration of first terms in asymptotic expansion of e,.c..)

o Asymptotics: « (V|B(x})?V)en = — | + O(log(m|x!|)) for x'—07F;

_a
1672|x!

« (VAN ren = Fo + O(Ixt~>) for x!— +00.
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Summary and outlook.

Summary:
o functional analytic framework;
o constructive ZR approach in the framework of Wightman quantization;

o Casimir effect for delta-type background potentials.

Further developments:
o explicit analysis of other configurations (e.g., point-interaction in R3);

o investigation of boundary divergences in relation with singular potentials.
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Thanks a lot for your attention!
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