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0. Introduction

We study systematically the classical and quantum theory of a Klein-Gordon field on
anti-de Sitter (AdS) on a more mathematical precise fashion, extending the work of
Avis, Isham, Storey (1978), Allen & Jacobson (1986) and others.

We consider all suitable boundary conditions at infinity, by treating the system as a
Sturm-Liouville problem, complementing the work of Wald & Ishibashi (2004).

We propose a natural generalisation of the Hadamard condition for quantum states
obeying these boundary conditions on a spacetime with a timelike boundary. This
allows to properly construct a quantum theory for the Klein-Gordon field.

We use this system as an example to study classical and quantum field theory on
manifolds with boundaries.
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1. Geometric preliminaries

Definition: Anti-de Sitter AdSd+1 (d ≥ 2) is the maximally symmetric solution to
the vacuum Einstein’s equations with a negative cosmological constant Λ < 0. It is
defined as the hypersurface in Rd+2 with metric

ds2 = −dX2
0 − dX2

1 +

d+1∑
i=2

dX2
i

given by the relation

−X2
0 −X2

1 +

d+1∑
i=2

X2
i = −`2 , `

.
= −d(d− 1)

Λ
.

Anti-de Sitter spacetime is not globally hyperbolic: it possesses a timelike boundary
at spatial infinity.



1. Geometric preliminaries

Poincaré patch (t, z, xi), t ∈ R, z ∈ R>0 and xi ∈ R, i = 1, . . . , d− 1,

ds2 =
`2

z2
(
−dt2 + dz2 + δijdxidxj

)
.

The region covered by this chart is the Poincaré fundamental domain, PAdSd+1.



1. Geometric preliminaries

PAdSd+1 can be mapped to H̊d+1 .
= R>0 × Rd via a conformal rescaling

ds2 7→ z2

`2
ds2 = −dt2 + dz2 + δijdxidxj .

We can attach a conformal boundary as the locus z = 0 and obtain
Hd+1 .

= R≥0 × Rd, the half Minkowski spacetime.
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2. Sturm-Liouville problem and boundary conditions

2.1. Field equation as a Sturm-Liouville equation

Klein-Gordon equation. Poincaré domain (PAdSd+1, g), φ : PAdSd+1 → R,

Pφ =
(
�g −m2

0 − ξR
)
φ = 0 .

Lemma: In the half Minkowski spacetime (H̊d+1, η), Φ = ( z` )
1−d
2 φ : H̊d+1 → R is a

solution of

PHΦ =

(
�η −

m2

z2

)
Φ = 0 ,

with m2 .
= m2

0 − (ξ − d−1
4d )R.

Remark: From now on, we set ` = 1.
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2. Sturm-Liouville problem and boundary conditions

2.1. Field equation as a Sturm-Liouville equation

Fourier expansion. Fourier representation of Φ:

Φ =

∫
Rd

ddk eik·x Φ̂k , x
.
= (t, x1, . . . , xd−1) , k

.
= (ω, k1, . . . , kd−1) ,

where Φ̂k are solutions of the ODE

LΦ̂k(z)
.
=

(
− d2

dz2
+
m2

z2

)
Φ̂k(z) = λ Φ̂k(z) , λ

.
= ω2 −

d−1∑
i=1

k2i

This is a Sturm-Liouville problem on z ∈ (0,+∞) with spectral parameter λ.

Recall: A Sturm-Liouville equation is of the form

− d

dz

(
p(z)

dy

dz

)
+ q(z)y = λw(z)y , z ∈ (a, b) ,

with −∞ ≤ a, b ≤ ∞, λ ∈ C, p−1, q, w ∈ L1
loc(a, b) and w a weight function.

Lemma [Fulton (2008)]: The spectrum of L contains a continuous spectrum
σc ⊂ (0,∞). For λ ∈ (0,∞), two eigenfunctions in L2(0,∞) are

√
z Jν

(
z
√
λ
)
and√

z Yν
(
z
√
λ
)
, with ν .

= 1
2

√
1 + 4m2 ≥ 0.
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2. Sturm-Liouville problem and boundary conditions

2.1. Field equation as a Sturm-Liouville equation

− d

dz

(
p(z)

dy

dz

)
+ q(z)y = λw(z)y , z ∈ (a, b) ,

Definition (Endpoint classification): The endpoint a is

1 regular if a ∈ R and ∃ c ∈ (a, b) s. t. p−1, q, w ∈ L1
loc(a, c]; otherwise, it is singular;

2 limit-circle (LC) if, for some λ ∈ C, all solutions of the equation are in L2(a, c] for
some c ∈ (a, b); it is limit-point (LP) otherwise.

Proposition: For the SL problem

LΦ̂k(z)
.
=

(
− d2

dz2
+
m2

z2

)
Φ̂k(z) = λ Φ̂k(z) , z ∈ (0,+∞)

the classification for the endpoint 0 is as given in the following table

m2 ν
.
= 1

2

√
1 + 4m2 Classification of 0

m2 = 0 ν = 1
2 Regular

m2 ∈ [−1
4 ,

3
4), m2 6= 0 ν ∈ [0, 1), ν 6= 1

2 Limit-circle (LC)
m2 ∈ [34 ,∞) ν ∈ [1,∞) Limit-point (LP)

The endpoint +∞ is LP for all ν ≥ 0.
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2. Sturm-Liouville problem and boundary conditions

2.2. Boundary conditions

For a boundary-value problem with one or two singular endpoints, regular boundary
conditions are no longer valid and need to be generalised.

Definition: Given two differentiable functions u, v, the Wronskian is

W [u, v](z)
.
= u(z)v̄′(z)− v̄(z)u′(z) .

The Wronskian has a finite limit at each endpoint, even if singular.

Definition (Robin boundary condition): At an endpoint a, for a solution Φ, when

1 a is regular (R), takes the form

cos(α) Φ(a) + sin(α) Φ′(a) = 0 , α ∈ [0, π) .

2 a is limit-circle (LC), takes the form

lim
z→a

{
cos(α)W [Φ,Ψ1](z) + sin(α)W [Φ,Ψ2](z)

}
= 0 , α ∈ [0, π) ,

where {Ψ1,Ψ2} is a linearly independent basis of solutions.

Remark: The LC reduces to R case if Ψ1(0) = 0, Ψ′1(0) = 1, Ψ2(0) = −1 and Ψ′2(0) = 0.
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2. Sturm-Liouville problem and boundary conditions

2.2. Boundary conditions

Theorem: The SL problem

LΦ̂k(z)
.
=

(
− d2

dz2
+
m2

z2

)
Φ̂k(z) = λ Φ̂k(z) , z ∈ (0,+∞) ,

is well-posed when the boundary conditions at 0 are chosen as in the following table

ν
.
= 1

2

√
1 + 4m2 Classification Boundary condition at z = 0

ν = 1
2 Regular (R) cos(α)Φ̂k(0) + sin(α)Φ̂′k(0) = 0

ν ∈ [0, 1), ν 6= 1
2 Limit-circle (LC) cos(α)W

[
Φ̂k, Φ̂

1
k

]
+ sin(α)W

[
Φ̂k, Φ̂

2
k

]
= 0

ν ∈ [1,∞) Limit-point (LP) Not required

where
{

Φ̂1
k, Φ̂

2
k

}
is a basis of linearly independent solutions. For ν > 0, they are given by

Φ̂1
k(z) =

√
π

2

(√
λ
)−ν√

z Jν
(
z
√
λ
)
, Φ̂2

k(z) = −
√
π

2

(√
λ
)ν√

z J−ν
(
z
√
λ
)
.

Corollary: The solution of the SL problem may be written as

Φ̂k(z) = Nα
[
cos(α) Φ̂1

k(z) + sin(α) Φ̂2
k(z)

]
,

{
α ∈ [0, π) , ν ∈ [0, 1) ,

α = 0 , ν ∈ [1,∞) .



2. Sturm-Liouville problem and boundary conditions

2.3. Examples

2.3.1. Case ν = 1
2 : massless, conformally coupled scalar

Most general boundary condition: regular Robin boundary condition,

cos(α) Φ̂k(0) + sin(α) Φ̂′k(0) = 0 , α ∈ [0, π)

α = 0: Dirichlet boundary condition.
α = π

2 : Neumann boundary condition.

Spectrum:

σ =

{
(0,∞) , α ∈ {0} ∪ [π2 , π) ,

(0,∞) ∪ {− cot2(α)} , α ∈ (0, π2 ) .

Eingenfunctions:

λ ∈ (0,∞) : Φ̂1
k(z) =

sin
(
z
√
λ
)

√
λ

, Φ̂2
k(z) = − cos

(
z
√
λ
)
.

λ = − cot2(α) : Φ̂k(z) = e− cot(α)z (“bound state” mode solution).
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2. Sturm-Liouville problem and boundary conditions

2.3. Examples

2.3.2. Case ν ∈ (0, 1) \ {12}

Basis of linearly independent solutions:
{

Φ̂1
k, Φ̂

2
k

}
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π
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z Jν
(
z
√
λ
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2
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k
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3. Hadamard condition for AdS

3.1. Two-point distribution in AdS

Quantum state. We investigate if one can define a quantum state which obeys the
aforementioned boundary conditions and which satisfies a natural analogue of the
Hadamard condition of globally hyperbolic spacetimes.

A state ω is fully characterised by its two-point distribution

ω2(x, x
′)
.
= ω(φ(x)φ(x′)) .

In H̊d+1, the conformally related quantity is

ωH
2 (x, x′) = (zz′)

1−d
2 ω2(x, x

′) ,

a solution of (Pη ⊗ I)ωH
2 = (I⊗ Pη)ωH

2 = 0.

Fourier-Bessel transform along x 3 Rd

ωH
2 (x, x′) = lim

ε→0+

∫ ∞
0

dq q

∫ ∞
0

dk k
e−i
√
k2+q2(t−t′−iε)√

2π(k2 + q2)

(
k

r

) d−3
2

J d−3
2

(kr) Ĝk(z, z
′) ,

where

(L⊗ I) Ĝk = (I⊗ L) Ĝk = λ Ĝk , L = − d2

dz2
+
m2

z2
.
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3.1. Two-point distribution in AdS

Finding Ĝk, and thus ωH
2 , is a problem of eigenfunction expansion of the δ-distribution

(c.f. Titchmarsh 1962).

Proposition: The two-point distribution ωH
2 ∈ D′(H̊d+1 × H̊d+1) for different values of

ν ∈ R>0 has integral kernel as follows:

If ν ∈ [1,∞), with no boundary conditions at 0,

ωH
2 (x, x′) = lim

ε→0+
N
√
zz′
∫ ∞
0

dk k

(
k

r

) d−3
2

J d−3
2

(kr)

∫ ∞
0

dq q
e−i
√
k2+q2(t−t′−iε)√

2π(k2 + q2)
Jν(qz)Jν(qz′) .

If ν ∈ (0, 1) with Robin boundary conditions such that c .= cot(α) < 0,

ωH
2 (x, x′) = lim

ε→0+
N
√
zz′
∫ ∞
0

dk k

(
k

r

) d−3
2

J d−3
2

(kr)

∫ ∞
0

dq q
e−i
√
k2+q2(t−t′−iε)√

2π(k2 + q2)

×
[
cJν(qz)− q2νJ−ν(qz)

] [
cJν(qz′)− q2νJ−ν(qz′)

]
c2 − 2cq2ν cos(νπ) + q4ν

.

Remark: There is no ground state for Robin boundary conditions with c > 0 and for
ν = 0 due to the bound states, as AdS symmetry is not preserved.



3. Hadamard condition for AdS

3.1. Two-point distribution in AdS

Proposition: Let:

G1(x, x
′) = lim

ε→0+

F

(
d
2 + ν, 12 + ν; 1 + 2ν;

[
cosh

(√
2σε
2

)]−2)
[
cosh

(√
2σε
2

)] d
2
+ν

,

G2(x, x
′) = lim

ε→0+

F

(
d
2 − ν,

1
2 − ν; 1− 2ν;

[
cosh

(√
2σε
2

)]−2)
[
cosh

(√
2σε
2

)] d
2
−ν

,

where σε
.
= σ + 2iε(t− t′) + ε2 and F is the Gaussian hypergeometric function.

The integral kernel of the two-point distribution for the ground state on PAdSd+1 is

ω2(x, x
′) =

{
N G1(u) , ν ∈ [1,∞) ,

Nα [cos(α)G1(u) + sin(α)G2(u)] , ν ∈ (0, 1) ,

where N and Nα are normalization constants and α ∈ (π2 , π).



3. Hadamard condition for AdS

3.2. Hadamard condition in AdS

Proposition: Let H(x, x′) be the Hadamard parametrix in PAdSd+1 and let
H(−)(x, x′)

.
= ιzH(x, x′), where ιz(x, x′)

.
= (x,−z;x′, z′). Then, if α 6= 3π

4 , the two-point
distribution ω2(x, x

′) is such that

ω2(x, x
′)−H(x, x′)− i(−1)−ν

cos(α) + (−1)−2ν sin(α)

cos(α) + sin(α)
H(−)(x, x′)

lies in C∞(PAdSd+1 × PAdSd+1).

Remark: If ν = 1
2 , we recover the method of images.

−z0

x(−)

z0

x

z

t
x′



3. Hadamard condition for AdS

3.2. Hadamard condition in AdS

Theorem: The wavefront set of the two-point distribution ωH
2 in H̊d+1 is given by

WF (ωH
2 ) =

{
(x, k;x′, k′) ∈ T ∗(H̊d+1)×2 \ {0} : (x, k) ∼± (x′, k′), k . 0

}
∼±: ∃ null geodesics γ, γ(−) : [0, 1]→ H̊d+1 with

γ(0) = x = (x, z), γ(−)(0) = x(−) = (x,−z) and γ(1) = x′;
k = (kx, kz) (k(−) = (kx,−kz)) is coparallel to γ (γ(−)) at 0;

−k′ is the parallel transport of k (k(−)) along γ (γ(−)) at 1;

k . 0: k is future-directed.

−z0

x(−)

z0

x

z

t x′

kk(−)

−k′



3. Hadamard condition for AdS

3.2. Hadamard condition in AdS

Definition: We call a state ωH a Hadamard state for a scalar field in H̊d+1 if its
two-point distribution has a wavefront set as above.

This definition can be read as a generalization at the level of states of F-locality.

Proposition: Any Hadamard state ω for a scalar field on H̊d+1 is such that ω2,D, the
restriction to any globally hyperbolic subregion D ⊂ H̊d+1 of the two-point distribution
ωH
2 , has a wavefront set of Hadamard form

WF (ω2,D) =
{

(x, k;x′, k′) ∈ T ∗(D ×D) \ {0} : (x, k) ∼ (x′, k′), k . 0
}
.

Remarks:

These results are in full agreement with Wrochna (2016).

We have not proved a local to global analogue of the Radzikowski result for globally
hyperbolic spacetimes. We conjecture that it holds for fixed boundary conditions
and field parameters.

With the definition of Hadamard states above, it is possible to construct a global
algebra of Wick polynomials in AdS.
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4. Conclusions

We studied the classical and quantum field theory of a massive scalar field on AdS
on a more mathematical rigorous way. We treated the classical dynamics as a
singular Sturm-Liouville problem, determining all the suitable boundary conditions
at infinity, which only depend on the mass of the field.

We obtained the two-point distributions for states obeying these boundary
conditions and showed that, besides the usual singularity at the coincidence limit,
there exists only one extra singularity given by the method of images, independently
of the mass of the field. This suggests a natural generalisation of the Hadamard
condition to spacetimes with timelike boundaries.

Next steps:

extend this formalism to a larger class of spacetimes with boundaries;

relate the states constructed in AdS to states on an QFT at the boundary in order to
construct Hadamard states in asymptotically AdS spacetimes.
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