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Dirac equation in Minkowski space
(i*ok —m)y =0
on solutions scalar product

(V])m = /t :const(%%)(t, X) dX

is time independent due to current conservation,
makes solution space to Hilbert space (Hm, (.|.)m)

(completion of solutions with spatially compact support)
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Solve with Fourier transformation,

v = [ (d4’)‘ Bik) e gk

(K —m)d(k) =

k% > 0 positive frequency (= energy)
k% < 0 negative frequency

Hm=HBH_ decomposition of solution space

or equivalently

P(x.y) = / % (K + m) 6(k? — m?) ©(—kP) e~ k=¥ gk

kernel of the fermionic projector, describes Dirac sea
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Now consider an external potential B(x)

(ig +B —m)y =0

How does P(x, y) depend on B?

» What is the Hadamard expansion (= light cone expansion)
of P(x,y)?
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A naive perturbation expansion

(ip— m) ¢ = —eBy
formal power expansion in e:
Y= Z eP (P
p=0

gives sequence of equations

(i — m)yp©@ =0
(i — m) " = —B ()

(ip — mw@“ —B (P
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(i@ — m) PP = _ B q(P)

solve with Green’s operators:
(if, — m) s(x,y) = 6*(x — )
(s0)00) = [ s(x.p)v(y) oy

PP = _g(P) B 4(P)

( Problem: Green’s functions not unique! ]

» equivalently: no initial data given
(Ig+B—-—m)y=0
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The causal perturbation expansion

Consider causal Green’s functions
g+ m

m(q) = l\o g2 — m? ¥ ivg®
Then their difference is a homogeneous solution,
kn(x,y) = 5= (5" — ) (x.)
= / ' (K — m) 6(k? — m?) e(k®) e~ kO=y) g4k
(2m)*
satisfies distributional multiplication rule

km kny = 6(m—m') pyy

where

pm(X,y) = / % (K — m) §(k? — m?) e Kx=¥) gk

. 1
define P(x,y) := E(pm — Km) (X, )



Consider k;, as multiplication operator in momentum space:

kn(q) = (¢ — m) 6(¢° — m?) ¢(q°)
Then

km(Q) ki (q)

= (g+m)s(q® — m?) e(q°) (¢ + m') 6(q° — (m')?) €(q°)
= (¢ + (m+m') g+ mm') 6(m? — (m')?) (g% — m?)
= (q?

+(m+m)g+ mm) 1 5(m—m') 6(q? — m?)

2m
= 6(m—m') (g +m) §(¢° — m*) = 6(m — m') pm(q)

O

o'
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5= S (~sh.B)" sy, . (3.2)
k=0
f ™ (57, —50) (3.9)
™ omi ~ ™

for the positive and negative frequency states by taking the absolute value

of km,
oy T \/kT . (3.10)

This gives a unique definition for 5,,. Since km is composed of eigenstates
We call the perturbation expansion of this theorem the causal perturba-
tion expansion. It allows to uniquely define the Dirac sea by

B(z,y) = 3 (m ~Fm)(@.9)
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Further perturbative results

» F.F., A. Grotz, “The causal perturbation expansion
revisited: Rescaling the interacting Dirac sea,”
arXiv:0901.0334 [math-ph],

J. Math. Phys. 51 (2010) 072301

» F.F., J. Tolksdorf, “Perturbative description of the fermionic
projector: Normalization, causality and Furry’s theorem,”
arXiv:1401.4353 [math-ph],

J. Math. Phys. 55 (2014) 052301

@ normalization of states clarified (spatial and mass
normalization)

@ contour methods give a convenient way to figure out
combinatorics
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Non-perturbative construction

» F.F., M. Reintjes, “A non-perturbative construction of the
fermionic projector on globally hyperbolic manifolds | —
Space-times of finite lifetime,” arXiv:1301.5420 [math-ph]
Adv. Theor. Math. Phys. 19 (2015) 761-803

» F.F., M. Reintjes, “A non-perturbative construction of the
fermionic projector on globally hyperbolic manifolds Il —
Space-times of infinite lifetime,” arXiv:1312.7209 [math-ph]
to appear in Adv. Theor. Math. Phys. (2016)
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Non-perturbative construction

introduce space-time inner product
<y|¢> —/ $()e(x) d*x

well-defined if 1) € 3, ¢ € Cg°(M, SAM).

basic observation: (Y | Km @)m = <p|p> J

Strategy: Represent <.|.> with respect to (.|.)m,

(¢ [8m @)m = <[>

Thus formally, S, = km, but
» Smis an operator on Hilbert space Hp,

» makes it possible to use functional analytic methods
(spectral calculus for self-adjoint operators)
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Space-times of lifetime

Let (., g) be a globally hyperbolic Lorentzian manifold,
(D—-—m)Ym=0 Dirac equation

Cs (M, St) spatially compact solutions

(Umlom)m = 2W[/( <m|pdm>=x duy(x) scalar product

completion gives Hilbert space (Hm, (.|.)m)

<|o> ::/ <Y|p~-x du g space-time inner product
M
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Space-times of lifetime

Definition (F-Reintjes 2013)
(L, g) is said to be m-finite if there is a constant ¢ > 0 such
that for all

ém,vm € Hm N Cea (M, SM) ,

the function <¢m|vm>x is integrable on /# and

|<¢m|vm>| < ¢ ||oml| [[¥ml|

(where ||.|| = (.|.)% is the norm on H ).
Then there is a unique bounded self-adjoint operator S, with
<Om|¥m> = (ém|Sm ¥m)m

(Fréchet-Riesz theorem)
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Space-times of lifetime

recall formula in Minkowski space
b by = 8(m—m') pm : (3.21)

This formalism has some similarity with the bra/ket notation in quantum

marhanire if tha nacitinan wariahla 7 ie ranlared hv tha mace narameatar m

[distribution in mass, integrate over mass parameters ]

Family of Dirac solutions WV = (¢)m) mes With I = (my, mg) # 0
nice class of solutions: W € CZo (/M x I, S )

(Vo) = /(wm|gz5m)m dm scalar product
!

completion gives Hilbert space (7, (.|.))
choose dense subspace H> (e.g. H> = C(M x I, SA))

p o H® = Co (M, SAM) , p\U:/wmdm.
I



Space-times of lifetime
Definition (F-Reintjes 2013)

The Dirac operator D has the strong mass oscillation property
in the interval | = (my, mg) with domain H°, if there is a
constant ¢ > 0 such that

|<plpd>| < ¢ // |émllm [mllm dm ¥, ¢ € T

Theorem (F-Reintjes 2013)

The following statements are equivalent:
() The strong mass oscillation property holds.

(il) There is a unique family of bounded self-adjoint
operators 8, € L(Hm) such that

<pplpd> = / (W | Smbm)m dm V1, & € H®
I i



Lorentzian spectral geometry

» F.F., O. Miiller, “Lorentzian spectral geometry for globally
hyperbolic surfaces,” arXiv:1411.3578 [math-ph]
Adv. Theor. Math. Phys. 20 (2016) 751-820
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Lorentzian spectral geometry

Theorem (F-Muller 2014)
For massless Dirac equation on globally hyperbolic surfaces of
finite lifetime,

M
tr(S2) _ /ﬁiﬂ2)
1

4N\ 1 /
5(5%) = g [ (o) [ o ( ] R du) ()

'

D(¢,¢")
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Construction of quasi-free quantum states

1
1+ efmms
are positive operators on one-particle Hilbert space

Theorem (Araki 1970)

There is an algebra of smeared fields generated by V(g),
V*(f), and a pure quasi-free state w such that:

X(—oo,O)(Sm) or

V(). v (N} =<g"|kmf>, ... (CAR)
w(W(g) V*(f)) = — ff (X)P(x,y)f(y) d*x d*y
X M

1

P = X(—oo,O)(Sm) Km resp. P= 1 4 @Bmns Km

The first state is referred to as fermionic projector (FP) state.

-

Felix Finster The fermionic signature operator



The FP state respects all symmetries of space-time:

Theorem (F-Reintjes, in preparation)

If G is a group of symmetries on S/, then w is invariant under
the action of G, i.e.

w(W(g) V*(f)) = w(W(g*g) V*(g*f)) forallg € G ]
Sketch of proof in finite life-time.

Let U be group representation on Dirac solutions with

<Uy|Up> = <ap|p>

= (UY|8mUd)m = (¥[Sm@)m

O

'
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Ultrastatic space-times

M =R x N

with .A" complete Riemannian manifold,

ds? = dt? — gy

Theorem (F-Reintjes 2013)

o(8m)={1,-1},
and eigenspaces reproduce frequency splitting.

The FP state is a Hadamard state.
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A space-time slab

» C.J. Fewster, B. Lang, “Pure quasifree states of the Dirac
field from the fermionic projector,” arXiv:1408.1645
[math-ph], Class. Quantum Grav. 32 (2015) 095001

M= (0,T)x N
ds® = dt? — gy

Theorem (Fewster-Lang 2014)
The FP state is in general not a Hadamard state.

But “softened” construction (inspired by Brum-Fredenhagen)
gives a Hadamard state.
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External potential in Minkowski space

» F.F., S. Murro, C. Rdken, C., “The fermionic projector in a
time-dependent external potential: Mass oscillation
property and Hadamard states,” arXiv:1501.05522
[math-ph], J. Math. Phys. 57 (2016) 072303

back to problem at the beginning:
(Ip+B—-—m)y=0

Theorem (F-Murro-Réken 2015)
Assume that B is smooth and

/ 0PB(f)|o dt < 00 forallp e N

—00

/OO |B(t)|co dt < V2 — 1

— o0

Then the FP state is a Hadamard state. )
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Rinder space-time

» FF., S. Murro, S., C. Réken, “The fermionic signature
operator and quantum states in Rindler space-time,”
arXiv:1606.03882 [math-ph] (2016)

M =R U % 4suppv
pid decay
X
apid decay
Ve CG(R,SR) = |<vlo>| <c(¥) o] VoeXH

|<i|o>| = (Sv|p) qu €eH
Defines 8 : Cg5 (%, SR ) — H densely defined operator



Rinder space-time

where H is Hamiltonian in Rindler time (unbounded!)
(i.e. generator of Lorentz boosts)

Theorem (F-Murro-Roken 2016)

In two-dimensional Rindler space-time, the FP state is a
Hadamard state.

@ construction of thermal states is possible

@ in four-dimensional Rindler space-time, FP state is a new
state (spin couples to transversal momenta).
Open questions:

o Is it Hadamard?
@ What is its physical significance?
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A plane electromagnetic wave

» F.F. and M. Reintjes, “The fermionic signature operator and
Hadamard states in the presence of a plane
electromagnetic wave,” arXiv:1609.04516 [math-ph],
to appear in Ann. Henri Poincaré (2017)

(ig+A—m)y =0
A=A(t+ x)
A smooth, but no decay assumptions at infinity!
separation ansatz:

Um(t,x,y,2) = e Moy iz M)\ (E+ )
S8m = €(u) multiplication operator

Theorem (F-Reintjes 2016)
The FP state is a Hadamard state.
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Proof of the Hadamard property in an external field

In Minkowski vacuum, 8, has eigenvalues +1.
The corresponing splitting of the solution space

Hm = HH @ K,

coincides with frequency splitting.
In the presence of the external potential (denoted by tilde),

5 - (?i ?ﬁ)
8§

Then
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Proof of the Hadamard property in an external field

General strategy:
1. Use that B is not too large to prove that

. o 1
18~ Sl 15m — S| < 5

Then 3 1 13
<5 . 3 1 13
7(8).06m < [-5-3]V[53)

2. Use contour representation (Cauchy integral)

" 1 . »
X(—oo,O)(Sm) = _ﬁ yé&(_n(sm - /\) ax

3. Apply resolvent identity
Bm=AN""=@ " -N)"T"-8mn-2)"
to obtain

~ 1 ~ ~ o~
xT(8m) = xF(H) + —y§ Sm—A)""A8 (8> - )" dA
2mi JoB, (+1)
2
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Proof of resolvent identity

rewrite this as

(8> —=2) = (8m—2A) — A8

Mulitply from right by (8> — )~

and from leftt by (§, — \) . O
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Proof of the Hadamard property in an external field

4. Show that the remaining contour integral
;ﬁ Sm—N)"1A8(8° -\~ dx
0B1 (£1)

has a smooth kernel. To this end, apply:

Let A € L(Hm) such that for all p,q € N,

HIAHP . C5°(N,Sa) — C(N,SA) isbounded

Then A has a smooth integral kernel.
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Proof of the Hadamard property in an external field

Key technical tool: Explicit representation of S ,:

Lemma

szsm

- é _dt—t) [sm UB V(1) U — D' V(1) 8 U] et

b rh .t ) L e o /
T2 V(t) Sm UL V(F) UL dit dit
o /lo

Here write the Dirac equation in Hamiltonian form

iOptpm = Hipm  with H:=-3V+B-—m)=H+V

ULb: unitary time evolution without interaction

ULtb: unitary time evolution with interaction

» rewrite products H9 A8, HP as iterated commutators
estimate these commutators
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Proof of the Hadamard property in an external field

To derive this representation combine
» Lippmann-Schwinger equation

t
Yl = UsPyS + i / Uy (1°B ¥m) | dr
fo

» Multiplication rules for distributions in Minkowski space like

Km Ky = 6(m —m') pm
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Outlook: Causal fermion systems

» light-cone expansion gives explicit expansion about the
light cone

i
X P(xy) =5 xe Mg TE
1 y
—Exm,-/ 0,0/1] T
X
1 y
+—XL§/ Fl iy TO
_XLfl/ [0,1]0] F, L’Yj TO
g [ 101119 TO
X
y . 1
—x [ 10,2101 T+
X
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Outlook: Causal fermion systems

Here
Ta(q) = ©(—q°) 5(¢* — a)

I
T — (%) Ta|a:0 — (counter terms)

/[Ir|n] dz f(z / da o/ (1-a)" (a—a?)" flay+(1—a)x)

P(x,y) is of Hadamard form
<= only bounded line integrals appear.
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Outlook: Causal fermion systems

[General observation: P(x, y) determines the bosonic potential. ]

Build in particles and anti-particles states:
1 Ny 1 Ny
Plx,y) = Pri(x.y) = 5- > ek()vk(y) + o > a()i(y)
k=1 I=1

» P(x,y) describes the physical system completely

General idea (goes back to 1990):
» formulate physical equations directly with P(x, y)
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What is a causal fermion system?

» approach to fundamental physics
a new consistent physical theory
» promising candidate for a unified physical theory

A\

» novel approach to describe space and space-time,
as well as structures therein:

“‘quantum space-time,” “quantum geometry”
» dynamics described by causal action principle

@ background-free, no space-time presupposed
@ space-time emerges by minimizing the causal action
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Results of the theory

Continuum limit
(classical fields coupled to second-quantized Dirac field):

» interactions of the standard model (electroweak + strong)
» general relativity
» quantum mechanics

Other limiting case (“microscopic mixing”)
» quantum field theory (second-quantized bosonic fields)
no ultraviolet problems
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