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Felix Finster The fermionic signature operator



Dirac equation in Minkowski space

(iγk∂k − m)ψ = 0

on solutions scalar product

(ψ|φ)m :=

ˆ

t=const

(ψγ0φ)(t , ~x)d~x

is time independent due to current conservation,

makes solution space to Hilbert space (Hm, (.|.)m)

(completion of solutions with spatially compact support)
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Solve with Fourier transformation,

ψ(x) =

ˆ

d4k

(2π)4
ψ̂(k) e−ikx d4k

(

/k − m
)

ψ̂(k) = 0

{

k0 > 0 positive frequency (= energy)

k0 < 0 negative frequency

Hm = H+ ⊕H− decomposition of solution space

or equivalently

P(x , y) =

ˆ

d4k

(2π)4
(/k + m) δ(k2 − m2) Θ(−k0) e−ik(x−y) d4k

kernel of the fermionic projector, describes Dirac sea
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Now consider an external potential B(x)

(i∂/+B− m)ψ = 0

How does P(x , y) depend on B?

� What is the Hadamard expansion (= light cone expansion)

of P(x , y)?

Felix Finster The fermionic signature operator



A naive perturbation expansion

(i∂/− m)ψ = −eBψ

formal power expansion in e:

ψ =

∞
∑

p=0

ep ψ(p)

gives sequence of equations

(i∂/− m)ψ(0) = 0

(i∂/− m)ψ(1) = −Bψ(0)

...
...

(i∂/− m)ψ(p+1) = −Bψ(p)
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(i∂/− m)ψ(p+1) = −Bψ(p)

solve with Green’s operators:

(i∂/x − m) s(x , y) = δ4(x − y)

(sψ)(x) =

ˆ

s(x , y)ψ(y) d4y

ψ(p+1) = −s(p)
Bψ(p)

Problem: Green’s functions not unique!

� equivalently: no initial data given

(i∂/+B− m)ψ = 0
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The causal perturbation expansion

Consider causal Green’s functions

s
∧,∨
m (q) = lim

νց0

/q + m

q2 − m2 ∓ iνq0

Then their difference is a homogeneous solution,

km(x , y) :=
1

2πi

(

s∨ − s∧
)

(x , y)

=

ˆ

d4k

(2π)4
(/k − m) δ(k2 − m2) ǫ(k0) e−ik(x−y) d4k

satisfies distributional multiplication rule

km km′ = δ(m − m′) pm

where

pm(x , y) =

ˆ

d4k

(2π)4
(/k − m) δ(k2 − m2) e−ik(x−y) d4k

define P(x , y) :=
1

2

(

pm − km

)

(x , y)
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Lemma

km km′ = δ(m − m′) pm

Proof.

Consider km as multiplication operator in momentum space:

km(q) = (/q − m) δ(q2 − m2) ǫ(q0)

Then

km(q) km′(q)

= (/q + m) δ(q2 − m2) ǫ(q0) (/q + m′) δ(q2 − (m′)2) ǫ(q0)

=
(

q2 + (m + m′) /q + mm′
)

δ(m2 − (m′)2) δ(q2 − m2)

=
(

q2 + (m + m′) /q + mm′
) 1

2m
δ(m − m′) δ(q2 − m2)

= δ(m − m′) (/q + m) δ(q2 − m2) = δ(m − m′) pm(q)
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Further perturbative results

� F.F., A. Grotz, “The causal perturbation expansion

revisited: Rescaling the interacting Dirac sea,”

arXiv:0901.0334 [math-ph],

J. Math. Phys. 51 (2010) 072301

� F.F., J. Tolksdorf, “Perturbative description of the fermionic

projector: Normalization, causality and Furry’s theorem,”

arXiv:1401.4353 [math-ph],

J. Math. Phys. 55 (2014) 052301

normalization of states clarified (spatial and mass

normalization)

contour methods give a convenient way to figure out

combinatorics
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Non-perturbative construction

� F.F., M. Reintjes, “A non-perturbative construction of the

fermionic projector on globally hyperbolic manifolds I –

Space-times of finite lifetime,” arXiv:1301.5420 [math-ph]

Adv. Theor. Math. Phys. 19 (2015) 761–803

� F.F., M. Reintjes, “A non-perturbative construction of the

fermionic projector on globally hyperbolic manifolds II –

Space-times of infinite lifetime,” arXiv:1312.7209 [math-ph]

to appear in Adv. Theor. Math. Phys. (2016)

Felix Finster The fermionic signature operator



Non-perturbative construction

introduce space-time inner product

<ψ|φ> :=

ˆ

M

ψ(x)φ(x) d4x

well-defined if ψ ∈ H, φ ∈ C∞
0 (M,SM).

basic observation: (ψ | km φ)m = <ψ|φ>

Strategy: Represent <.|.> with respect to (.|.)m,

(ψ | Sm φ)m = <ψ|φ>

Thus formally, Sm = km, but

� Sm is an operator on Hilbert space Hm

� makes it possible to use functional analytic methods

(spectral calculus for self-adjoint operators)
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Space-times of finite lifetime

Let (M,g) be a globally hyperbolic Lorentzian manifold,

(D − m)ψm = 0 Dirac equation

C∞
sc (M,SM) spatially compact solutions

(ψm|φm)m := 2π

ˆ

N

≺ψm|/νφm≻x dµN(x) scalar product

completion gives Hilbert space (Hm, (.|.)m)

<ψ|φ> :=

ˆ

M

≺ψ|φ≻x dµM space-time inner product
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Space-times of finite lifetime

Definition (F-Reintjes 2013)

(M,g) is said to be m-finite if there is a constant c > 0 such

that for all

φm, ψm ∈ Hm ∩ C∞
sc (M,SM) ,

the function ≺φm|ψm≻x is integrable on M and

|<φm|ψm>| ≤ c ‖φm‖ ‖ψm‖

(where ‖.‖ = (.|.) 1
2 is the norm on Hm).

Then there is a unique bounded self-adjoint operator Sm with

<φm|ψm> = (φm|Sm ψm)m

(Fréchet-Riesz theorem)
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Space-times of inifinite lifetime

recall formula in Minkowski space

distribution in mass, integrate over mass parameters

Family of Dirac solutions Ψ = (ψm)m∈I with I = (mL,mR) 6∋ 0

nice class of solutions: Ψ ∈ C∞
sc,0(M × I,SM)

(Ψ|Φ) :=
ˆ

I

(ψm|φm)m dm scalar product

completion gives Hilbert space (H, (.|.))
choose dense subspace H

∞ (e.g. H∞ = C∞
sc,0(M × I,SM))

p : H
∞ → C∞

sc (M,SM) , pΨ =

ˆ

I

ψm dm .
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Space-times of inifinite lifetime

Definition (F-Reintjes 2013)

The Dirac operator D has the strong mass oscillation property

in the interval I = (mL,mR) with domain H
∞, if there is a

constant c > 0 such that

|<pψ|pφ>| ≤ c

ˆ

I

‖φm‖m ‖ψm‖m dm ∀ ψ, φ ∈ H
∞

Theorem (F-Reintjes 2013)

The following statements are equivalent:

(i) The strong mass oscillation property holds.

(ii) There is a unique family of bounded self-adjoint

operators Sm ∈ L(Hm) such that

<pψ|pφ> =

ˆ

I

(ψm | Sm φm)m dm ∀ ψ, φ ∈ H
∞
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Lorentzian spectral geometry

� F.F., O. Müller, “Lorentzian spectral geometry for globally

hyperbolic surfaces,” arXiv:1411.3578 [math-ph]

Adv. Theor. Math. Phys. 20 (2016) 751–820

N

M ⊂ R
1,1

ν

D
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Lorentzian spectral geometry

Theorem (F-Müller 2014)

For massless Dirac equation on globally hyperbolic surfaces of

finite lifetime,

tr
(

S
2
)

=
µ(M)

4π2

tr
(

S
4
)

=
1

8π4

ˆ

M

dµ(ζ)

ˆ

J(ζ)
exp

(

1

4

ˆ

D(ζ,ζ′)
R dµ

)

dµ(ζ ′)

ζ

D(ζ, ζ ′)
ζ ′
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Construction of quasi-free quantum states

χ(−∞,0)(Sm) or
1

1 + eβmπS

are positive operators on one-particle Hilbert space

Theorem (Araki 1970)

There is an algebra of smeared fields generated by Ψ(g),
Ψ∗(f ), and a pure quasi-free state ω such that:

{Ψ(g),Ψ∗(f )} = <g∗ | km f> , . . . (CAR)

ω
(

Ψ(g)Ψ∗(f )
)

= −
x

M×M

g(x)P(x , y)f (y) d4x d4y

P = χ(−∞,0)(Sm) km resp. P =
1

1 + eβmπS
km

The first state is referred to as fermionic projector (FP) state.
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Symmetries

The FP state respects all symmetries of space-time:

Theorem (F-Reintjes, in preparation)

If G is a group of symmetries on SM, then ω is invariant under

the action of G, i.e.

ω
(

Ψ(g)Ψ∗(f )
)

= ω
(

Ψ(g∗g)Ψ∗(g∗f )
)

for all g ∈ G

Sketch of proof in finite life-time.

Let U be group representation on Dirac solutions with

<Uψ|Uφ> = <ψ|φ>
=⇒ (Uψ|SmUφ)m = (ψ|Smφ)m

=⇒ U∗
SmU= Sm
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Ultrastatic space-times

M = R× N

with N complete Riemannian manifold,

ds2 = dt2 − gN

Theorem (F-Reintjes 2013)

σ(Sm) = {1,−1} ,
and eigenspaces reproduce frequency splitting.

Corollary

The FP state is a Hadamard state.
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A space-time slab

� C.J. Fewster, B. Lang, “Pure quasifree states of the Dirac

field from the fermionic projector,” arXiv:1408.1645

[math-ph], Class. Quantum Grav. 32 (2015) 095001

M = (0,T )× N

ds2 = dt2 − gN

Theorem (Fewster-Lang 2014)

The FP state is in general not a Hadamard state.

But “softened” construction (inspired by Brum-Fredenhagen)

gives a Hadamard state.
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External potential in Minkowski space

� F.F., S. Murro, C. Röken, C., “The fermionic projector in a

time-dependent external potential: Mass oscillation

property and Hadamard states,” arXiv:1501.05522

[math-ph], J. Math. Phys. 57 (2016) 072303

back to problem at the beginning:

(i∂/+B− m)ψ = 0

Theorem (F-Murro-Röken 2015)

Assume that B is smooth and
ˆ ∞

−∞

|∂p
t B(t)|C0 dt <∞ for all p ∈ N

ˆ ∞

−∞

|B(t)|C0 dt <
√

2 − 1

Then the FP state is a Hadamard state.
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Rinder space-time

� F.F., S. Murro, S., C. Röken, “The fermionic signature

operator and quantum states in Rindler space-time,”

arXiv:1606.03882 [math-ph] (2016)

M = R
1,1

R

x

t suppψ

rapid decay

rapid decay

ψ ∈ C∞
sc (R,SR) =⇒

∣

∣<ψ|φ>
∣

∣ ≤ c(ψ) ‖φ‖ ∀φ ∈ H
∣

∣<ψ|φ>
∣

∣ = (Sψ|φ) ∀φ ∈ H

Defines S : C∞
sc (R,SR) → H densely defined operator
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Rinder space-time

S = − H

πm

where H is Hamiltonian in Rindler time (unbounded!)

(i.e. generator of Lorentz boosts)

Theorem (F-Murro-Röken 2016)

In two-dimensional Rindler space-time, the FP state is a

Hadamard state.

construction of thermal states is possible

in four-dimensional Rindler space-time, FP state is a new

state (spin couples to transversal momenta).

Open questions:

Is it Hadamard?

What is its physical significance?
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A plane electromagnetic wave

� F.F. and M. Reintjes, “The fermionic signature operator and

Hadamard states in the presence of a plane

electromagnetic wave,” arXiv:1609.04516 [math-ph],

to appear in Ann. Henri Poincaré (2017)

(i∂/+ /A − m)ψ = 0

A = A(t + x)

A smooth, but no decay assumptions at infinity!

separation ansatz:

ψm(t , x , y , z) = e−ik2y−ik3z e−iu(t−x) χm
k2,k3,u

(t + x)

Sm = ǫ(u) multiplication operator

Theorem (F-Reintjes 2016)

The FP state is a Hadamard state.
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Proof of the Hadamard property in an external field

In Minkowski vacuum, Sm has eigenvalues ±1.

The corresponing splitting of the solution space

Hm = H
+
m ⊕H

−
m

coincides with frequency splitting.

In the presence of the external potential (denoted by tilde),

S̃ =

(

S̃
+
+ S̃

+
−

S̃
−
+ S̃

−
−

)

S̃
D := S̃

+
+ + S̃

−
− , ∆S̃ := S̃

+
− + S̃

−
+

Then

S̃m = S̃
D +∆S̃
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Proof of the Hadamard property in an external field

General strategy:

1. Use that B is not too large to prove that

∥

∥S̃
D − Sm

∥

∥,
∥

∥S̃m − Sm

∥

∥ ≤ 1

2

Then

σ
(

S̃
D
)

, σ
(

S̃m

)

⊂
[

− 3

2
,−1

2

]

∪
[1

2
,
3

2

]

2. Use contour representation (Cauchy integral)

χ(−∞,0)

(

S̃m

)

= − 1

2πi

‰

∂B1(−1)
(S̃m − λ)−1 dλ

3. Apply resolvent identity

(S̃m − λ)−1 = (S̃D − λ)−1 −
(

S̃m − λ
)−1

∆S̃ (S̃D − λ)−1

to obtain

χ±(S̃m) = χ±(H) +
1

2πi

‰

∂B 1
2
(±1)

(S̃m − λ)−1 ∆S̃ (S̃D − λ)−1 dλ

Felix Finster The fermionic signature operator



Proof of resolvent identity

Lemma

(S̃m − λ)−1 = (S̃D − λ)−1 −
(

S̃m − λ
)−1

∆S̃ (S̃D − λ)−1

Proof.

S̃m = S̃
D +∆S̃

rewrite this as
(

S̃
D − λ

)

=
(

S̃m − λ
)

−∆S̃

Mulitply from right by
(

S̃
D − λ

)−1

and from leftt by
(

S̃m − λ
)−1

.
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Proof of the Hadamard property in an external field

4. Show that the remaining contour integral

‰

∂B 1
2
(±1)

(S̃m − λ)−1 ∆S̃ (S̃D − λ)−1 dλ

has a smooth kernel. To this end, apply:

Lemma

Let A ∈ L(Hm) such that for all p,q ∈ N,

Hq A Hp : C∞
0 (N ,SM) → C∞(N ,SM) is bounded

Then A has a smooth integral kernel.
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Proof of the Hadamard property in an external field

Key technical tool: Explicit representation of S̃m:

Lemma

S̃m = Sm

− i

2

ˆ ∞

−∞

ǫ(t − t0)
[

Sm U
t0,t
m V(t) Ũ

t,t0
m − Ũ

t0,t
m V(t)Sm U

t,t0
m

]

dt

+
1

2

(
ˆ ∞

t0

ˆ ∞

t0

+

ˆ t0

−∞

ˆ t0

−∞

)

Ũ
t0,t
m V(t)Sm U

t,t ′

m V(t ′) Ũ
t ′,t0
m dt dt ′

Here write the Dirac equation in Hamiltonian form

i∂tψm = H̃ψm with H̃ := −γ0(i~γ ~∇+B− m) = H + V
U

t,t0
m : unitary time evolution without interaction

Ũ
t,t0
m : unitary time evolution with interaction

� rewrite products Hq ∆S̃m Hp as iterated commutators

estimate these commutators
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Proof of the Hadamard property in an external field

To derive this representation combine

� Lippmann-Schwinger equation

ψm|t = U
t,t0
m ψ0

m + i

ˆ t

t0

U
t,τ
m

(

γ0
B ψm

)
∣

∣

τ
dτ

� Multiplication rules for distributions in Minkowski space like

km km′ = δ(m − m′) pm
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Outlook: Causal fermion systems

� light-cone expansion gives explicit expansion about the

light cone

χL P(x , y) =
i

2
χL e−iΛxy

L /ξ T (−1)

− 1

2
χL /ξ ξi

ˆ y

x

[0,0 |1] j iL T (0)

+
1

4
χL /ξ

ˆ y

x

F
ij
L γiγj T (0)

− χL ξi

ˆ y

x

[0,1 |0]F ij
L γj T (0)

− χL ξi

ˆ y

x

[0,1 |1] ∂/j iL T (1)

− χL

ˆ y

x

[0,2 |0] j iL γi T (1) + · · ·
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Outlook: Causal fermion systems

Here

Ta(q) = Θ(−q0) δ(q2 − a)

T (l) =

(

d

da

)l

Ta

∣

∣

a=0
− (counter terms)

and

ˆ y

x

[l , r | n] dz f (z) :=

ˆ 1

0

dα αl (1−α)r (α−α2)n f (αy+(1−α)x)

P(x , y) is of Hadamard form

⇐⇒ only bounded line integrals appear.
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Outlook: Causal fermion systems

General observation: P(x , y) determines the bosonic potential.

Build in particles and anti-particles states:

P(x , y) = Psea
m (x , y)− 1

2π

np
∑

k=1

ψk (x)ψk (y) +
1

2π

na
∑

l=1

φl(x)φl (y)

� P(x , y) describes the physical system completely

General idea (goes back to 1990):

� formulate physical equations directly with P(x , y)
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What is a causal fermion system?

� approach to fundamental physics

� a new consistent physical theory

� promising candidate for a unified physical theory

� novel approach to describe space and space-time,

as well as structures therein:

“quantum space-time,” “quantum geometry”

� dynamics described by causal action principle

background-free, no space-time presupposed
space-time emerges by minimizing the causal action
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Results of the theory

Continuum limit

(classical fields coupled to second-quantized Dirac field):

� interactions of the standard model (electroweak + strong)

� general relativity

� quantum mechanics

Other limiting case (“microscopic mixing”)

� quantum field theory (second-quantized bosonic fields)

no ultraviolet problems
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Fundamental Theories

of Physics 186

Springer, 2016

548+xi pages

arXiv:1605.04742 [math-ph]
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