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Motivation

» Goals:
» Hawking effect for gravitons;
» interacting gravitons on a black-hole spacetime;
» eventually, quantum back-reaction of Hawking radiation.
Graviton field — p,,,, its quantization — p,,,..
Ghost field — v,,, its quantization — V,, (BRST formalism).
Harmonic (aka de Donder, Lorenz, wave coordinate) gauge:
» “Vp,, = 0,where p,, = P — % gy trp;
» favored by BRST formalism.
Graviton and ghost Feynman propagators:

v

v

v

\4

Gy (X, X') = o €2<T[P;w( DBy (X )Dw,

Gy (X, X') = —=i(T[V(x) U (X)) w-

W — sensible quantum state, like Unruh or Hartle-Hawking.
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» “Vp,, = 0,where p,, = P — % gy trp;
» favored by BRST formalism.

Graviton and ghost Feynman propagators:

\4

Gy (X, X') = - €2<T[PW( )P (X ))w,
Gy (X, X') = —=i(T[V(x) U (X)) w-

W — sensible quantum state, like Unruh or Hartle-Hawking.

Want an “explicit” mode expansion of G,.,/(x, x") and G,/ (X, X').
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Vector and tensor fields on Schwarzschild

» The Schwarzschild spacetime (M, *g) is a 4-dimensional Lorentzian
manifold describing a static, spherically symmetric black hole.

» The Feynman propagators G, (X, X") and G, (X, X") are particular
Green functions, respectively, for the vector (ghost) and tensor (graviton)
wave equations on Schwarzschild:

“Ov, =2V, 1) =0, “Opu — 2R N pax — 29V (,*VB,), =0.
For tensors, it is also called the Lichnerowicz equation.

» Goal: write each Green function as an explicit mode sum/integral:

4G(X’y) ~ /duf,w,uqﬁf,w(x)(gé,w(y)e_iy(xo_yo)v

where ¢, ,,(x) are modes adapted to the static (w, v) and spherical (¢)
symmetry of the black hole and dy ., ., is a specially chosen spectral
measure that determines the Green function (and the quantum state V).

» Question: Can dyx ., , be supported only on w € R?
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Separation of variables: 2+2 tensor formalism

» We follow the convenient formalism of [Martel & Poisson 2005].

v

Schwarzschild (M x 5?) is spherically symmetric f(r) =1 — ¥

4 _ 2 dr? | 20902 1 ain2 Ad.42 Gab 0
G = —f(r)dtc + i+ " (do= + sin“ 6d¢=) — ( 0 rZQAB)'

» Tensor indices a, b, c, ... and V, are for (M, gap).
Tensor indices A, B, C, ... and Dy are for the unit sphere (S?,Q45).

Pab paB)
Pab  Pas)’

v

Vector field v, — ( ) symmetric tensor p,,, — (

v

Connection 4V = (V, D) +T,

[0 0 Y
vA T 0 —rréQpgc ’7063 0 ’

Formalism covariant with respect to changes of coordinates and metric
on (Ma gab)-

v
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Spherical harmonics
» Spherical scalar, vector and tensor harmonics:

DADAY = —I(/+ 1)Y, Ya = DAY7 Yag = DaYs + QABY7

I(1+1)
2

I(1+1)

Y'Ye= O Omm Xy = GBADBY, Xag = DaXp +
52

eaY.

Simply normalized, orthogonal, tensor eigenfunctions of D4DA.
» \ector and Tensor decompositions

odd

evel
Pab  PaB) _ hlm Y/m r /Im yém 0 r hlam le
(pAb PAB) - %: (rjirbny/lqm r2(KlmQABylm G/mylm) + Z hlmxlm fzhémXi”é
V. vlm Y/m
(VZ) = % (r ulmylm) + Z ( Wlmx/m)
From now on, omit spherical harmonic (/, m) mode indices:

p= (hab7ja» K7 G | hav h2) and v= (Va’ u ‘ W)
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Radial mode equation

» In static Schwarzschild (t, r) coordinates (2M < r < co):

p(t,r) = p(r)e ™" and v(t,r)=v(r)e ™!, where
p(r) = (htta htﬁ hl‘r:jhjfv Ka G ’ hta hl’: h2)7
v(r) = (v, Ve, u | w).

We obtain the radial mode equations VW,v =0and L,p = 0.

» For vectors, 4Dvﬂ ~ VW, consists of decoupled
3 x 3 (even) and 1 x 1 (odd) systems.

» For tensors, 40p,, — 24R, ., px. ~ L., consists of decoupled
7 x 7 (even) and 3 x 3 (odd) systems.

» Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation
Eut = 0P(r)0r¢ + Q(r)¢ + iwA(r)¢ +w? W(r)¢ = 0,

with hermitian P, Q, iA, and W, hence formally self-adjoint.
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Radial mode equation: VW,
Explicitly:

ré 2M
(odd) o BiIrPfo,w + w? 7 — B B/W—i-B/TW:O,

_ar17 I’2f8r Vt r2 —17 Vt
(even) o fréfo, vy | + (wzf — B,) fv,
Biu

8[’B/r2f8ru
Vr 0 0 0 Vi
—i—iw# - | +10 —2f2 2B,f v, | =0,
0 0 28f B2M) \u
where f(r) =1 - 2" and B, = /(I + 1).
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Radial mode equation: L, (odd sector)

O (—25 r20,) hy 25 p,
8,(2[5‘,fr ;) hy 2B,fh,
Or(3L r2for) hp 4 hy

B 2M

47T 0 hy
+ 0 —88,f(1 = 3My 241 | | hr

0 2Af A ha

0 -B; 0\ /h , 25 py
—iw™M B0 0] |h|+uPl| 2Bfh | =0
0 0 0/ \h 2 hy

where f(r) =1 — 2" A, = (I — 1)I(I + 1)(I + 2) and By = I(I + 1)
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Radial mode equation: L, (even sector)

(=2 r2fo,) hy
O (—25 r2f0y) ji
(35 r?10;) hy
O, (f2 r2f0y) hyr
or(2r2f0,) K
or(2B/f r21y) jr
(AL r2f0) G
2(P+1)
f
*48[
0

o O oo

- B

—4B,
_ 4B 2mM
[

0

0
0
0
0

*2’7[/
25,
7
72 hyr
2K
2B/fjr
4G
0 0 0 0 0
0 0 0 0 0
M2 (2 141
2M AMZ _gf2
e [CE O g sy g 0
2aom 4f(1 — My 41 — 4M) —4B/f 0
0 48,12 —4Bif  —8Bf(1 - M) 24f
0 0 0 24/f Ay
00 -1 —f0 0 0\ /fh
00 0 0 0 -8B 0f[ji
10 0 00 0 Of]bhe s
—iw¥ ) F 0 0 0 0 0 Of]hy|+w?s
00 0 00 0 Of[K
0B 0 00 0 0ffj
00 0 00 0 0/\G

hrr

—2 hy
-8,

& hy

2 hy,
2K
2B/f
4G

=0

where f(r)=1— 2% A = (I-1)I(I+ 1)(/+2) and B; = I(/ + 1)
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Spectral theory of the radial mode equation
» How to wrie the Green function E(r, r') for the operator pencil
E.¢ = 0,P(r0:¢ 4+ Q(r)p + iwA(r)¢ + w?W(r)e

in spectral representation (mode sum/integral)?
Use ideas of Weyl-Titchmarsh-Kodaira (1910-1950), Keldysh (1951).
[Weidmann (Springer, 1987)] [Gohberg-Kaashoek-Lay (1976)] [Markus (AMS, 1988)]

v

The spectrum is o(E,) = C\ p(E,). For w € p(E.) in the resolvent set,
E;'is bounded. Need to choose a function space/domain!

v

Linearize E,, ~ E,,, prove analyticity of E;' over p(E,):
_[orPor+Q O A W 1 [EST wES"
E“_{ 0 - }—H‘}{W o]’ E. _LE;1 WEST— W
Integrate over a positive simple contour y about o(E,,):

quj{diw L 0 w-! _ e e
v Leriw—v Y (W —WTHAWTT| T 2

v

v

Decompose E;'(r,r') = EZ(r, ') + mi (w) ¢y, j(r)p—w j(r'), where E
is analytic! Then m(w) ~- du,, — the spectral measure.
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A reasonable hypothesis

» At the very least, the explicit form of the equations gives us the
asymptotics [wasow (Intersci., 1965)] for a solution basis ¢; of E,¢ = 0:

eiiwr*zi(f)yj(ZM) r—2M
d)/(r) ~ +iwr, 1,,(00) ’
e 7Y r— oo
where y; are constant coefficients, Z.(f) are Laurent polynomial
matrices in f =1 — 2Y ‘and r, = r + 2Mlog(5}; — 1) is the tortoise
coordinate, so that e”™ ~ f.
» Theorem: There exists a function space H, complete w.r.t an inner

product (¢, ¢) = [on ¢TWedr, and a domain D,, C H that is a core
for a closed operator realization of E,, such that, for Sw # 0,

» exactly half of the ¢; are admissible at r — oo,
» exactly half of the ¢; are admissible at r — 2M.

» Hypothesis: for Sw # 0, no Zj a;j¢; is admissible at both ends.
Then the spectrum would be purely real and we would be done!
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Example: asymptitics, VIV, (even)
(r—2M) (r—o0)

Vi
(Vr) ~ Zzi( f:tZIwM (2m) 21 :I:Iwr*
u +

where f=1-2¥ 1, = r + 2Mlog(5; — 1) and

1 +f 0 f 00
I+ 1)+ 1
— 1
Zi(f)(qcf 1 0)+4wM(4wMii) ($1 0 0)'

0O 0 f1 0 0O

The function space H consists of measurable ¢ = (v, vr, u) such that

(60 = [ ar |+ fivi? + Fluf?] < .
2M

2
<0 .
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The key idea

» How can we obtain information about the spectrum of E,,?

When in doubt, turn to the physics literature and discover...a sea
of formulas!

But also the claim [Berndtson (PhD, 2007)] [Rosa-Dolan (2012)] that each of
VW,v =0 and L,p = 0 are “equivalent” to a decoupled system of,
respectively, 4 or 10 scalars (¢;); satisfying generalized
Regge-Wheeler equations Ds, ., ¢; = 0, for spins s; € {0, 1,2}:

v

v

I(1+1) + (1 —s2)24 2
(+)+r(2 S)rwwfqﬁ

Ds,wdj = 0rfOr) —

v

Good news: each D, is a standard, scalar, self-adjoint
Sturm-Liouville operator with purely real spectrum!

v

Q: What is the precise meaning of “equivalent”?
Q: How can this information help with the spectral problem of E,?
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Core equivalence result
Recall, by E,, we denote either of VW,, or L, or their odd or even parts.

Theorem (Berndtson, Rosa-Dolan, IK)
Each E,, is equivalent to a system of Regge-Wheeler (D, .,) equations.

(a) There exist differential operators (b) Allowing formal inverses (D;J,),
making this diagram commute, with the diagram from (a) converts to a
K. k

w

K . . . .
Koy o Koy oxact on solutions: commutative square, with vertical
maps mutual inverses, up to
corrections (h, hy):

e — @
Dsj,w
G " g .
IR
e — 3 e [ ] T} °
E. w
<], Te olleolls
w DS’ " W w w w
e —— o Ds;
° °
‘(\\‘_”1/
F’W

Homological algebra: chain maps and homotopy equivalences!
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Implications for the spectrum (a)

» Geometric Corollary (/ > 2): The differential operators from (a)
preserve asymptotics:

(r N EM) eiiwr* Zi(f)fiQIwM eiiwr*
k' Kk’
kerDs, , ——— kerE, ———— kerDs,,

(r N X) eiiwl'* }eiiwr* eifwf*
Hence E,: H — H* has real spectrum, where H = [2(Wdr) and

H* = L2(W—"dr):

the self-adjointness of D, on Lz(dr*) shows that no solution ¢ of

E.,¢ = 0belongs to D, C H (is admissible both at r — co and r — 2M).

> (I <2): WIP
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Implications for the spectrum (b)

> Analytical Corollary (/ > 2): Regge-Wheeler operators Ds, ... spectrally
dominate E,: H='(Wdr) — H'(W dr) (on weighted Sobolev spaces):

E;1 :l_(woD;Logw#—hw,

I.h.s is bounded whenever each operator on the r.h.s is bounded. Therefore™,
o(Ew) C 0(Ds;,w) and is purely real.

» *Caveat: In the even L, case, the equivalence maps (k. g.,, h.,) do have poles
atw = £{EVEDIE) —. 4y, So, the Analytical Corollary only implies
o(L,) C RU{tiw.}.

> (1< 2): WIP
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Equivalence of spectral problems up to homotopy

» Homological formulation of the spectral problem for e,,.

Resolvent: p(e,) = {w € C | ey, sits in a split exact sequence}.
Spectrum: o(e,) = C\ p(ew).

0

€w

v w

Replace V by the domain D(e.,) C V if e, is unbounded.
» Equivalence up to (chain) homotopy of e,, and &,:

ékam:gwoewy

€ o ky = 0w © Ew,

> When k., g, hw, K, Qw, P, are bounded, the resolvent sets agree, p(ew)

because

;' =k,o& 'og,+h, and &'

e,

Ag N

€w

w

> Mutatis mutandis for spectral domination.

Igor Khavkine (Milan)

Vectors and Tensors on Schwarzschild

k, =id — hy, o ey,

ko o
ke o ky = id — Ay, 0 8,

:kwoe;1o§w+ﬁw.

0w 0 g =id — e, o hy,
G 0 0o = id — &, 0 Ay

(&)

Genova 12/01/2017

[J.L.Taylor (1970)] [Gromov-Shubin (1991)]

16/25



A toy example: equivalence up to homotopy

Consider the following diagram of scalar differential operators:

A
w2

138 BN
O y 6,2+w2 y 0
B,J//{\ :}2,. 8"J’T ;(zr ’
2 w2
0 ° (8'+ > e 0
-
w2
which satisfy the identities
-0 1
(0F +w)0r = 0,07 + ), —2 O =1- 5 +°),

-0 1
S0 =1+,

(9 + ?) —Or _ 3r

—a,
UV, a1 L),
o, wa, 1o (Bt u?)

w?’
We will say that the top and bottom lines are equivalent up to (chain) homotopy
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A toy example: spectral domination

Consider the previous example with specific function spaces:

1 1
0 H e H 0
BrlT ng, B,JT :)gr 7

24,2

0 HO T e 0

S

BN
2

where H* is the Sobolev space of degree k. As usual, unbounded operators are
defined on dense domains.

We can conclude that 82 + w? spectrally dominates 92 + «?, that is
0 (02 + w?) C (82 + w?), because

—0,

w?

1
w?

and all the operators on the r.h.s are bounded whenever w ¢ (97 + w?).

(7 +u?) = (R +w) o+

Boundedness is achieved by letting 82 + w? map from low regularity (H~') to high
regularity (H").
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Example: VW,

» The complete decoupling is a relative of the Helmholtz decomposition of
vector fields (grad + curl). There are three steps:
» Split vector field into longitudinal and transverse parts, e, and e7.
» Put transverse equation into involutive form, Q..
» Decouple to Regge-Wheeler equations, (Ds,,..), (si)) = (0,0,1 ] 1).

0O — o, Do —— o Do ——> 0

0O — 5 o, ————— o, e ———— 0

» The L, case is structurally similar, with significantly more complicated
formulas.
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VW, (even): gradient and divergence

We need the (v, v, u) component versions of gradient (K) and
divergence (T) operators, 4V 1) and 4VHvy,,.

1 —iwr %
The operators K, == — rPo.1 |, K, = |1fr?o!

1 B
. 1 _
and T,:= (% 192 -B), T,:= - (—iwr o, —1)
satisfy VWSoK, =K, oDy, T,oVWS="Dy,oT,.

Hence, we can define the idempotent projectors

P, = K,D, !\ T., | =K. D, T,
Pr:=id - Py, P7 :=id — P},

Onto the purely transverse (e7) and purely longitudinal (e;) vector fields.
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VW, (even): decouple the divergence

The first equivalence square decouples the purely longitudinal from the
purely transverse vector fields:

T.®Pr| |KoDyl@id  TL@Py| |K,D, ! @id

w7 0,w

Do VW
0 ——————— o Der * s o Do —— 0

T~ -

0

Evidently, on longitudinal modes (v, = 4V, 1yy),

VWSv, =0 translatesto Dy 1o = 0.
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VW, (even): adjoin the transversality condition

Now we adjoin the transversality (Lorenz) condition (4V“v# =0)inits
component form (T,v = 0).

It turns out to be convenient to put the (overdetermined) system
(T, VWE) into involutive form, which becomes determined but mixed
order (Orvt, O Vr, 02U):

Vi —r 0 0 0\ 4 Vi
Ou|v|=(-fo1 0 1 0 (VVT}G> 7
u —-B 0 0 1 « u

¥ —’7‘”(,)rr2f B/% Vi
= ,/wr?()r W2rd — Bif Bifo,r 7
—Br —Birof 0Bir?fo, + B (w?r? + f24) ) \u

Of course, the transformation from (7., VWS) to O, is invertible, also
by a differential operator.
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VW, (even): adjoin the transversality condition

The next equivalence square relates VWE acting on purely fransverse
vector fields to the joint system (T,,, VWS), acting on unconstrained
vector fields:

0
RN
0 > oT Ywe > oT » 0
el
° r\\Ow — ° > 0
-
where h, = K.Dy ! (£ 0 0),
000 ’ —iwr  ro, —1
g.=10 1 0], 0o = Pr— | 20,5 iwr 0 |.
(o 0 1) "‘”( —Bf 0 iwr)
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VW, (even): decouple to Regge-Wheeler

The final equivalence square decouples O, v = 0 into two Regge-Wheeler equations
Dy,,¢0 = 0and Dy ,¢1 = O:

o
0 o & o0 S 0
K TRM 9o | | Gw )
Do o, &D
0 ° 0 w@ 1,w ° O
Y(\\“<_’//
hes
where (¢g, #1)T = ko (vt, vu, U)7,
P (iwr —Bf B,f@,r) o = 1 jwrf  —B; — rof ga,f
« 0 —f forr )’ “—r2\o 1 fg,arg )
_ 1 —iwl1’ Bjiwr ) 1 7"‘*’7’ B/"WT’
ko = 2.2 r28’7 —Bror ) Guw = 3 0 —Bf s
wer w'
1 B —fro, 0 —Birof
1 (0 0 0 ¢ (0 B 0O
hy=—5 (0 -1 0 |, ho=— (0 1 o0f.
wr\o o —f “*\o0 0 o
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Discussion

» Complete separation of variables for Lichnerowicz and vector
wave equations on Schwarzschild.
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Discussion

» Complete separation of variables for Lichnerowicz and vector
wave equations on Schwarzschild.

» Equivalence with decoupled Regge-Wheeler equations.

» Example: the vecior wave equation is equivalent to 4 generalized
Regge-Wheeler equations (Ds,), with spins (s;) = (0,0,1 | 1).
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Discussion

» Complete separation of variables for Lichnerowicz and vector
wave equations on Schwarzschild.

» Equivalence with decoupled Regge-Wheeler equations.

» Example: the vecior wave equation is equivalent to 4 generalized
Regge-Wheeler equations (Ds,), with spins (s;) = (0,0,1 | 1).

» The Lichnerowicz equation is equivalent to 10 generalized
Regge-Wheeler equations (Ds,), with spins
(sj) =(0,0,1,0,0,1,2]1,1,2).
Similar to vector wave equation, but more complicated.
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» Example: the vecior wave equation is equivalent to 4 generalized
Regge-Wheeler equations (Ds,), with spins (s;) = (0,0,1 | 1).

» The Lichnerowicz equation is equivalent to 10 generalized
Regge-Wheeler equations (Ds,), with spins
(sj) =(0,0,1,0,0,1,2]1,1,2).
Similar to vector wave equation, but more complicated.

» Need to deal with low angular modes (I < 1) separately. (WIP)
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Discussion

» Complete separation of variables for Lichnerowicz and vector
wave equations on Schwarzschild.

Equivalence with decoupled Regge-Wheeler equations.
Example: the vector wave equation is equivalent to 4 generalized
Regge-Wheeler equations (Ds,), with spins (s;) = (0,0,1 | 1).
The Lichnerowicz equation is equivalent to 10 generalized
Regge-Wheeler equations (Ds,), with spins

(sj) =(0,0,1,0,0,1,2]1,1,2).

Similar to vector wave equation, but more complicated.

Need to deal with low angular modes (/ < 1) separately. (WIP)
At the mode level, the equivalence maps are given (mostly) by
differential operators. What is their relation with Debye potentials
at the spacetime level?
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v

v

v
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Discussion

» Complete separation of variables for Lichnerowicz and vector
wave equations on Schwarzschild.

» Equivalence with decoupled Regge-Wheeler equations.

» Example: the vecior wave equation is equivalent to 4 generalized
Regge-Wheeler equations (Ds,), with spins (s;) = (0,0,1 | 1).

» The Lichnerowicz equation is equivalent to 10 generalized
Regge-Wheeler equations (Ds,), with spins
(sj) =(0,0,1,0,0,1,2]1,1,2).
Similar to vector wave equation, but more complicated.

» Need to deal with low angular modes (I < 1) separately. (WIP)

» At the mode level, the equivalence maps are given (mostly) by
differential operators. What is their relation with Debye potentials
at the spacetime level?

Thank you for your attention!
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