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Motivation
I Goals:

I Hawking effect for gravitons;
I interacting gravitons on a black-hole spacetime;
I eventually, quantum back-reaction of Hawking radiation.

I Graviton field — pµν , its quantization — p̂µν .
I Ghost field — vµ, its quantization — v̂µ (BRST formalism).
I Harmonic (aka de Donder, Lorenz, wave coordinate) gauge:

I 4∇νpµν = 0, where pµν = pµν − 1
2

4gµν tr p;
I favored by BRST formalism.

I Graviton and ghost Feynman propagators:

Gµν:µ′ν′(x , x ′) =
−i

8π`2P
〈T [p̂µν(x)p̂µ′ν′(x ′)]〉Ψ,

Gµ:µ′(x , x ′) = −i〈T [v̂µ(x)v̂µ′(x ′)]〉Ψ.

Ψ — sensible quantum state, like Unruh or Hartle-Hawking.

Want an “explicit” mode expansion of Gµ:µ′(x , x ′) and Gµν:µ′ν′(x , x ′).
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Vector and tensor fields on Schwarzschild
I The Schwarzschild spacetime (M, 4g) is a 4-dimensional Lorentzian

manifold describing a static, spherically symmetric black hole.

I The Feynman propagators Gµ:µ′(x , x ′) and Gµν:µ′ν′(x , x ′) are particular
Green functions, respectively, for the vector (ghost) and tensor (graviton)
wave equations on Schwarzschild:

4�vµ = 2 4∇ν4∇(µvν) = 0, 4�pµν − 2 4Rµλκνpλκ − 2 4∇(µ
4∇λpν)λ = 0.

For tensors, it is also called the Lichnerowicz equation.

I Goal: write each Green function as an explicit mode sum/integral:

4G(x , y) ∼
∫

dµ`,ω,νφ`,ω(x)φ̄`,ω(y)e−iν(x0−y0),

where φ`,ω(x) are modes adapted to the static (ω, ν) and spherical (`)
symmetry of the black hole and dµ`,ω,ν is a specially chosen spectral
measure that determines the Green function (and the quantum state Ψ).

I Question: Can dµ`,ω,ν be supported only on ω ∈ R?
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Separation of variables: 2+2 tensor formalism

I We follow the convenient formalism of [Martel & Poisson 2005].

I Schwarzschild (M× S2) is spherically symmetric f (r) = 1− 2M
r :

4gµν = −f (r)dt2 + dr2

f (r) + r2(dθ2 + sin2 θdφ2)→
(

gab 0
0 r2ΩAB

)
.

I Tensor indices a,b, c, . . . and ∇a are for (M,gab).
Tensor indices A,B,C, . . . and DA are for the unit sphere (S2,ΩAB).

I Vector field vµ →
(

va
vA

)
, symmetric tensor pµν →

(
pab paB
pAb pAB

)
.

I Connection 4∇ = (∇,D) + Γ,

Γµνλ =

[(
0 0
0 −rraΩBC

) (
0 rb

r δ
A
C

rc
r δ

A
B 0

)]
.

I Formalism covariant with respect to changes of coordinates and metric
on (M,gab).
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Spherical harmonics
I Spherical scalar, vector and tensor harmonics:

DADAY = −l(l + 1)Y , YA = DAY , YAB = DAYB +
l(l + 1)

2
ΩABY ,∫

S2
Ȳ ′Y ε = δll′δmm′ , XA = εBADBY , XAB = DAXB +

l(l + 1)

2
εABY .

Simply normalized, orthogonal, tensor eigenfunctions of DADA.
I Vector and Tensor decompositions

(
pab paB
pAb pAB

)
=
∑
lm

even(
hlm

abY lm r j lma Y lm
B

r j lmb Y lm
A r2(K lmΩABY lm + GlmY lm

AB)

)
+
∑
lm

odd(
0 r hlm

a X lm
B

r hlm
b X lm

A r2hlm
2 X lm

AB

)
(

va
vA

)
=
∑
lm

even(
v lm

a Y lm

r ulmY lm
A

)
+
∑
lm

odd(
0

r w lmX lm
A

)

From now on, omit spherical harmonic (l ,m) mode indices:

p = (hab, ja,K ,G | ha,h2) and v = (va,u | w)
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Radial mode equation
I In static Schwarzschild (t , r) coordinates (2M < r <∞):

p(t , r) = p(r)e−iωt and v(t , r) = v(r)e−iωt , where
p(r) = (htt ,htr ,hrr , jt , jr ,K ,G | ht ,hr ,h2),

v(r) = (vt , vr ,u | w).

We obtain the radial mode equations VWωv = 0 and Lωp = 0.
I For vectors, 4�vµ  VWω consists of decoupled

3× 3 (even) and 1× 1 (odd) systems.
I For tensors, 4�pµν − 2 4Rµ

λκ
νpλκ  Lω consists of decoupled

7× 7 (even) and 3× 3 (odd) systems.
I Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation

Eωφ := ∂r P(r)∂rφ+ Q(r)φ+ iωA(r)φ+ ω2W (r)φ = 0,

with hermitian P, Q, iA, and W , hence formally self-adjoint.
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Radial mode equation: VWω

Explicitly:

(odd) ∂rBl r2f∂r w +

(
ω2 r2

f
− Bl

)
Blw + Bl

2M
r

w = 0,

(even)

−∂r
1
f r2f∂r vt

∂r f r2f∂r vr
∂rBl r2f∂r u

+

(
ω2 r2

f
− Bl

)−1
f vt
f vr
Bl u


+ iω

2M
f

 vr
−vt
0

+

0 0 0
0 −2f 2 2Bl f
0 2Bl f Bl

2M
r

vt
vr
u

 = 0,

where f (r) = 1− 2M
r and Bl = l(l + 1).

Igor Khavkine (Milan) Vectors and Tensors on Schwarzschild Genova 12/01/2017 6 / 25



Radial mode equation: Lω (odd sector)

∂r (−2Bl
f r2f∂r ) ht

∂r (2Bl f r2f∂r ) hr

∂r (Al
2 r2f∂r ) h2

− Bl

−2Bl
f ht

2Bl f hr
Al
2 h2


+

−4Bl
f

2M
r 0 0

0 −8Bl f (1− 3M
r ) 2Al f

0 2Al f Al

ht
hr
h2


−iω 4M

f

 0 −Bl 0
Bl 0 0
0 0 0

ht
hr
h2

+ ω2 r2

f

−2Bl
f ht

2Bl f hr
Al
2 h2

 = 0

where f (r) = 1− 2M
r , Al = (l − 1)l(l + 1)(l + 2) and Bl = l(l + 1)
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Radial mode equation: Lω (even sector)


∂r (−2 r2f∂r ) htr

∂r (−2Bl
f r2f∂r ) jt

∂r ( 1
f 2 r2f∂r ) htt

∂r (f 2 r2f∂r ) hrr
∂r (2 r2f∂r ) K

∂r (2Bl f r2f∂r ) jr
∂r (Al

2 r2f∂r ) G


− Bl



−2 htr

−2Bl
f jt
1
f 2 htt

f 2 hrr
2 K

2Bl f jr
Al
2 G




2(f 2+1)
f −4Bl 0 0 0 0 0
−4Bl −4Bl

f
2M
r 0 0 0 0 0

0 0 4M2

2f 3r2 − ( 2M
r +4f )

2f
2M
r

2
f

2M
r 0 0

0 0 − ( 2M
r +4f )

2f
2M
e

f ( 4M2

r2 −8f 2)

2 4f (1− 3M
r ) 4Bl f 2 0

0 0 2
f

2M
r 4f (1− 3M

r ) −4(1− 4M
r ) −4Bl f 0

0 0 0 4Bl f 2 −4Bl f −8Bl f (1− 3M
r ) 2Al f

0 0 0 0 0 2Al f Al





htr
jt
htt
hrr
K
jr
G



−iω 4M
f



0 0 −1
f −f 0 0 0

0 0 0 0 0 −Bl 0
1
f 0 0 0 0 0 0
f 0 0 0 0 0 0
0 0 0 0 0 0 0
0 Bl 0 0 0 0 0
0 0 0 0 0 0 0





htr
jt
htt
hrr
K
jr
G


+ ω2 r2

f



−2 htr

−2Bl
f jt
1
f 2 htt

f 2 hrr
2 K

2Bl f jr
Al
2 G


= 0

where f (r) = 1− 2M
r , Al = (l − 1)l(l + 1)(l + 2) and Bl = l(l + 1)
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Spectral theory of the radial mode equation
I How to wrie the Green function E−1

ω (r , r ′) for the operator pencil

Eωφ := ∂r P(r)∂rφ+ Q(r)φ+ iωA(r)φ+ ω2W (r)φ

in spectral representation (mode sum/integral)?
Use ideas of Weyl-Titchmarsh-Kodaira (1910–1950), Keldysh (1951).
[Weidmann (Springer, 1987)] [Gohberg-Kaashoek-Lay (1976)] [Markus (AMS, 1988)]

I The spectrum is σ(Eω) = C \ ρ(Eω). For ω ∈ ρ(Eω) in the resolvent set,
E−1
ω is bounded. Need to choose a function space/domain!

I Linearize Eω  Eω, prove analyticity of E−1
ω over ρ(Eω):

Eω =

[
∂r P∂r + Q 0

0 −W

]
+ ω

[
iA W
W 0

]
, E−1

ω =

[
E−1
ω ωE−1

ω

ωE−1
ω ω2E−1

ω −W−1

]
I Integrate over a positive simple contour γ about σ(Eω):

E−1
ν =

∮
γ

dω
2πi

1
ω − νE−1

ω ,

[
0 W−1

W−1 −W−1iAW−1

]
=

∮
γ

dω
2πi

E−1
ω

I Decompose E−1
ω (r , r ′) = E̊−1

ω (r , r ′) + mjj′(ω)φω,j (r)φ−ω,j′(r ′), where E̊−1
ω

is analytic! Then m(ω) dµω — the spectral measure.
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A reasonable hypothesis
I At the very least, the explicit form of the equations gives us the

asymptotics [Wasow (Intersci., 1965)] for a solution basis φj of Eωφ = 0:

φj(r) ∼

{
e±iωr∗Z±(f )y (2M)

j r → 2M

e±iωr∗ 1
r y (∞)

j r →∞
,

where yj are constant coefficients, Z±(f ) are Laurent polynomial
matrices in f = 1− 2M

r , and r∗ = r + 2M log( r
2M − 1) is the tortoise

coordinate, so that eσr∗ ∼ f σ.
I Theorem: There exists a function space H, complete w.r.t an inner

product (φ, φ) =
∫∞

2M φ†W̃φ dr , and a domain Dω ⊂ H that is a core
for a closed operator realization of Eω such that, for =ω 6= 0,

I exactly half of the φj are admissible at r →∞,
I exactly half of the φj are admissible at r → 2M.

I Hypothesis: for =ω 6= 0, no
∑

j ajφj is admissible at both ends.
Then the spectrum would be purely real and we would be done!
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Example: asymptitics, VWe (even)

vt
vr
u

 ∼
(r→2M)∑

±
Z±(f )f±2iωMy (2M)

± or

(r→∞)∑
±

1
r

e±iωr∗y (∞)
± ,

where f = 1− 2M
r , r∗ = r + 2M log( r

2M − 1) and

Z±(f ) =

 1 ±f 0
∓1

f 1 0
0 0 1

+
l(l + 1) + 1

4ωM(4ωM ± i)

 f 0 0
∓1 0 0
0 0 0

 .

The function space H consists of measurable φ = (vt , vr ,u) such that

(φ, φ) =

∫ ∞
2M

dr
[

1
f
|vt |2 + f |vr |2 +

1
f
|u|2

]
<∞,

and Dω =

{
φ ∈ H :

∫
2M

dr
1
f

∣∣∣∣ iωr
f

vt + r∂r fvr

∣∣∣∣2 <∞
}
.

Igor Khavkine (Milan) Vectors and Tensors on Schwarzschild Genova 12/01/2017 11 / 25



The key idea

I How can we obtain information about the spectrum of Eω?
I When in doubt, turn to the physics literature and discover. . . a sea

of formulas!
I But also the claim [Berndtson (PhD, 2007)] [Rosa-Dolan (2012)] that each of

VWωv = 0 and Lωp = 0 are “equivalent” to a decoupled system of,
respectively, 4 or 10 scalars (φi)i satisfying generalized
Regge-Wheeler equations Dsi ,ωφi = 0, for spins si ∈ {0,1,2}:

Ds,ωψ := ∂r f∂rψ −
l(l + 1) + (1− s2)2M

r
r2 ψ +

ω2

f
ψ

I Good news: each Ds,ω is a standard, scalar, self-adjoint
Sturm-Liouville operator with purely real spectrum!

I Q: What is the precise meaning of “equivalent”?
Q: How can this information help with the spectral problem of Eω?
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Core equivalence result
Recall, by Eω we denote either of VWω or Lω, or their odd or even parts.

Theorem (Berndtson, Rosa-Dolan, IK)
Each Eω is equivalent to a system of Regge-Wheeler (Dsi ,ω) equations.

(a) There exist differential operators
making this diagram commute, with
k ′ω−→ • k̄ ′ω−→ exact on solutions:

• •

• •

• •

Dsi ,ω

k ′ω

Eω

g′ω

k̄ ′ω
Dsi ,ω

ḡ′ω

(b) Allowing formal inverses (D−1
s,ω),

the diagram from (a) converts to a
commutative square, with vertical
maps mutual inverses, up to
corrections (hω, h̄ω):

• •

• •

kω

Eω

hω

gωk̄ω
Dsi ,ω

h̄ω

ḡω

Homological algebra: chain maps and homotopy equivalences!
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Implications for the spectrum (a)

I Geometric Corollary (l ≥ 2): The differential operators from (a)
preserve asymptotics:

(r → 2M) e±iωr∗ Z±(f )f±2iωM e±iωr∗

kerDsi ,ω ker Eω kerDsi ,ω

(r →∞) e±iωr∗ 1
r e±iωr∗ e±iωr∗

k̄ ′ω k ′ω

Hence Eω : H → H∗ has real spectrum, where H = L2(W̃ dr) and
H∗ = L2(W̃−1 dr):
the self-adjointness of Ds,ω on L2(dr∗) shows that no solution φ of
Eωφ = 0 belongs to Dω ⊂ H (is admissible both at r →∞ and r → 2M).

I (l < 2): WIP
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Implications for the spectrum (b)

H−1(W̃ dr) H1(W̃−1 dr)

L2(dr∗) L2(dr∗)

kω

Eω

hω

gωk̄ω

Dsi ,ω

h̄ω

ḡω

I Analytical Corollary (l ≥ 2): Regge-Wheeler operators Dsi ,ω spectrally
dominate Eω : H−1(W̃ dr)→ H1(W̃ dr) (on weighted Sobolev spaces):

E−1
ω = k̄ω ◦ D−1

si ,ω ◦ gω + hω,

l.h.s is bounded whenever each operator on the r.h.s is bounded. Therefore∗,
σ(Eω) ⊂ σ(Dsi ,ω) and is purely real.

I ∗Caveat: In the even Lω case, the equivalence maps (k̄ω, gω, hω) do have poles
at ω = ±i (l−1)l(l+1)(l+2)

12M =: ±iω∗. So, the Analytical Corollary only implies
σ(Lω) ⊂ R ∪ {±iω∗}.

I (l < 2): WIP
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Equivalence of spectral problems up to homotopy
I Homological formulation of the spectral problem for eω . [J.L.Taylor (1970)] [Gromov-Shubin (1991)]

Resolvent: ρ(eω) = {ω ∈ C | eω sits in a split exact sequence}.
Spectrum: σ(eω) = C \ ρ(eω).

0 V W 0
eω

.

Replace V by the domain D(eω) ⊂ V if eω is unbounded.
I Equivalence up to (chain) homotopy of eω and ēω :

0 V W 0

0 V̄ W̄ 0

kω

eω

hω

gωk̄ω

ēω

h̄ω

ḡω ,

ēω ◦ kω = gω ◦ eω , k̄ω ◦ kω = id− hω ◦ eω , ḡω ◦ gω = id− eω ◦ hω ,

eω ◦ k̄ω = ḡω ◦ ēω , kω ◦ k̄ω = id− h̄ω ◦ ēω , gω ◦ ḡω = id− ēω ◦ h̄ω .

I When kω , gω , hω , k̄ω , ḡω , h̄ω are bounded, the resolvent sets agree, ρ(eω) = ρ(ēω)
because

e−1
ω = k̄ω ◦ ē−1

ω ◦ gω + hω and ē−1
ω = kω ◦ e−1

ω ◦ ḡω + h̄ω .

I Mutatis mutandis for spectral domination.
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A toy example: equivalence up to homotopy
Consider the following diagram of scalar differential operators:

0 • • 0

0 • • 0

∂r

∂2
r +ω2

1
ω2

∂r
−∂r
ω2

∂2
r +ω2

1
ω2

−∂r
ω2

,

which satisfy the identities

(∂2
r + ω2)∂r = ∂r (∂

2
r + ω2),

−∂r

ω2 ∂r = 1− 1
ω2 (∂2

r + ω2),

−∂r

ω2 ∂r = 1− (∂2
r + ω2)

1
ω2 ,

(∂2
r + ω2)

−∂r

ω2 =
−∂r

ω2 (∂2
r + ω2), ∂r

−∂r

ω2 = 1− 1
ω2 (∂2

r + ω2),

∂r
−∂r

ω2 = 1− (∂2
r + ω2)

1
ω2 .

We will say that the top and bottom lines are equivalent up to (chain) homotopy.
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A toy example: spectral domination
Consider the previous example with specific function spaces:

0 H−1 H1 0

0 H0 H0 0

∂r

∂2
r +ω2

1
ω2

∂r
−∂r
ω2

∂2
r +ω2

1
ω2

−∂r
ω2

,

where Hk is the Sobolev space of degree k . As usual, unbounded operators are
defined on dense domains.

We can conclude that ∂2
r + ω2 spectrally dominates ∂2

r + ω2, that is
σ(∂2

r + ω2) ⊂ σ(∂2
r + ω2), because

(∂2
r + ω2)−1 =

−∂r

ω2 (∂2
r + ω2)−1∂r +

1
ω2

and all the operators on the r.h.s are bounded whenever ω 6∈ σ(∂2
r + ω2).

Boundedness is achieved by letting ∂2
r + ω2 map from low regularity (H−1) to high

regularity (H1).
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Example: VWω

I The complete decoupling is a relative of the Helmholtz decomposition of
vector fields (grad + curl). There are three steps:

I Split vector field into longitudinal and transverse parts, •L and •T .
I Put transverse equation into involutive form,©ω.
I Decouple to Regge-Wheeler equations, (Dsi ,ω), (si ) = (0, 0, 1 | 1).

0 • • 0

0 •L ⊕ •T •L ⊕ •T 0

0 •L ⊕ • •L ⊕ • 0

0 • • 0

VWω

D0⊕VWω

D0⊕©ω

(Dsi )

I The Lω case is structurally similar, with significantly more complicated
formulas.
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VWω (even): gradient and divergence
We need the (vt , vr ,u) component versions of gradient (K ) and
divergence (T ) operators, 4∇µψ and 4∇µvµ.

The operators Kω :=
1
r2

−iωr
r2∂r

1
r

1

 , K ′ω :=

 iωr
f

fr2∂r
1
r

Bl


and Tω :=

( iωr
f

1
r ∂r fr2 −Bl

)
, T ′ω :=

1
r2

(
−iωr r∂r −1

)
satisfy VW e

ω ◦ Kω = K ′ω ◦ D0,ω, T ′ω ◦ VW e
ω = D0,ω ◦ Tω.

Hence, we can define the idempotent projectors

PL := KωD−1
0,ωTω P ′L := K ′ωD−1

0,ωT ′ω,

PT := id− PL, P ′T := id− P ′L,

Onto the purely transverse (•T ) and purely longitudinal (•L) vector fields.
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VWω (even): decouple the divergence
The first equivalence square decouples the purely longitudinal from the
purely transverse vector fields:

0 • • 0

0 •L ⊕ •T •L ⊕ •T 0

Tω⊕PT

VW e
ω

0

T ′ω⊕P′TKωD−1
0,ω⊕id

D0⊕VW e
ω

0

K ′ωD
−1
0,ω⊕id

Evidently, on longitudinal modes (vµ = 4∇µ 1
r ψ0),

VW e
ωvµ = 0 translates to D0,ωψ0 = 0.
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VWω (even): adjoin the transversality condition

Now we adjoin the transversality (Lorenz) condition (4∇µvµ = 0) in its
component form (Tωv = 0).

It turns out to be convenient to put the (overdetermined) system
(Tω,VW e

ω ) into involutive form, which becomes determined but mixed
order (∂r vt , ∂r vr , ∂

2
r u):

©ω

vt
vr
u

 :=

 − iωr
f 0 0 0

−fr2∂r
1
r 0 1 0

−Bl 0 0 1

( Tω
VW e

ω

)vt
vr
u


=

 ω2r2

f − iω
f ∂r r2f Bl

iωr
f

−iωr2∂r ω2r2 − Bl f Bl f∂r r
−Bl

iωr
f −Bl r∂r f ∂rBl r2f∂r + Bl

1
f (ω2r2 + f 2M

r )

vt
vr
u


Of course, the transformation from (Tω,VW e

ω ) to©ω is invertible, also
by a differential operator.
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VWω (even): adjoin the transversality condition
The next equivalence square relates VW e

ω acting on purely transverse
vector fields to the joint system (Tω,VW e

ω ), acting on unconstrained
vector fields:

0 •T •T 0

0 • • 0

id

VW e
ω

0

gωPT

©ω

h̄ω

ḡω
,

where h̄ω = KωD−1
0,ω

(
− f

iωr 0 0
)
,

gω =

0 0 0
0 1 0
0 0 1

 , ḡω = P ′T
1

iωr

 −iωr r∂r −1
−fr3∂r

f
r2 iωr 0

−Bl f 0 iωr

 .
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VWω (even): decouple to Regge-Wheeler
The final equivalence square decouples©ωv = 0 into two Regge-Wheeler equations
D0,ωφ0 = 0 and D1,ωφ1 = 0:

0 • • 0

0 • • 0

kω

©ω

hω

gωk̄ω
D0,ω⊕D1,ω

h̄ω

ḡω ,

where (φ0, φ1)T = kω(vt , vu , u)T ,

kω =

(
iωr −Bl f Bl f∂r r
0 −f f∂r r

)
, gω =

1
r2

(
iωrf −Bl − r∂r f r∂r f

0 −1 r2

Bl
∂r

f
r

)
,

k̄ω =
1

ω2r2

−iωr Bl iωr
r2∂r

1
r −Bl r∂r

1 −Bl − fr∂r

 , ḡω =
1
ω2

− iωr
f Bl

iωr
f

0 −Bl f
0 −Bl r∂r f

 ,

hω =
1

ω2r2

0 0 0
0 −1 0
0 0 − f

Bl

 , h̄ω =
f
ω2

0 Bl 0
0 1 0
0 0 0

 .
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Discussion

I Complete separation of variables for Lichnerowicz and vector
wave equations on Schwarzschild.

I Equivalence with decoupled Regge-Wheeler equations.
I Example: the vector wave equation is equivalent to 4 generalized

Regge-Wheeler equations (Dsi ), with spins (si) = (0,0,1 | 1).
I The Lichnerowicz equation is equivalent to 10 generalized

Regge-Wheeler equations (Dsi ), with spins
(si) = (0,0,1,0,0,1,2 | 1,1,2).
Similar to vector wave equation, but more complicated.

I Need to deal with low angular modes (l ≤ 1) separately. (WIP)
I At the mode level, the equivalence maps are given (mostly) by

differential operators. What is their relation with Debye potentials
at the spacetime level?

Thank you for your attention!
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