Spectral Theory of Vector and Tensor Fields on Schwarzschild Spacetime

Igor Khavkine

Department of Mathematics
University of Milan (Statale)

12 Jan 2017
Microlocal Analysis Workshop
Genova, Italy

part of a project in progress with
F. Bussola and C. Dappiaggi (Pavia)

Motivation

- Goals:
- Hawking effect for gravitons;
- interacting gravitons on a black-hole spacetime;
- eventually, quantum back-reaction of Hawking radiation.
- Graviton field - $p_{\mu \nu}$, its quantization - $\hat{p}_{\mu \nu}$.
- Ghost field - v_{μ}, its quantization - \hat{v}_{μ} (BRST formalism).
- Harmonic (aka de Donder, Lorenz, wave coordinate) gauge:
- ${ }^{4} \nabla^{\nu} \bar{p}_{\mu \nu}=0$, where $\bar{p}_{\mu \nu}=p_{\mu \nu}-\frac{1}{2}{ }^{4} g_{\mu \nu} \operatorname{tr} p$;
- favored by BRST formalism.
- Graviton and ghost Feynman propagators:

$$
\begin{gathered}
G_{\mu \nu: \mu^{\prime} \nu^{\prime}}\left(x, x^{\prime}\right)=\frac{-i}{8 \pi \ell_{P}^{2}}\left\langle T\left[\hat{p}_{\mu \nu}(x) \hat{p}_{\mu^{\prime} \nu^{\prime}}\left(x^{\prime}\right)\right]\right\rangle_{\psi} \\
G_{\mu: \mu^{\prime}}\left(x, x^{\prime}\right)=-i\left\langle T\left[\hat{v}_{\mu}(x) \hat{v}_{\mu^{\prime}}\left(x^{\prime}\right)\right]\right\rangle_{\psi}
\end{gathered}
$$

Ψ - sensible quantum state, like Unruh or Hartle-Hawking.

Motivation

- Goals:
- Hawking effect for gravitons;
- interacting gravitons on a black-hole spacetime;
- eventually, quantum back-reaction of Hawking radiation.
- Graviton field - $p_{\mu \nu}$, its quantization - $\hat{p}_{\mu \nu}$.
- Ghost field - v_{μ}, its quantization - \hat{v}_{μ} (BRST formalism).
- Harmonic (aka de Donder, Lorenz, wave coordinate) gauge:
- ${ }^{4} \nabla^{\nu} \bar{p}_{\mu \nu}=0$, where $\bar{p}_{\mu \nu}=p_{\mu \nu}-\frac{1}{2}{ }^{4} g_{\mu \nu} \operatorname{tr} p$;
- favored by BRST formalism.
- Graviton and ghost Feynman propagators:

$$
\begin{gathered}
G_{\mu \nu: \mu^{\prime} \nu^{\prime}}\left(x, x^{\prime}\right)=\frac{-i}{8 \pi \ell_{P}^{2}}\left\langle T\left[\hat{p}_{\mu \nu}(x) \hat{p}_{\mu^{\prime} \nu^{\prime}}\left(x^{\prime}\right)\right]\right\rangle_{\psi} \\
G_{\mu: \mu^{\prime}}\left(x, x^{\prime}\right)=-i\left\langle T\left[\hat{v}_{\mu}(x) \hat{v}_{\mu^{\prime}}\left(x^{\prime}\right)\right]\right\rangle_{\psi}
\end{gathered}
$$

Ψ - sensible quantum state, like Unruh or Hartle-Hawking.
Want an "explicit" mode expansion of $G_{\mu: \mu^{\prime}}\left(x, x^{\prime}\right)$ and $G_{\mu \nu: \mu^{\prime} \nu^{\prime}}\left(x, x^{\prime}\right)$.

Vector and tensor fields on Schwarzschild

- The Schwarzschild spacetime $\left(M,{ }^{4} g\right)$ is a 4-dimensional Lorentzian manifold describing a static, spherically symmetric black hole.
- The Feynman propagators $G_{\mu: \mu^{\prime}}\left(x, x^{\prime}\right)$ and $G_{\mu \nu: \mu^{\prime} \nu^{\prime}}\left(x, x^{\prime}\right)$ are particular Green functions, respectively, for the vector (ghost) and tensor (graviton) wave equations on Schwarzschild:

$$
{ }^{4} \square v_{\mu}=2^{4} \nabla^{\nu} \overline{4} \nabla_{(\mu} v_{\nu)}=0, \quad{ }^{4} \square p_{\mu \nu}-2^{4} R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa}-2^{4} \nabla_{(\mu}{ }^{4} \nabla^{\lambda} \bar{p}_{\nu) \lambda}=0 .
$$

For tensors, it is also called the Lichnerowicz equation.

- Goal: write each Green function as an explicit mode sum/integral:

$$
{ }^{4} G(x, y) \sim \int \mathrm{d} \mu_{\ell, \omega, \nu} \phi_{\ell, \omega}(x) \bar{\phi}_{\ell, \omega}(y) e^{-i \nu\left(x^{0}-y^{0}\right)}
$$

where $\phi_{\ell, \omega}(x)$ are modes adapted to the static (ω, ν) and spherical (ℓ) symmetry of the black hole and $\mathrm{d} \mu_{\ell, \omega, \nu}$ is a specially chosen spectral measure that determines the Green function (and the quantum state ψ).

- Question: Can $\mathrm{d} \mu_{\ell, \omega, \nu}$ be supported only on $\omega \in \mathbb{R}$?

Vector and tensor fields on Schwarzschild

- The Schwarzschild spacetime $\left(M,{ }^{4} g\right)$ is a 4-dimensional Lorentzian manifold describing a static, spherically symmetric black hole.
- The Feynman propagators $G_{\mu: \mu^{\prime}}\left(x, x^{\prime}\right)$ and $G_{\mu \nu: \mu^{\prime} \nu^{\prime}}\left(x, x^{\prime}\right)$ are particular Green functions, respectively, for the vector (ghost) and tensor (graviton) wave equations on Schwarzschild:

$$
{ }^{4} \square v_{\mu}=2^{4} \nabla^{\nu / 4} \nabla_{(\mu \nu} v_{\nu}=0, \quad{ }^{4} \square p_{\mu \nu}-2^{4} R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa}-2^{4} \nabla_{(\mu}{ }^{4} \nabla^{\lambda} \bar{p}_{\nu)}=0 .
$$

For tensors, it is also called the Lichnerowicz equation.

- Goal: write each Green function as an explicit mode sum/integral:

$$
{ }^{4} G(x, y) \sim \int \mathrm{d} \mu_{\ell, \omega, \nu} \phi_{\ell, \omega}(x) \bar{\phi}_{\ell, \omega}(y) e^{-i \nu\left(x^{0}-y^{0}\right)}
$$

where $\phi_{\ell, \omega}(x)$ are modes adapted to the static (ω, ν) and spherical (ℓ) symmetry of the black hole and $\mathrm{d} \mu_{\ell, \omega, \nu}$ is a specially chosen spectral measure that determines the Green function (and the quantum state ψ).

- Question: Can $\mathrm{d} \mu_{\ell, \omega, \nu}$ be supported only on $\omega \in \mathbb{R}$?

Separation of variables: $2+2$ tensor formalism

- We follow the convenient formalism of [Martel \& Poisson 2005].
- Schwarzschild $\left(\mathcal{M} \times S^{2}\right)$ is spherically symmetric $f(r)=1-\frac{2 M}{r}$:

$$
{ }^{4} g_{\mu \nu}=-f(r) \mathrm{d} t^{2}+\frac{\mathrm{dr}^{2}}{f(r)}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) \rightarrow\left(\begin{array}{cc}
g_{a b} & 0 \\
0 & r^{2} \Omega_{A B}
\end{array}\right) .
$$

- Tensor indices a, b, c, \ldots and ∇_{a} are for $\left(\mathcal{M}, g_{a b}\right)$. Tensor indices A, B, C, \ldots and D_{A} are for the unit sphere $\left(S^{2}, \Omega_{A B}\right)$.
- Vector field $v_{\mu} \rightarrow\binom{v_{a}}{v_{A}}$, symmetric tensor $p_{\mu \nu} \rightarrow\left(\begin{array}{ll}p_{a b} & p_{a B} \\ p_{A b} & p_{A B}\end{array}\right)$.
- Connection ${ }^{4} \nabla=(\nabla, D)+\Gamma$,

$$
\Gamma_{\nu \lambda}^{\mu}=\left[\left(\begin{array}{cc}
0 & 0 \\
0 & -r r^{a} \Omega_{B C}
\end{array}\right) \quad\left(\begin{array}{cc}
0 & \frac{r_{b}}{r} \delta_{C}^{A} \\
\frac{r_{r}}{r} \delta_{B}^{A} & 0
\end{array}\right)\right] .
$$

- Formalism covariant with respect to changes of coordinates and metric on $\left(\mathcal{M}, g_{a b}\right)$.

Spherical harmonics

- Spherical scalar, vector and tensor harmonics:

$$
\begin{array}{rlrl}
D_{A} D^{A} Y & =-I(I+1) Y, & Y_{A}=D_{A} Y, & \\
Y_{A B}=D_{A} Y_{B}+\frac{I(I+1)}{2} \Omega_{A B} Y, \\
\int_{S^{2}} \bar{Y}^{\prime} Y \epsilon & =\delta_{\| \prime} \delta_{m m^{\prime}}, & & X_{A}=\epsilon_{B A} D^{B} Y,
\end{array} \quad X_{A B}=D_{A} X_{B}+\frac{I(I+1)}{2} \epsilon_{A B} Y .
$$

Simply normalized, orthogonal, tensor eigenfunctions of $D_{A} D^{A}$.

- Vector and Tensor decompositions

From now on, omit spherical harmonic (I, m) mode indices:

$$
p=\left(h_{a b}, j_{a}, K, G \mid h_{a}, h_{2}\right) \quad \text { and } \quad v=\left(v_{a}, u \mid w\right)
$$

Radial mode equation

- In static Schwarzschild (t, r) coordinates $(2 M<r<\infty)$:

$$
\begin{gathered}
p(t, r)=p(r) e^{-i \omega t} \quad \text { and } \quad v(t, r)=v(r) e^{-i \omega t}, \quad \text { where } \\
p(r)=\left(h_{t t}, h_{t r}, h_{r r}, j_{t}, j_{r}, K, G \mid h_{t}, h_{r}, h_{2}\right) \\
v(r)=\left(v_{t}, v_{r}, u \mid w\right) .
\end{gathered}
$$

We obtain the radial mode equations $V W_{\omega} v=0$ and $L_{\omega} p=0$.

- For vectors, ${ }^{4} \square v_{\mu} \rightsquigarrow V W_{\omega}$ consists of decoupled 3×3 (even) and 1×1 (odd) systems.
- For tensors, ${ }^{4} \square p_{\mu \nu}-2^{4} R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa} \rightsquigarrow L_{\omega}$ consists of decoupled 7×7 (even) and 3×3 (odd) systems.
- Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation

$$
E_{\omega} \phi:=\partial_{r} P(r) \partial_{r} \phi+Q(r) \phi+i \omega A(r) \phi+\omega^{2} W(r) \phi=0
$$

with hermitian P, Q, $i A$, and W, hence formally self-adjoint.

Radial mode equation

- In static Schwarzschild (t, r) coordinates $(2 M<r<\infty)$:

$$
\begin{gathered}
p(t, r)=p(r) e^{-i \omega t} \quad \text { and } \quad v(t, r)=v(r) e^{-i \omega t}, \quad \text { where } \\
p(r)=\left(h_{t t}, h_{t r}, h_{r r}, j_{t}, j_{r}, K, G \mid h_{t}, h_{r}, h_{2}\right) \\
v(r)=\left(v_{t}, v_{r}, u \mid w\right) .
\end{gathered}
$$

We obtain the radial mode equations $V W_{\omega} v=0$ and $L_{\omega} p=0$.

- For vectors, ${ }^{4} \square v_{\mu} \rightsquigarrow V W_{\omega}$ consists of decoupled 3×3 (even) and 1×1 (odd) systems.
- For tensors, ${ }^{4} \square p_{\mu \nu}-2^{4} R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa} \rightsquigarrow L_{\omega}$ consists of decoupled 7×7 (even) and 3×3 (odd) systems.
- Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation

$$
E_{\omega} \phi:=\partial_{r} P(r) \partial_{r} \phi+Q(r) \phi+i \omega A(r) \phi+\omega^{2} W(r) \phi=0
$$

with hermitian P, Q, $i A$, and W, hence formally self-adjoint.

Radial mode equation

- In static Schwarzschild (t, r) coordinates $(2 M<r<\infty)$:

$$
\begin{gathered}
p(t, r)=p(r) e^{-i \omega t} \quad \text { and } \quad v(t, r)=v(r) e^{-i \omega t}, \text { where } \\
p(r)=\left(h_{t t}, h_{t r}, h_{r r}, j_{t}, j_{r}, K, G \mid h_{t}, h_{r}, h_{2}\right) \\
v(r)=\left(v_{t}, v_{r}, u \mid w\right) .
\end{gathered}
$$

We obtain the radial mode equations $V W_{\omega} v=0$ and $L_{\omega} p=0$.

- For vectors, ${ }^{4} \square v_{\mu} \rightsquigarrow V W_{\omega}$ consists of decoupled 3×3 (even) and 1×1 (odd) systems.
- For tensors, ${ }^{4} \square p_{\mu \nu}-2^{4} R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa} \rightsquigarrow L_{\omega}$ consists of decoupled 7×7 (even) and 3×3 (odd) systems.
- Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation

$$
E_{\omega} \phi:=\partial_{r} P(r) \partial_{r} \phi+Q(r) \phi+i \omega A(r) \phi+\omega^{2} W(r) \phi=0
$$

with hermitian P, Q, $i A$, and W, hence formally self-adjoint.

Radial mode equation

- In static Schwarzschild (t, r) coordinates $(2 M<r<\infty)$:

$$
\begin{gathered}
p(t, r)=p(r) e^{-i \omega t} \quad \text { and } \quad v(t, r)=v(r) e^{-i \omega t}, \quad \text { where } \\
p(r)=\left(h_{t t}, h_{t r}, h_{r r}, j_{t}, j_{r}, K, G \mid h_{t}, h_{r}, h_{2}\right) \\
v(r)=\left(v_{t}, v_{r}, u \mid w\right) .
\end{gathered}
$$

We obtain the radial mode equations $V W_{\omega} v=0$ and $L_{\omega} p=0$.

- For vectors, ${ }^{4} \square v_{\mu} \rightsquigarrow V W_{\omega}$ consists of decoupled 3×3 (even) and 1×1 (odd) systems.
- For tensors, ${ }^{4} \square p_{\mu \nu}-2^{4} R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa} \rightsquigarrow L_{\omega}$ consists of decoupled 7×7 (even) and 3×3 (odd) systems.
- Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation

$$
E_{\omega} \phi:=\partial_{r} P(r) \partial_{r} \phi+Q(r) \phi+i \omega A(r) \phi+\omega^{2} W(r) \phi=0
$$

with hermitian P, Q, $i A$, and W, hence formally self-adjoint.

Radial mode equation

- In static Schwarzschild (t, r) coordinates $(2 M<r<\infty)$:

$$
\begin{gathered}
p(t, r)=p(r) e^{-i \omega t} \quad \text { and } \quad v(t, r)=v(r) e^{-i \omega t}, \quad \text { where } \\
p(r)=\left(h_{t t}, h_{t r}, h_{r r}, j_{t}, j_{r}, K, G \mid h_{t}, h_{r}, h_{2}\right) \\
v(r)=\left(v_{t}, v_{r}, u \mid w\right)
\end{gathered}
$$

We obtain the radial mode equations $V W_{\omega} v=0$ and $L_{\omega} p=0$.

- For vectors, ${ }^{4} \square v_{\mu} \rightsquigarrow V W_{\omega}$ consists of decoupled 3×3 (even) and 1×1 (odd) systems.
- For tensors, ${ }^{4} \square p_{\mu \nu}-2^{4} R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa} \rightsquigarrow L_{\omega}$ consists of decoupled 7×7 (even) and 3×3 (odd) systems.
- Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation

$$
E_{\omega} \phi:=\partial_{r} P(r) \partial_{r} \phi+Q(r) \phi+i \omega A(r) \phi+\omega^{2} W(r) \phi=0
$$

with hermitian $P, Q, i A$, and W, hence formally self-adjoint.

Radial mode equation: $V W_{\omega}$

Explicitly:

(odd)

$$
\begin{aligned}
& \partial_{r} \mathcal{B}_{l} r^{2} f \partial_{r} w+\left(\omega^{2} \frac{r^{2}}{f}-\mathcal{B}_{l}\right) \mathcal{B}_{l} w+\mathcal{B}_{l} \frac{2 M}{r} w=0, \\
& \left(\begin{array}{c}
-\partial_{r} \frac{1}{f} r^{2} f \partial_{r} v_{t} \\
\partial_{r} f r^{2} f \partial_{r} v_{r} \\
\partial_{r} \mathcal{B}_{l} r^{2} f \partial_{r} u
\end{array}\right)+\left(\omega^{2} \frac{r^{2}}{f}-\mathcal{B}_{l}\right)\left(\begin{array}{c}
-\frac{1}{f} v_{t} \\
f v_{r} \\
\mathcal{B}_{l} u
\end{array}\right) \\
& \quad+i \omega \frac{2 M}{f}\left(\begin{array}{c}
v_{r} \\
-v_{t} \\
0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 f^{2} & 2 \mathcal{B}_{l} f \\
0 & 2 \mathcal{B}_{l} f & \mathcal{B}_{l} \frac{M}{r}
\end{array}\right)\left(\begin{array}{c}
v_{t} \\
v_{r} \\
u
\end{array}\right)=0,
\end{aligned}
$$

where $f(r)=1-\frac{2 M}{r}$ and $\mathcal{B}_{l}=I(I+1)$.

Radial mode equation: L_{ω} (odd sector)

$$
\left.\begin{array}{rl}
\left(\begin{array}{c}
\partial_{r}\left(-2 \frac{\mathcal{B}_{l}}{f} r^{2} f \partial_{r}\right) h_{t} \\
\partial_{r}\left(2 \mathcal{B}_{l} f r^{2} f \partial_{r}\right) \\
\partial_{r}\left(\frac{\mathcal{A}_{l}}{2} r^{2} f \partial_{r}\right) \\
r_{r}
\end{array}\right) & h_{2}
\end{array}\right)-\mathcal{B}_{l}\left(\begin{array}{c}
-2 \frac{\mathcal{B}_{l}}{f} h_{t} \\
2 \mathcal{B}_{l} f h_{r} \\
\frac{\mathcal{A}_{1}}{2} h_{2}
\end{array}\right) .
$$

where $f(r)=1-\frac{2 M}{r}, \mathcal{A}_{I}=(I-1) I(I+1)(I+2)$ and $\mathcal{B}_{I}=I(I+1)$

Radial mode equation: L_{ω} (even sector)

where $f(r)=1-\frac{2 M}{r}, \mathcal{A}_{I}=(I-1) I(I+1)(I+2)$ and $\mathcal{B}_{I}=I(I+1)$

Spectral theory of the radial mode equation

- How to wrie the Green function $E_{\omega}^{-1}\left(r, r^{\prime}\right)$ for the operator pencil

$$
E_{\omega} \phi:=\partial_{r} P(r) \partial_{r} \phi+Q(r) \phi+i \omega A(r) \phi+\omega^{2} W(r) \phi
$$

in spectral representation (mode sum/integral)?
Use ideas of Weyl-Titchmarsh-Kodaira (1910-1950), Keldysh (1951).
[Weidmann (Springer, 1987)] [Gohberg-Kaashoek-Lay (1976)] [Markus (AMS, 1988)]

- The spectrum is $\sigma\left(E_{\omega}\right)=\mathbb{C} \backslash \rho\left(E_{\omega}\right)$. For $\omega \in \rho\left(E_{\omega}\right)$ in the resolvent set, E_{ω}^{-1} is bounded. Need to choose a function space/domain!
- Linearize $\boldsymbol{E}_{\omega} \rightsquigarrow \boldsymbol{E}_{\omega}$, prove analyticity of $\boldsymbol{E}_{\omega}^{-1}$ over $\rho\left(E_{\omega}\right)$:

$$
E_{\omega}=\left[\begin{array}{cc}
\partial_{r} P \partial_{r}+Q & 0 \\
0 & -W
\end{array}\right]+\omega\left[\begin{array}{cc}
i A & W \\
W & 0
\end{array}\right], \quad E_{\omega}^{-1}=\left[\begin{array}{cc}
E_{\omega}^{-1} & \omega E_{\omega}^{-1} \\
\omega E_{\omega}^{-1} & \omega^{2} E_{\omega}^{-1}-W^{-1}
\end{array}\right]
$$

- Integrate over a positive simple contour γ about $\sigma\left(E_{\omega}\right)$:

$$
\boldsymbol{E}_{\nu}^{-1}=\oint_{\gamma} \frac{\mathrm{d} \omega}{2 \pi i} \frac{1}{\omega-\nu} \boldsymbol{E}_{\omega}^{-1}, \quad\left[\begin{array}{cc}
0 & W^{-1} \\
W^{-1} & -W^{-1} i A W^{-1}
\end{array}\right]=\oint_{\gamma} \frac{\mathrm{d} \omega}{2 \pi i} \boldsymbol{E}_{\omega}^{-1}
$$

- Decompose $E_{\omega}^{-1}\left(r, r^{\prime}\right)=\dot{E}_{\omega}^{-1}\left(r, r^{\prime}\right)+m^{j j^{\prime}}(\omega) \phi_{\omega, j}(r) \phi_{-\omega, j^{\prime}}\left(r^{\prime}\right)$, where \dot{E}_{ω}^{-1} is analytic! Then $m(\omega) \rightsquigarrow \mathrm{d} \mu_{\omega}$ - the spectral measure.

A reasonable hypothesis

- At the very least, the explicit form of the equations gives us the asymptotics [Wasow (Intersci., 1965)] for a solution basis ϕ_{j} of $E_{\omega} \phi=0$:

$$
\phi_{j}(r) \sim \begin{cases}e^{ \pm i \omega r_{*}} Z_{ \pm}(f) y_{j}^{(2 M)} & r \rightarrow 2 M \\ e^{ \pm i \omega r_{*}} \frac{1}{r} y_{j}^{(\infty)} & r \rightarrow \infty\end{cases}
$$

where y_{j} are constant coefficients, $Z_{ \pm}(f)$ are Laurent polynomial matrices in $f=1-\frac{2 M}{r}$, and $r_{*}=r+2 M \log \left(\frac{r}{2 M}-1\right)$ is the tortoise coordinate, so that $e^{\sigma r_{*}} \sim f^{\sigma}$.

- Theorem: There exists a function space \mathcal{H}, complete w.r.t an inner product $(\phi, \phi)=\int_{2 M}^{\infty} \phi^{\dagger} \tilde{W} \phi \mathrm{~d} r$, and a domain $D_{\omega} \subset \mathcal{H}$ that is a core for a closed operator realization of E_{ω} such that, for $\Im \omega \neq 0$,
- exactly half of the ϕ_{j} are admissible at $r \rightarrow \infty$,
- exactly half of the ϕ_{j} are admissible at $r \rightarrow 2 M$.
- Hypothesis: for $\Im \omega \neq 0$, no $\sum_{j} a_{j} \phi_{j}$ is admissible at both ends. Then the spectrum would be purely real and we would be done!

Example: asymptitics, $V W_{e}$ (even)

$$
\left(\begin{array}{l}
v_{t} \\
v_{r} \\
u
\end{array}\right) \sim \sum_{ \pm} Z_{ \pm}(f) f^{ \pm 2 i \omega M} y_{ \pm}^{(2 M)} \quad \text { or } \quad \sum_{ \pm} \frac{1}{r} e^{ \pm i \omega r_{*}} y_{ \pm}^{(\infty)}
$$

where $f=1-\frac{2 M}{r}, r_{*}=r+2 M \log \left(\frac{r}{2 M}-1\right)$ and

$$
Z_{ \pm}(f)=\left(\begin{array}{ccc}
1 & \pm f & 0 \\
\mp \frac{1}{f} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{I(I+1)+1}{4 \omega M(4 \omega M \pm i)}\left(\begin{array}{ccc}
f & 0 & 0 \\
\mp 1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The function space \mathcal{H} consists of measurable $\phi=\left(v_{t}, v_{r}, u\right)$ such that

$$
\begin{aligned}
(\phi, \phi) & =\int_{2 M}^{\infty} \mathrm{d} r\left[\frac{1}{f}\left|v_{t}\right|^{2}+f\left|v_{r}\right|^{2}+\frac{1}{f}|u|^{2}\right]<\infty, \\
\text { and } \quad D_{\omega} & =\left\{\phi \in \mathcal{H}: \int_{2 M} \mathrm{~d} r \frac{1}{f}\left|\frac{i \omega r}{f} v_{t}+r \partial_{r} f v_{r}\right|^{2}<\infty\right\} .
\end{aligned}
$$

The key idea

- How can we obtain information about the spectrum of E_{ω} ?
- When in doubt, turn to the physics literature and discover. . . a sea of formulas!
- But also the claim [Berndtson (PhD, 2007)] [Rosa-Dolan (2012)] that each of $V W_{\omega} v=0$ and $L_{\omega} p=0$ are "equivalent" to a decoupled system of, respectively, 4 or 10 scalars $\left(\phi_{i}\right)_{i}$ satisfying generalized Regge-Wheeler equations $\mathcal{D}_{s_{i}, \omega} \phi_{i}=0$, for spins $s_{i} \in\{0,1,2\}$:

$$
\mathcal{D}_{s, \omega} \psi:=\partial_{r} f \partial_{r} \psi-\frac{I(I+1)+\left(1-s^{2}\right) \frac{2 M}{r}}{r^{2}} \psi+\frac{\omega^{2}}{f} \psi
$$

- Good news: each $\mathcal{D}_{s, \omega}$ is a standard, scalar, self-adjoint Sturm-Liouville operator with purely real spectrum!
- Q: What is the precise meaning of "equivalent"?

Q: How can this information help with the spectral problem of E_{ω} ?

Core equivalence result

Recall, by E_{ω} we denote either of $V W_{\omega}$ or L_{ω}, or their odd or even parts.
Theorem (Berndtson, Rosa-Dolan, IK)
Each E_{ω} is equivalent to a system of Regge-Wheeler $\left(\mathcal{D}_{s_{i}, \omega}\right)$ equations.
(a) There exist differential operators making this diagram commute, with $\xrightarrow{k_{\omega}^{\prime}} \bullet \xrightarrow{\bar{k}_{w}^{\prime}}$ exact on solutions:

(b) Allowing formal inverses $\left(\mathcal{D}_{s, \omega}^{-1}\right)$, the diagram from (a) converts to a commutative square, with vertical maps mutual inverses, up to corrections $\left(h_{\omega}, \bar{h}_{\omega}\right)$:

Homological algebra: chain maps and homotopy equivalences!

Implications for the spectrum (a)

- Geometric Corollary $(I \geq 2)$: The differential operators from (a) preserve asymptotics:

$$
\begin{aligned}
& (r \rightarrow 2 M) \quad e^{ \pm i \omega r_{*}} \quad Z_{ \pm}(f) f^{ \pm 2 i \omega M} \quad e^{ \pm i \omega r_{*}} \\
& \operatorname{ker} \mathcal{D}_{s_{i}, \omega} \xrightarrow{\bar{k}_{\omega}^{\prime}} \operatorname{ker} E_{\omega} \xrightarrow{k_{\omega}^{\prime}} \operatorname{ker} \mathcal{D}_{s_{i}, \omega} \\
& (r \rightarrow \infty) \quad e^{ \pm i \omega r_{*}} \quad \frac{1}{r} e^{ \pm i \omega r_{*}} \quad e^{ \pm i \omega r_{*}}
\end{aligned}
$$

Hence $E_{\omega}: \mathcal{H} \rightarrow \mathcal{H}^{*}$ has real spectrum, where $\mathcal{H}=L^{2}(\tilde{W} \mathrm{~d} r)$ and $\mathcal{H}^{*}=L^{2}\left(\tilde{W}^{-1} \mathrm{~d} r\right):$
the self-adjointness of $\mathcal{D}_{s, \omega}$ on $L^{2}\left(\mathrm{~d} r_{*}\right)$ shows that no solution ϕ of $E_{\omega} \phi=0$ belongs to $D_{\omega} \subset \mathcal{H}$ (is admissible both at $r \rightarrow \infty$ and $r \rightarrow 2 M$).

- (I<2): WIP

Implications for the spectrum (b)

$$
\begin{aligned}
& H^{-1}(\tilde{W} \mathrm{~d} r) \xrightarrow[E_{\omega}]{h_{\omega}} H^{1}\left(\tilde{W}^{-1} \mathrm{~d} r\right) \\
& k_{\omega} \downarrow \uparrow \bar{k}_{\omega} \quad g_{\omega} \downarrow \mid \bar{g}_{\omega} \\
& L^{2}\left(\mathrm{~d} r_{*}\right) \xrightarrow{\mathcal{D}_{s_{i}, \omega}} L^{2}\left(\mathrm{~d} r_{*}\right)
\end{aligned}
$$

- Analytical Corollary ($I \geq 2$): Regge-Wheeler operators $\mathcal{D}_{s_{i}, \omega}$ spectrally dominate $E_{\omega}: H^{-1}(\tilde{W} \mathrm{~d} r) \rightarrow H^{1}(\tilde{W} \mathrm{~d} r)$ (on weighted Sobolev spaces):

$$
E_{\omega}^{-1}=\bar{k}_{\omega} \circ D_{s_{i}, \omega}^{-1} \circ g_{\omega}+h_{\omega},
$$

I.h.s is bounded whenever each operator on the r.h.s is bounded. Therefore*, $\sigma\left(E_{\omega}\right) \subset \sigma\left(\mathcal{D}_{s_{i}, \omega}\right)$ and is purely real.

- ${ }^{*}$ Caveat: In the even L_{ω} case, the equivalence maps ($\bar{k}_{\omega}, g_{\omega}, h_{\omega}$) do have poles at $\omega= \pm i \frac{(l-1)(l+1)(l+2)}{12 M}=: \pm i \omega_{*}$. So, the Analytical Corollary only implies $\sigma\left(L_{\omega}\right) \subset \mathbb{R} \cup\left\{ \pm i \omega_{*}\right\}$.
- $(I<2)$: WIP

Equivalence of spectral problems up to homotopy

- Homological formulation of the spectral problem for e_{ω}. [J.L.Taylor (1970)] [Gromov-Shubin (1991)]

Resolvent: $\rho\left(e_{\omega}\right)=\left\{\omega \in \mathbb{C} \mid e_{\omega}\right.$ sits in a split exact sequence $\}$.
Spectrum: $\sigma\left(\boldsymbol{e}_{\omega}\right)=\mathbb{C} \backslash \rho\left(\boldsymbol{e}_{\omega}\right)$.

$$
0 \longrightarrow V \xrightarrow{e_{\omega}} W \longrightarrow 0
$$

Replace V by the domain $D\left(e_{\omega}\right) \subset V$ if e_{ω} is unbounded.

- Equivalence up to (chain) homotopy of e_{ω} and \bar{e}_{ω} :

$$
\begin{array}{lll}
\bar{e}_{\omega} \circ k_{\omega}=g_{\omega} \circ e_{\omega}, & \bar{k}_{\omega} \circ k_{\omega}=\mathrm{id}-h_{\omega} \circ e_{\omega}, & \bar{g}_{\omega} \circ g_{\omega}=\mathrm{id}-e_{\omega} \circ h_{\omega}, \\
e_{\omega} \circ \bar{k}_{\omega}=\bar{g}_{\omega} \circ \bar{e}_{\omega}, & k_{\omega} \circ \bar{k}_{\omega}=\mathrm{id}-\bar{h}_{\omega} \circ \bar{e}_{\omega}, & g_{\omega} \circ \bar{g}_{\omega}=\mathrm{id}-\bar{e}_{\omega} \circ \bar{h}_{\omega} .
\end{array}
$$

- When $k_{\omega}, g_{\omega}, h_{\omega}, \bar{k}_{\omega}, \bar{g}_{\omega}, \bar{h}_{\omega}$ are bounded, the resolvent sets agree, $\rho\left(e_{\omega}\right)=\rho\left(\bar{e}_{\omega}\right)$ because

$$
e_{\omega}^{-1}=\bar{k}_{\omega} \circ \bar{e}_{\omega}^{-1} \circ g_{\omega}+h_{\omega} \quad \text { and } \quad \bar{e}_{\omega}^{-1}=k_{\omega} \circ e_{\omega}^{-1} \circ \bar{g}_{\omega}+\bar{h}_{\omega} .
$$

- Mutatis mutandis for spectral domination.

A toy example: equivalence up to homotopy

Consider the following diagram of scalar differential operators:

which satisfy the identities

$$
\begin{array}{rlrl}
\left(\partial_{r}^{2}+\omega^{2}\right) \partial_{r} & =\partial_{r}\left(\partial_{r}^{2}+\omega^{2}\right), & \frac{-\partial_{r}}{\omega^{2}} \partial_{r} & =1-\frac{1}{\omega^{2}}\left(\partial_{r}^{2}+\omega^{2}\right) \\
\left(\partial_{r}^{2}+\omega^{2}\right) \frac{-\partial_{r}}{\omega^{2}}=\frac{-\partial_{r}}{\omega^{2}}\left(\partial_{r}^{2}+\omega^{2}\right), & \partial_{r} \frac{-\partial_{r}}{\omega^{2}} & =1-\frac{1}{\omega^{2}}\left(\partial_{r}^{2}+\omega^{2}\right) \\
\partial_{r} \frac{-\partial_{r}}{\omega^{2}} & =1-\left(\partial_{r}^{2}+\omega^{2}\right) \frac{1}{\omega^{2}}
\end{array}
$$

We will say that the top and bottom lines are equivalent up to (chain) homotopy.

A toy example: spectral domination

Consider the previous example with specific function spaces:

where H^{k} is the Sobolev space of degree k. As usual, unbounded operators are defined on dense domains.
We can conclude that $\partial_{r}^{2}+\omega^{2}$ spectrally dominates $\partial_{r}^{2}+\omega^{2}$, that is $\sigma\left(\partial_{r}^{2}+\omega^{2}\right) \subset \sigma\left(\partial_{r}^{2}+\omega^{2}\right)$, because

$$
\left(\partial_{r}^{2}+\omega^{2}\right)^{-1}=\frac{-\partial_{r}}{\omega^{2}}\left(\partial_{r}^{2}+\omega^{2}\right)^{-1} \partial_{r}+\frac{1}{\omega^{2}}
$$

and all the operators on the r.h.s are bounded whenever $\omega \notin \sigma\left(\partial_{r}^{2}+\omega^{2}\right)$.
Boundedness is achieved by letting $\partial_{r}^{2}+\omega^{2}$ map from low regularity $\left(\mathrm{H}^{-1}\right)$ to high regularity $\left(H^{1}\right)$.

Example: $V W_{\omega}$

- The complete decoupling is a relative of the Helmholtz decomposition of vector fields (grad + curl). There are three steps:
- Split vector field into longitudinal and transverse parts, \bullet_{L} and \bullet_{T}.
- Put transverse equation into involutive form, \bigcirc_{ω}.
- Decouple to Regge-Wheeler equations, $\left(\mathcal{D}_{s_{i}, \omega}\right),\left(s_{i}\right)=(0,0,1 \mid 1)$.

- The L_{ω} case is structurally similar, with significantly more complicated formulas.
$V W_{\omega}$ (even): gradient and divergence
We need the $\left(v_{t}, v_{r}, u\right)$ component versions of gradient (K) and divergence (T) operators, ${ }^{4} \nabla_{\mu} \psi$ and ${ }^{4} \nabla^{\mu} v_{\mu}$.

The operators $K_{\omega}:=\frac{1}{r^{2}}\left(\begin{array}{c}-i \omega r \\ r^{2} \partial_{r} \frac{1}{r} \\ 1\end{array}\right), \quad K_{\omega}^{\prime}:=\left(\begin{array}{c}\frac{i \omega r}{f} \\ f r^{2} \partial_{r} \frac{1}{r} \\ \mathcal{B}_{l}\end{array}\right)$
and $\quad T_{\omega}:=\left(\frac{i \omega r}{f} \quad \frac{1}{r} \partial_{r} f r^{2}-\mathcal{B}_{l}\right), \quad T_{\omega}^{\prime}:=\frac{1}{r^{2}}\left(\begin{array}{lll}-i \omega r & r \partial_{r} & -1\end{array}\right)$
satisfy $\quad V W_{\omega}^{e} \circ K_{\omega}=K_{\omega}^{\prime} \circ \mathcal{D}_{0, \omega}, \quad T_{\omega}^{\prime} \circ V W_{\omega}^{e}=\mathcal{D}_{0, \omega} \circ T_{\omega}$.
Hence, we can define the idempotent projectors

$$
\begin{array}{ll}
P_{L}:=K_{\omega} \mathcal{D}_{0, \omega}^{-1} T_{\omega} & P_{L}^{\prime}:=K_{\omega}^{\prime} \mathcal{D}_{0, \omega}^{-1} T_{\omega}^{\prime}, \\
P_{T}:=\mathrm{id}-P_{L}, & P_{T}^{\prime}:=\mathrm{id}-P_{L}^{\prime},
\end{array}
$$

Onto the purely transverse $\left(\bullet_{T}\right)$ and purely longitudinal $\left(\bullet_{L}\right)$ vector fields.

$V W_{\omega}$ (even): decouple the divergence

The first equivalence square decouples the purely longitudinal from the purely transverse vector fields:

Evidently, on longitudinal modes ($v_{\mu}={ }^{4} \nabla_{\mu} \frac{1}{r} \psi_{0}$),

$$
V W_{\omega}^{e} v_{\mu}=0 \quad \text { translates to } \quad \mathcal{D}_{0, \omega} \psi_{0}=0
$$

$V W_{\omega}$ (even): adjoin the transversality condition

Now we adjoin the transversality (Lorenz) condition (${ }^{4} \nabla^{\mu} v_{\mu}=0$) in its component form ($T_{\omega} V=0$).

It turns out to be convenient to put the (overdetermined) system ($T_{\omega}, V W_{\omega}^{e}$) into involutive form, which becomes determined but mixed order ($\left.\partial_{r} v_{t}, \partial_{r} v_{r}, \partial_{r}^{2} u\right)$:

$$
\begin{aligned}
& O_{\omega}\left(\begin{array}{c}
v_{t} \\
v_{r} \\
u
\end{array}\right):=\left(\begin{array}{cccc}
-\frac{i \omega r}{\omega_{2}} & 0 & 0 & 0 \\
-f_{r} \partial_{r} \frac{1}{r} & 0 & 1 & 0 \\
-\mathcal{B}_{l} & 0 & 0 & 1
\end{array}\right)\binom{T_{\omega}}{v W_{\omega}^{e}}\left(\begin{array}{c}
v_{t} \\
v_{r} \\
u
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{\omega^{2} r^{2}}{f} & -\frac{i \omega}{f} \partial_{r} \partial^{2} f & \mathcal{B}_{l} \frac{i \omega r}{\tau} \\
-i \omega r^{2} \partial_{r} & \omega^{2} r^{2}-\mathcal{B}_{1} f & \mathcal{B}_{l} f \partial_{r} r \\
-\mathcal{B}_{l} \frac{\omega \tau r}{f} & -\mathcal{B}_{1} \partial_{r} f & \partial_{r} \mathcal{B}_{l} r^{2} f \partial_{r}+\mathcal{B}_{l} \frac{1}{f}\left(\omega^{2} r^{2}+f^{2 M}\right)
\end{array}\right)\left(\begin{array}{l}
v_{t} \\
v_{r} \\
u
\end{array}\right)
\end{aligned}
$$

Of course, the transformation from $\left(T_{\omega}, V W_{\omega}^{e}\right)$ to \bigcirc_{ω} is invertible, also by a differential operator.
$V W_{\omega}$ (even): adjoin the transversality condition The next equivalence square relates $V W_{\omega}^{e}$ acting on purely transverse vector fields to the joint system ($T_{\omega}, V W_{\omega}^{e}$), acting on unconstrained vector fields:

where

$$
\bar{h}_{\omega}=K_{\omega} \mathcal{D}_{0, \omega}^{-1}\left(\begin{array}{lll}
-\frac{f}{i \omega r} & 0 & 0
\end{array}\right),
$$

$$
g_{\omega}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \bar{g}_{\omega}=P_{T}^{\prime} \frac{1}{i \omega r}\left(\begin{array}{ccc}
-i \omega r & r \partial_{r} & -1 \\
-f r^{3} \partial_{r} \frac{f}{r^{2}} & i \omega r & 0 \\
-\mathcal{B}_{l} f & 0 & i \omega r
\end{array}\right)
$$

$V W_{\omega}$ (even): decouple to Regge-Wheeler

The final equivalence square decouples $\bigcirc_{\omega} v=0$ into two Regge-Wheeler equations $\mathcal{D}_{0, \omega} \phi_{0}=0$ and $\mathcal{D}_{1, \omega} \phi_{1}=0$:

where $\left(\phi_{0}, \phi_{1}\right)^{T}=k_{\omega}\left(v_{t}, v_{u}, u\right)^{T}$,

$$
\begin{array}{ll}
k_{\omega}=\left(\begin{array}{ccc}
i \omega r & -\mathcal{B}_{l} f & \mathcal{B}_{l} f \partial_{r} r \\
0 & -f & f \partial_{r} r
\end{array}\right), & g_{\omega}=\frac{1}{r^{2}}\left(\begin{array}{ccc}
i \omega r f & -\mathcal{B}_{l}-r \partial_{r} f & r \partial_{r} f \\
0 & -1 & \frac{r^{2}}{\mathcal{B}_{l}} \partial_{r} \frac{f}{r}
\end{array}\right), \\
\bar{k}_{\omega}=\frac{1}{\omega^{2} r^{2}}\left(\begin{array}{cc}
-i \omega r & \mathcal{B}_{l} i \omega r \\
r^{2} \partial_{r} \frac{1}{r} & -\mathcal{B}_{l} r \partial_{r} \\
1 & -\mathcal{B}_{l}-f r \partial_{r}
\end{array}\right), & \bar{g}_{\omega}=\frac{1}{\omega^{2}}\left(\begin{array}{cc}
-\frac{i \omega r}{f} & \mathcal{B}_{l} \frac{i \omega r}{f} \\
0 & -\mathcal{B}_{l} f \\
0 & -\mathcal{B}_{l} r \partial_{r} f
\end{array}\right), \\
h_{\omega}=\frac{1}{\omega^{2} r^{2}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -\frac{f}{\mathcal{B}_{l}}
\end{array}\right), & \bar{h}_{\omega}=\frac{f}{\omega^{2}}\left(\begin{array}{ccc}
0 & \mathcal{B}_{l} & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{array}
$$

Discussion

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- Example: the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1 \mid 1)$.
- The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1,0,0,1,2 \mid 1,1,2)$.
Similar to vector wave equation, but more complicated.
- Need to deal with low angular modes $(I \leq 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

Discussion

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- Example: the

Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1 \mid 1)$.
The Lichnerowicz equation is equivalent to
Regge-Wheeler equations ($\mathcal{D}_{s_{i}}$), with spins
$\left(s_{i}\right)=(0,0,1,0,0,1,2 \mid 1,1,2)$.
Similar to vector wave equation, but more complicated.

- Need to deal with low angular modes $(I \leq 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

Discussion

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- Example: the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1 \mid 1)$.
- The

Regge-Wheeler equations ($\mathcal{D}_{s_{i}}$), with spins
$\left(s_{i}\right)=(0,0,1,0,0,1,2 \mid 1,1,2)$.
Similar to vector wave equation, but more complicated.

- Need to deal with low angular modes $(I \leq 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with at the spacetime level?

Discussion

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- Example: the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1 \mid 1)$.
- The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1,0,0,1,2 \mid 1,1,2)$.
Similar to vector wave equation, but more complicated.
- Need to deal with low angular modes $(I \leq 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

Discussion

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- Example: the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1 \mid 1)$.
- The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1,0,0,1,2 \mid 1,1,2)$.
Similar to vector wave equation, but more complicated.
- Need to deal with low angular modes $(I \leq 1)$ separately. (WIP)
differential operators. What is their relation with Debye potentia at the spacetime level?

Discussion

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- Example: the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1 \mid 1)$.
- The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1,0,0,1,2 \mid 1,1,2)$.
Similar to vector wave equation, but more complicated.
- Need to deal with low angular modes $(I \leq 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

Discussion

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- Example: the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1 \mid 1)$.
- The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations $\left(\mathcal{D}_{s_{i}}\right)$, with spins $\left(s_{i}\right)=(0,0,1,0,0,1,2 \mid 1,1,2)$.
Similar to vector wave equation, but more complicated.
- Need to deal with low angular modes $(I \leq 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

Thank you for your attention!

