Spectral Theory of Vector and Tensor Fields on Schwarzschild Spacetime

Igor Khavkine

Department of Mathematics University of Milan (Statale)

12 Jan 2017 Microlocal Analysis Workshop Genova, Italy

part of a project in progress with F. Bussola and C. Dappiaggi (Pavia)

Motivation

- Goals:
 - Hawking effect for gravitons;
 - interacting gravitons on a black-hole spacetime;
 - eventually, quantum back-reaction of Hawking radiation.
- Graviton field $p_{\mu\nu}$, its quantization $\hat{p}_{\mu\nu}$.
- Ghost field v_{μ} , its quantization \hat{v}_{μ} (BRST formalism).
- ► Harmonic (aka *de Donder*, *Lorenz*, *wave coordinate*) gauge:
 - ${}^{4}\nabla^{\nu}\overline{p}_{\mu\nu} = 0$, where $\overline{p}_{\mu\nu} = p_{\mu\nu} \frac{1}{2} {}^{4}g_{\mu\nu}$ tr p;
 - favored by BRST formalism.
- Graviton and ghost Feynman propagators:

$$egin{aligned} G_{\mu
u:\mu'
u'}(x,x')&=rac{-i}{8\pi\ell_P^2}\langle T[\hat{
ho}_{\mu
u}(x)\hat{
ho}_{\mu'
u'}(x')]
angle_{\Psi},\ G_{\mu:\mu'}(x,x')&=-i\langle T[\hat{
ho}_{\mu}(x)\hat{
ho}_{\mu'}(x')]
angle_{\Psi}. \end{aligned}$$

 Ψ — sensible quantum state, like Unruh or Hartle-Hawking.

Want an "explicit" mode expansion of $G_{\mu:\mu'}(x,x')$ and $G_{\mu\nu:\mu'\nu'}(x,x')$.

Motivation

- Goals:
 - Hawking effect for gravitons;
 - interacting gravitons on a black-hole spacetime;
 - eventually, quantum back-reaction of Hawking radiation.
- Graviton field $p_{\mu\nu}$, its quantization $\hat{p}_{\mu\nu}$.
- Ghost field v_{μ} , its quantization \hat{v}_{μ} (BRST formalism).
- ► Harmonic (aka *de Donder*, *Lorenz*, *wave coordinate*) gauge:
 - ${}^{4}\nabla^{\nu}\overline{\rho}_{\mu\nu} = 0$, where $\overline{\rho}_{\mu\nu} = \rho_{\mu\nu} \frac{1}{2}{}^{4}g_{\mu\nu}$ tr ρ ;
 - favored by BRST formalism.
- Graviton and ghost Feynman propagators:

$$egin{aligned} G_{\mu
u:\mu'
u'}(x,x')&=rac{-i}{8\pi\ell_P^2}\langle T[\hat{
ho}_{\mu
u}(x)\hat{
ho}_{\mu'
u'}(x')]
angle_{\Psi},\ G_{\mu:\mu'}(x,x')&=-i\langle T[\hat{
ho}_{\mu}(x)\hat{
ho}_{\mu'}(x')]
angle_{\Psi}. \end{aligned}$$

 Ψ — sensible quantum state, like Unruh or Hartle-Hawking.

Want an "explicit" mode expansion of $G_{\mu:\mu'}(x, x')$ and $G_{\mu\nu:\mu'\nu'}(x, x')$.

Vector and tensor fields on Schwarzschild

- ► The Schwarzschild spacetime (*M*, ⁴*g*) is a 4-dimensional Lorentzian manifold describing a static, spherically symmetric black hole.
- ► The Feynman propagators G_{µ:µ'}(x, x') and G_{µν:µ'ν'}(x, x') are particular Green functions, respectively, for the vector (ghost) and tensor (graviton) wave equations on Schwarzschild:

$${}^{4}\Box v_{\mu} = 2 \, {}^{4}\nabla^{\nu} \overline{4} \nabla_{(\mu} v_{\nu)} = 0, \quad {}^{4}\Box \rho_{\mu\nu} - 2 \, {}^{4}R_{\mu}{}^{\lambda\kappa}{}_{\nu}\rho_{\lambda\kappa} - 2 \, {}^{4}\nabla_{(\mu}{}^{4}\nabla^{\lambda} \overline{\rho}_{\nu)\lambda} = 0.$$

For tensors, it is also called the Lichnerowicz equation.

• Goal: write each Green function as an explicit mode sum/integral:

$${}^4G(x,y)\sim\int\mathrm{d}\mu_{\ell,\omega,
u}\phi_{\ell,\omega}(x)ar{\phi}_{\ell,\omega}(y)e^{-i
u(x^0-y^0)}$$

where $\phi_{\ell,\omega}(x)$ are modes adapted to the static (ω, ν) and spherical (ℓ) symmetry of the black hole and $d\mu_{\ell,\omega,\nu}$ is a specially chosen spectral measure that determines the Green function (and the quantum state Ψ).

• **Question:** Can $d\mu_{\ell,\omega,\nu}$ be supported only on $\omega \in \mathbb{R}$?

Vector and tensor fields on Schwarzschild

- ► The Schwarzschild spacetime (*M*, ⁴*g*) is a 4-dimensional Lorentzian manifold describing a static, spherically symmetric black hole.
- ► The Feynman propagators G_{µ:µ'}(x, x') and G_{µν:µ'ν'}(x, x') are particular Green functions, respectively, for the vector (ghost) and tensor (graviton) wave equations on Schwarzschild:

$${}^{4}\Box \boldsymbol{v}_{\mu} = 2\,{}^{4}\nabla^{\nu}\overline{{}^{4}\nabla_{(\mu}\boldsymbol{v}_{\nu)}} = \boldsymbol{0}, \quad {}^{4}\Box \boldsymbol{\rho}_{\mu\nu} - 2\,{}^{4}\boldsymbol{R}_{\mu}{}^{\lambda\kappa}{}_{\nu}\boldsymbol{\rho}_{\lambda\kappa} - 2\,{}^{4}\nabla_{(\mu}{}^{4}\nabla^{\lambda}\overline{\boldsymbol{\rho}}_{\nu)\lambda} = \boldsymbol{0}.$$

For tensors, it is also called the Lichnerowicz equation.

• Goal: write each Green function as an explicit mode sum/integral:

$${}^4G(x,y)\sim\int\mathrm{d}\mu_{\ell,\omega,
u}\phi_{\ell,\omega}(x)ar{\phi}_{\ell,\omega}(y)e^{-i
u(x^0-y^0)},$$

where $\phi_{\ell,\omega}(x)$ are modes adapted to the static (ω, ν) and spherical (ℓ) symmetry of the black hole and $d\mu_{\ell,\omega,\nu}$ is a specially chosen spectral measure that determines the Green function (and the quantum state Ψ).

• **Question:** Can $d\mu_{\ell,\omega,\nu}$ be supported only on $\omega \in \mathbb{R}$?

Separation of variables: 2+2 tensor formalism

- ► We follow the convenient formalism of [Martel & Poisson 2005].
- Schwarzschild ($\mathcal{M} \times S^2$) is spherically symmetric $f(r) = 1 \frac{2M}{r}$.

$${}^4g_{\mu
u} = -f(r)\mathrm{d}t^2 + rac{\mathrm{d}r^2}{f(r)} + r^2(\mathrm{d} heta^2 + \sin^2 heta\mathrm{d}\phi^2)
ightarrow egin{pmatrix} g_{ab} & 0 \ 0 & r^2\Omega_{AB} \end{pmatrix}.$$

- Tensor indices a, b, c,... and ∇_a are for (M, g_{ab}). Tensor indices A, B, C,... and D_A are for the unit sphere (S², Ω_{AB}).
- ► Vector field $v_{\mu} \rightarrow \begin{pmatrix} v_{a} \\ v_{A} \end{pmatrix}$, symmetric tensor $p_{\mu\nu} \rightarrow \begin{pmatrix} p_{ab} & p_{aB} \\ p_{Ab} & p_{AB} \end{pmatrix}$.

• Connection ${}^{4}\nabla = (\nabla, D) + \Gamma$,

$$\Gamma^{\mu}_{\nu\lambda} = \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & -rr^a \Omega_{BC} \end{pmatrix} & \begin{pmatrix} 0 & \frac{r_b}{r} \delta^A_C \\ \frac{r_c}{r} \delta^A_B & 0 \end{pmatrix} \end{bmatrix}.$$

► Formalism covariant with respect to changes of coordinates and metric on (*M*, g_{ab}).

Spherical harmonics

Spherical scalar, vector and tensor harmonics:

$$D_A D^A Y = -l(l+1)Y, \quad Y_A = D_A Y, \quad Y_{AB} = D_A Y_B + \frac{l(l+1)}{2}\Omega_{AB}Y,$$
$$\int_{S^2} \bar{Y}' Y \epsilon = \delta_{ll'} \delta_{mm'}, \quad X_A = \epsilon_{BA} D^B Y, \quad X_{AB} = D_A X_B + \frac{l(l+1)}{2} \epsilon_{AB}Y.$$

Simply normalized, orthogonal, tensor eigenfunctions of D_AD^A.
 Vector and Tensor decompositions

$$\begin{pmatrix} p_{ab} & p_{aB} \\ p_{Ab} & p_{AB} \end{pmatrix} = \sum_{lm} \begin{pmatrix} h_{ab}^{lm} \mathbf{Y}_{lm}^{lm} & r j_{a}^{lm} \mathbf{Y}_{B}^{lm} \\ r j_{b}^{lm} \mathbf{Y}_{A}^{lm} & r^{2} (\mathcal{K}^{lm} \Omega_{AB} \mathbf{Y}^{lm} + G^{lm} \mathbf{Y}_{AB}^{lm}) \end{pmatrix} + \sum_{lm} \begin{pmatrix} 0 & r h_{a}^{lm} \mathbf{X}_{B}^{lm} \\ r h_{b}^{lm} \mathbf{X}_{A}^{lm} & r^{2} h_{2}^{lm} \mathbf{X}_{AB}^{lm} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{v}_{a} \\ \mathbf{v}_{A} \end{pmatrix} = \sum_{lm} \begin{pmatrix} \mathbf{v}_{a}^{\text{even}} \\ r u^{lm} \mathbf{Y}_{A}^{lm} \end{pmatrix} + \sum_{lm} \begin{pmatrix} \mathbf{od} \\ 0 \\ r w^{lm} \mathbf{X}_{A}^{lm} \end{pmatrix}$$

From now on, omit spherical harmonic (I, m) mode indices:

$$p = (h_{ab}, j_a, K, G \mid h_a, h_2)$$
 and $v = (v_a, u \mid w)$

▶ In static Schwarzschild (t, r) coordinates $(2M < r < \infty)$:

$$p(t,r) = p(r)e^{-i\omega t} \text{ and } v(t,r) = v(r)e^{-i\omega t}, \text{ where}$$

$$p(r) = (h_{tt}, h_{tr}, h_{rr}, j_t, j_r, K, G \mid h_t, h_r, h_2),$$

$$v(r) = (v_t, v_r, u \mid w).$$

We obtain the radial mode equations $VW_{\omega}v = 0$ and $L_{\omega}p = 0$.

- ► For vectors, ${}^{4}\Box v_{\mu} \rightsquigarrow VW_{\omega}$ consists of decoupled 3×3 (even) and 1×1 (odd) systems.
- ► For tensors, ${}^{4}\Box p_{\mu\nu} 2 {}^{4}R_{\mu}{}^{\lambda\kappa}{}_{\nu}p_{\lambda\kappa} \rightsquigarrow L_{\omega}$ consists of decoupled 7 × 7 (even) and 3 × 3 (odd) systems.
- Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation

$$E_{\omega}\phi := \partial_r P(r)\partial_r \phi + Q(r)\phi + i\omega A(r)\phi + \omega^2 W(r)\phi = 0,$$

▶ In static Schwarzschild (t, r) coordinates $(2M < r < \infty)$:

$$p(t,r) = p(r)e^{-i\omega t} \text{ and } v(t,r) = v(r)e^{-i\omega t}, \text{ where}$$

$$p(r) = (h_{tt}, h_{tr}, h_{rr}, j_t, j_r, K, G \mid h_t, h_r, h_2),$$

$$v(r) = (v_t, v_r, u \mid w).$$

We obtain the radial mode equations $VW_{\omega}v = 0$ and $L_{\omega}p = 0$.

- ► For vectors, ${}^{4}\Box v_{\mu} \rightsquigarrow VW_{\omega}$ consists of decoupled 3×3 (even) and 1×1 (odd) systems.
- ► For tensors, ${}^{4}\Box p_{\mu\nu} 2 {}^{4}R_{\mu}{}^{\lambda\kappa}{}_{\nu}p_{\lambda\kappa} \rightsquigarrow L_{\omega}$ consists of decoupled 7 × 7 (even) and 3 × 3 (odd) systems.
- Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation

 $\boldsymbol{E}_{\omega}\phi := \partial_{\boldsymbol{r}}\boldsymbol{P}(\boldsymbol{r})\partial_{\boldsymbol{r}}\phi + \boldsymbol{Q}(\boldsymbol{r})\phi + i\omega\boldsymbol{A}(\boldsymbol{r})\phi + \omega^{2}\boldsymbol{W}(\boldsymbol{r})\phi = \boldsymbol{0},$

▶ In static Schwarzschild (t, r) coordinates $(2M < r < \infty)$:

$$p(t,r) = p(r)e^{-i\omega t} \text{ and } v(t,r) = v(r)e^{-i\omega t}, \text{ where}$$

$$p(r) = (h_{tt}, h_{tr}, h_{rr}, j_t, j_r, K, G \mid h_t, h_r, h_2),$$

$$v(r) = (v_t, v_r, u \mid w).$$

We obtain the radial mode equations $VW_{\omega}v = 0$ and $L_{\omega}p = 0$.

- ► For vectors, ${}^{4}\Box v_{\mu} \rightsquigarrow VW_{\omega}$ consists of decoupled 3×3 (even) and 1×1 (odd) systems.
- ► For tensors, ${}^{4}\Box p_{\mu\nu} 2 {}^{4}R_{\mu}{}^{\lambda\kappa}{}_{\nu}p_{\lambda\kappa} \rightsquigarrow L_{\omega}$ consists of decoupled 7 × 7 (even) and 3 × 3 (odd) systems.
- Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation

$$E_{\omega}\phi := \partial_r P(r)\partial_r \phi + Q(r)\phi + i\omega A(r)\phi + \omega^2 W(r)\phi = 0,$$

▶ In static Schwarzschild (t, r) coordinates $(2M < r < \infty)$:

$$p(t,r) = p(r)e^{-i\omega t} \text{ and } v(t,r) = v(r)e^{-i\omega t}, \text{ where}$$

$$p(r) = (h_{tt}, h_{tr}, h_{rr}, j_t, j_r, K, G \mid h_t, h_r, h_2),$$

$$v(r) = (v_t, v_r, u \mid w).$$

We obtain the radial mode equations $VW_{\omega}v = 0$ and $L_{\omega}p = 0$.

- ► For vectors, ${}^{4}\Box v_{\mu} \rightsquigarrow VW_{\omega}$ consists of decoupled 3×3 (even) and 1×1 (odd) systems.
- ► For tensors, ${}^{4}\Box p_{\mu\nu} 2 {}^{4}R_{\mu}{}^{\lambda\kappa}{}_{\nu}p_{\lambda\kappa} \rightsquigarrow L_{\omega}$ consists of decoupled 7 × 7 (even) and 3 × 3 (odd) systems.
- Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation

$$E_{\omega}\phi := \partial_r P(r)\partial_r \phi + Q(r)\phi + i\omega A(r)\phi + \omega^2 W(r)\phi = 0,$$

▶ In static Schwarzschild (t, r) coordinates $(2M < r < \infty)$:

$$p(t,r) = p(r)e^{-i\omega t} \text{ and } v(t,r) = v(r)e^{-i\omega t}, \text{ where}$$

$$p(r) = (h_{tt}, h_{tr}, h_{rr}, j_t, j_r, K, G \mid h_t, h_r, h_2),$$

$$v(r) = (v_t, v_r, u \mid w).$$

We obtain the radial mode equations $VW_{\omega}v = 0$ and $L_{\omega}p = 0$.

- ► For vectors, ${}^{4}\Box v_{\mu} \rightsquigarrow VW_{\omega}$ consists of decoupled 3×3 (even) and 1×1 (odd) systems.
- ► For tensors, ${}^{4}\Box p_{\mu\nu} 2 {}^{4}R_{\mu}{}^{\lambda\kappa}{}_{\nu}p_{\lambda\kappa} \rightsquigarrow L_{\omega}$ consists of decoupled 7 × 7 (even) and 3 × 3 (odd) systems.
- Indefinite quadratic-eigenvalue matrix Sturm-Liouville equation

$$E_{\omega}\phi := \partial_r P(r)\partial_r \phi + Q(r)\phi + i\omega A(r)\phi + \omega^2 W(r)\phi = 0,$$

Radial mode equation: VW_{ω}

Explicitly:

(odd)
$$\partial_r \mathcal{B}_l r^2 f \partial_r w + \left(\omega^2 \frac{r^2}{f} - \mathcal{B}_l\right) \mathcal{B}_l w + \mathcal{B}_l \frac{2M}{r} w = 0,$$

(even)

$$\begin{pmatrix} -\partial_r \frac{1}{f} r^2 f \partial_r v_l \\ \partial_r f r^2 f \partial_r v_r \\ \partial_r \mathcal{B}_l r^2 f \partial_r u \end{pmatrix} + \begin{pmatrix} \omega^2 \frac{r^2}{f} - \mathcal{B}_l \end{pmatrix} \begin{pmatrix} -\frac{1}{f} v_l \\ f v_r \\ \mathcal{B}_l u \end{pmatrix} \\ + i\omega \frac{2M}{f} \begin{pmatrix} v_r \\ -v_l \\ 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2f^2 & 2\mathcal{B}_l f \\ 0 & 2\mathcal{B}_l f & \mathcal{B}_l \frac{2M}{r} \end{pmatrix} \begin{pmatrix} v_l \\ v_r \\ u \end{pmatrix} = 0,$$
where $f(r) = 1 - \frac{2M}{r}$ and $\mathcal{B}_l = l(l+1)$.

Radial mode equation: L_{ω} (odd sector)

$$\begin{pmatrix} \partial_{r}(-2\frac{B_{l}}{f}r^{2}f\partial_{r})h_{l} \\ \partial_{r}(2B_{l}fr^{2}f\partial_{r})h_{r} \\ \partial_{r}(\frac{A_{l}}{2}r^{2}f\partial_{r})h_{2} \end{pmatrix} - \mathcal{B}_{l} \begin{pmatrix} -2\frac{B_{l}}{f}h_{l} \\ 2B_{l}fh_{r} \\ \frac{A_{l}}{2}h_{2} \end{pmatrix} \\ + \begin{pmatrix} -4\frac{B_{l}}{f}\frac{2M}{r} & 0 & 0 \\ 0 & -8\mathcal{B}_{l}f(1-\frac{3M}{r}) & 2\mathcal{A}_{l}f \\ 0 & 2\mathcal{A}_{l}f & \mathcal{A}_{l} \end{pmatrix} \begin{pmatrix} h_{t} \\ h_{r} \\ h_{2} \end{pmatrix} \\ -i\omega\frac{4M}{f} \begin{pmatrix} 0 & -\mathcal{B}_{l} & 0 \\ \mathcal{B}_{l} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} h_{t} \\ h_{r} \\ h_{2} \end{pmatrix} + \omega^{2}\frac{r^{2}}{f} \begin{pmatrix} -2\frac{B_{l}}{f}h_{t} \\ 2B_{l}fh_{r} \\ \frac{A_{l}}{2}h_{2} \end{pmatrix} = 0$$

where $f(r) = 1 - \frac{2M}{r}$, $A_l = (l-1)l(l+1)(l+2)$ and $B_l = l(l+1)$

Radial mode equation: L_{ω} (even sector)

Spectral theory of the radial mode equation

▶ How to wrie the Green function $E_{\omega}^{-1}(r, r')$ for the operator pencil

$$E_{\omega}\phi := \partial_r P(r)\partial_r \phi + Q(r)\phi + i\omega A(r)\phi + \omega^2 W(r)\phi$$

in spectral representation (mode sum/integral)? Use ideas of Weyl-Titchmarsh-Kodaira (1910–1950), Keldysh (1951). [Weidmann (Springer, 1987)] [Gohberg-Kaashoek-Lay (1976)] [Markus (AMS, 1988)]

- ▶ The spectrum is $\sigma(E_{\omega}) = \mathbb{C} \setminus \rho(E_{\omega})$. For $\omega \in \rho(E_{\omega})$ in the resolvent set, E_{ω}^{-1} is bounded. Need to choose a function space/domain!
- Linearize $E_{\omega} \rightsquigarrow E_{\omega}$, prove analyticity of E_{ω}^{-1} over $\rho(E_{\omega})$:

$$\boldsymbol{E}_{\omega} = \begin{bmatrix} \partial_r \boldsymbol{P} \partial_r + \boldsymbol{Q} & \boldsymbol{0} \\ \boldsymbol{0} & -\boldsymbol{W} \end{bmatrix} + \omega \begin{bmatrix} i\boldsymbol{A} & \boldsymbol{W} \\ \boldsymbol{W} & \boldsymbol{0} \end{bmatrix}, \quad \boldsymbol{E}_{\omega}^{-1} = \begin{bmatrix} \boldsymbol{E}_{\omega}^{-1} & \boldsymbol{\omega} \boldsymbol{E}_{\omega}^{-1} \\ \boldsymbol{\omega} \boldsymbol{E}_{\omega}^{-1} & \boldsymbol{\omega}^2 \boldsymbol{E}_{\omega}^{-1} - \boldsymbol{W}^{-1} \end{bmatrix}$$

• Integrate over a positive simple contour γ about $\sigma(E_{\omega})$:

$$\boldsymbol{E}_{\nu}^{-1} = \oint_{\gamma} \frac{\mathrm{d}\omega}{2\pi i} \frac{1}{\omega - \nu} \boldsymbol{E}_{\omega}^{-1}, \quad \begin{bmatrix} 0 & W^{-1} \\ W^{-1} & -W^{-1} i A W^{-1} \end{bmatrix} = \oint_{\gamma} \frac{\mathrm{d}\omega}{2\pi i} \boldsymbol{E}_{\omega}^{-1}$$

▶ Decompose $E_{\omega}^{-1}(r, r') = \mathring{E}_{\omega}^{-1}(r, r') + m^{jj'}(\omega)\phi_{\omega,j}(r)\phi_{-\omega,j'}(r')$, where $\mathring{E}_{\omega}^{-1}$ is analytic! Then $m(\omega) \rightsquigarrow d\mu_{\omega}$ — the spectral measure.

A reasonable hypothesis

At the very least, the explicit form of the equations gives us the asymptotics [Wasow (Intersci., 1965)] for a solution basis φ_i of E_ωφ = 0:

$$\phi_j(\mathbf{r}) \sim egin{cases} \mathbf{e}^{\pm i\omega r_*} Z_{\pm}(f) \mathbf{y}_j^{(2M)} & \mathbf{r} o 2M \ \mathbf{e}^{\pm i\omega r_*} rac{1}{r} \mathbf{y}_j^{(\infty)} & \mathbf{r} o \infty \end{cases},$$

where y_j are constant coefficients, $Z_{\pm}(f)$ are Laurent polynomial matrices in $f = 1 - \frac{2M}{r}$, and $r_* = r + 2M \log(\frac{r}{2M} - 1)$ is the tortoise coordinate, so that $e^{\sigma r_*} \sim f^{\sigma}$.

- ▶ Theorem: There exists a function space \mathcal{H} , complete w.r.t an inner product $(\phi, \phi) = \int_{2M}^{\infty} \phi^{\dagger} \tilde{W} \phi \, dr$, and a domain $D_{\omega} \subset \mathcal{H}$ that is a core for a closed operator realization of E_{ω} such that, for $\Im \omega \neq 0$,
 - exactly half of the ϕ_i are admissible at $r \to \infty$,
 - exactly half of the ϕ_i are admissible at $r \rightarrow 2M$.
- ► Hypothesis: for $\Im \omega \neq 0$, no $\sum_j a_j \phi_j$ is admissible at both ends. Then the spectrum would be purely real and we would be done!

Example: asymptitics, VW_e (even)

$$\begin{pmatrix} v_t \\ v_r \\ u \end{pmatrix} \sim \sum_{\pm} Z_{\pm}(f) f^{\pm 2i\omega M} y_{\pm}^{(2M)} \quad \text{or} \quad \sum_{\pm} \frac{1}{r} e^{\pm i\omega r_*} y_{\pm}^{(\infty)},$$

where $f = 1 - \frac{2M}{r}$, $r_* = r + 2M \log(\frac{r}{2M} - 1)$ and

$$Z_{\pm}(f) = \begin{pmatrix} 1 & \pm f & 0 \\ \mp \frac{1}{f} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{l(l+1)+1}{4\omega M(4\omega M \pm i)} \begin{pmatrix} f & 0 & 0 \\ \mp 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The function space \mathcal{H} consists of measurable $\phi = (v_t, v_r, u)$ such that

$$(\phi, \phi) = \int_{2M}^{\infty} \mathrm{d}r \, \left[\frac{1}{f} |v_t|^2 + f |v_r|^2 + \frac{1}{f} |u|^2 \right] < \infty,$$

and
$$D_{\omega} = \left\{ \phi \in \mathcal{H} : \int_{2M} \mathrm{d}r \frac{1}{f} \left| \frac{i\omega r}{f} v_t + r \partial_r f v_r \right|^2 < \infty \right\}.$$

The key idea

- How can we obtain information about the spectrum of E_{ω} ?
- When in doubt, turn to the physics literature and discover...a sea of formulas!
- But also the claim [Berndtson (PhD, 2007)] [Rosa-Dolan (2012)] that each of VW_ω v = 0 and L_ωp = 0 are "equivalent" to a decoupled system of, respectively, 4 or 10 scalars (φ_i)_i satisfying generalized Regge-Wheeler equations D_{s_i,ω}φ_i = 0, for spins s_i ∈ {0, 1, 2}:

$$\mathcal{D}_{\boldsymbol{s},\omega}\psi:=\partial_r f\partial_r\psi-\frac{l(l+1)+(1-\boldsymbol{s}^2)\frac{2M}{r}}{r^2}\psi+\frac{\omega^2}{f}\psi$$

- Good news: each D_{s,ω} is a standard, scalar, self-adjoint Sturm-Liouville operator with purely real spectrum!
- Q: What is the precise meaning of "equivalent"?
 Q: How can this information help with the spectral problem of E_ω?

Core equivalence result

Recall, by E_{ω} we denote either of VW_{ω} or L_{ω} , or their odd or even parts.

Theorem (Berndtson, Rosa-Dolan, IK)

Each E_{ω} is equivalent to a system of Regge-Wheeler ($\mathcal{D}_{s_i,\omega}$) equations.

(a) There exist differential operators making this diagram commute, with $\frac{k'_{\omega}}{\longrightarrow} \bullet \xrightarrow{\bar{k}'_{\omega}} \text{exact on solutions:}$

(b) Allowing formal inverses $(\mathcal{D}_{s,\omega}^{-1})$, the diagram from **(a)** converts to a commutative square, with vertical maps mutual inverses, up to corrections $(h_{\omega}, \bar{h}_{\omega})$:

Homological algebra: chain maps and homotopy equivalences!

Igor Khavkine (Milan)

Implications for the spectrum (a)

Geometric Corollary (l ≥ 2): The differential operators from (a) preserve asymptotics:

$$(r \rightarrow 2M) \quad e^{\pm i\omega r_*} \qquad \qquad Z_{\pm}(f) f^{\pm 2i\omega M} \qquad \qquad e^{\pm i\omega r_*}$$

 $\ker \mathcal{D}_{\mathbf{s}_{i},\omega} \xrightarrow{\bar{k}'_{\omega}} \ker E_{\omega} \xrightarrow{k'_{\omega}} \ker \mathcal{D}_{\mathbf{s}_{i},\omega}$

$$(r \to \infty)$$
 $e^{\pm i\omega r_*}$ $\frac{1}{r}e^{\pm i\omega r_*}$ $e^{\pm i\omega r_*}$

Hence $E_{\omega}: \mathcal{H} \to \mathcal{H}^*$ has real spectrum, where $\mathcal{H} = L^2(\tilde{W} dr)$ and $\mathcal{H}^* = L^2(\tilde{W}^{-1} dr)$: the self-adjointness of $\mathcal{D}_{s,\omega}$ on $L^2(dr_*)$ shows that no solution ϕ of $E_{\omega}\phi = 0$ belongs to $D_{\omega} \subset \mathcal{H}$ (is admissible both at $r \to \infty$ and $r \to 2M$).

▶ (*l* < 2): WIP

Implications for the spectrum (b)

Analytical Corollary (*l* ≥ 2): Regge-Wheeler operators D_{si,ω} spectrally dominate E_ω: H⁻¹(W̃ dr) → H¹(W̃ dr) (on weighted Sobolev spaces):

$$E_{\omega}^{-1} = \bar{k}_{\omega} \circ D_{s_i,\omega}^{-1} \circ g_{\omega} + h_{\omega},$$

I.h.s is bounded whenever each operator on the r.h.s is bounded. Therefore^{*}, $\sigma(E_{\omega}) \subset \sigma(\mathcal{D}_{s_{i},\omega})$ and is purely real.

- ► ***Caveat**: In the even L_{ω} case, the equivalence maps $(\bar{k}_{\omega}, g_{\omega}, h_{\omega})$ do have poles at $\omega = \pm i \frac{(l-1)/(l+1)(l+2)}{12M} =: \pm i\omega_*$. So, the Analytical Corollary only implies $\sigma(L_{\omega}) \subset \mathbb{R} \cup \{\pm i\omega_*\}$.
- ▶ (*l* < 2): WIP

Equivalence of spectral problems up to homotopy

Homological formulation of the spectral problem for e_{ω} . [J.L.Taylor (1970)] [Gromov-Shubin (1991)] Resolvent: $\rho(e_{\omega}) = \{\omega \in \mathbb{C} \mid e_{\omega} \text{ sits in a split exact sequence}\}.$ Spectrum: $\sigma(e_{\omega}) = \mathbb{C} \setminus \rho(e_{\omega}).$

$$0 \longrightarrow V \stackrel{e_\omega}{\longrightarrow} W \longrightarrow 0$$
 .

Replace *V* by the domain $D(e_{\omega}) \subset V$ if e_{ω} is unbounded.

• Equivalence up to (chain) homotopy of e_{ω} and \bar{e}_{ω} :

$$\begin{split} &\bar{\mathbf{e}}_{\omega}\circ k_{\omega}=g_{\omega}\circ \mathbf{e}_{\omega}, \quad \bar{k}_{\omega}\circ k_{\omega}=\mathrm{id}-h_{\omega}\circ \mathbf{e}_{\omega}, \quad \bar{g}_{\omega}\circ g_{\omega}=\mathrm{id}-\mathbf{e}_{\omega}\circ h_{\omega}, \\ &\mathbf{e}_{\omega}\circ \bar{k}_{\omega}=\bar{g}_{\omega}\circ \bar{\mathbf{e}}_{\omega}, \quad k_{\omega}\circ \bar{k}_{\omega}=\mathrm{id}-\bar{h}_{\omega}\circ \bar{\mathbf{e}}_{\omega}, \quad g_{\omega}\circ \bar{g}_{\omega}=\mathrm{id}-\bar{\mathbf{e}}_{\omega}\circ \bar{h}_{\omega}. \end{split}$$

▶ When $k_{\omega}, g_{\omega}, h_{\omega}, \bar{k}_{\omega}, \bar{g}_{\omega}, \bar{h}_{\omega}$ are bounded, the resolvent sets agree, $\rho(e_{\omega}) = \rho(\bar{e}_{\omega})$ because $e_{\omega}^{-1} = \bar{k}_{\omega} \circ \bar{e}_{\omega}^{-1} \circ g_{\omega} + h_{\omega}$ and $\bar{e}_{\omega}^{-1} = k_{\omega} \circ e_{\omega}^{-1} \circ \bar{g}_{\omega} + \bar{h}_{\omega}$.

Mutatis mutandis for spectral domination.

A toy example: equivalence up to homotopy

Consider the following diagram of scalar differential operators:

which satisfy the identities

$$(\partial_r^2 + \omega^2)\partial_r = \partial_r(\partial_r^2 + \omega^2), \qquad \frac{-\partial_r}{\omega^2}\partial_r = 1 - \frac{1}{\omega^2}(\partial_r^2 + \omega^2), \\ \frac{-\partial_r}{\omega^2}\partial_r = 1 - (\partial_r^2 + \omega^2)\frac{1}{\omega^2}, \\ (\partial_r^2 + \omega^2)\frac{-\partial_r}{\omega^2} = \frac{-\partial_r}{\omega^2}(\partial_r^2 + \omega^2), \qquad \partial_r\frac{-\partial_r}{\omega^2} = 1 - \frac{1}{\omega^2}(\partial_r^2 + \omega^2), \\ \partial_r\frac{-\partial_r}{\omega^2} = 1 - (\partial_r^2 + \omega^2)\frac{1}{\omega^2}.$$

We will say that the top and bottom lines are equivalent up to (chain) homotopy.

Igor Khavkine (Milan)

Vectors and Tensors on Schwarzschild

17/25

A toy example: spectral domination

Consider the previous example with specific function spaces:

where H^k is the Sobolev space of degree k. As usual, unbounded operators are defined on dense domains.

We can conclude that $\partial_r^2 + \omega^2$ spectrally dominates $\partial_r^2 + \omega^2$, that is $\sigma(\partial_r^2 + \omega^2) \subset \sigma(\partial_r^2 + \omega^2)$, because

$$(\partial_r^2 + \omega^2)^{-1} = \frac{-\partial_r}{\omega^2} (\partial_r^2 + \omega^2)^{-1} \partial_r + \frac{1}{\omega^2}$$

and all the operators on the r.h.s are bounded whenever $\omega \notin \sigma(\partial_r^2 + \omega^2)$.

Boundedness is achieved by letting $\partial_r^2 + \omega^2$ map from low regularity (H^{-1}) to high regularity (H^1).

Example: VW_{ω}

- The complete decoupling is a relative of the Helmholtz decomposition of vector fields (grad + curl). There are three steps:
 - Split vector field into longitudinal and transverse parts, ●_L and ●_T.
 - Put transverse equation into involutive form, \bigcirc_{ω} .
 - Decouple to Regge-Wheeler equations, $(\mathcal{D}_{s_i,\omega})$, $(s_i) = (0, 0, 1 | 1)$.

• The L_{ω} case is structurally similar, with significantly more complicated formulas.

Igor Khavkine (Milan)

VW_{ω} (even): gradient and divergence

We need the (v_t , v_r , u) component versions of gradient (K) and divergence (T) operators, ${}^{4}\nabla_{\mu}\psi$ and ${}^{4}\nabla^{\mu}v_{\mu}$.

The operators
$$K_{\omega} := \frac{1}{r^2} \begin{pmatrix} -i\omega r \\ r^2 \partial_r \frac{1}{r} \\ 1 \end{pmatrix}, \quad K'_{\omega} := \begin{pmatrix} \frac{i\omega r}{f} \\ fr^2 \partial_r \frac{1}{r} \\ \mathcal{B}_l \end{pmatrix}$$

and $T_{\omega} := \begin{pmatrix} \frac{i\omega r}{f} & \frac{1}{r} \partial_r fr^2 & -\mathcal{B}_l \end{pmatrix}, \quad T'_{\omega} := \frac{1}{r^2} \begin{pmatrix} -i\omega r & r\partial_r & -1 \end{pmatrix}$
satisfy $VW_{\omega}^e \circ K_{\omega} = K'_{\omega} \circ \mathcal{D}_{0,\omega}, \quad T'_{\omega} \circ VW_{\omega}^e = \mathcal{D}_{0,\omega} \circ T_{\omega}.$

Hence, we can define the idempotent projectors

$$P_L := K_{\omega} \mathcal{D}_{0,\omega}^{-1} T_{\omega} \qquad P'_L := K'_{\omega} \mathcal{D}_{0,\omega}^{-1} T'_{\omega},$$

$$P_T := \mathrm{id} - P_L, \qquad P'_T := \mathrm{id} - P'_L,$$

Onto the purely transverse (\bullet_T) and purely longitudinal (\bullet_L) vector fields.

VW_{ω} (even): decouple the divergence

The first equivalence square decouples the purely longitudinal from the purely transverse vector fields:

Evidently, on longitudinal modes ($v_{\mu} = {}^{4}\nabla_{\mu} \frac{1}{r} \psi_{0}$),

$$VW_{\omega}^{e}v_{\mu} = 0$$
 translates to $\mathcal{D}_{0,\omega}\psi_{0} = 0$.

VW_{ω} (even): adjoin the transversality condition

Now we adjoin the transversality (Lorenz) condition (${}^{4}\nabla^{\mu}v_{\mu} = 0$) in its component form ($T_{\omega}v = 0$).

It turns out to be convenient to put the (overdetermined) system $(T_{\omega}, VW_{\omega}^{e})$ into involutive form, which becomes determined but mixed order $(\partial_{r}v_{t}, \partial_{r}v_{r}, \partial_{r}^{2}u)$:

$$\bigcirc_{\omega} \begin{pmatrix} v_{t} \\ v_{r} \\ u \end{pmatrix} := \begin{pmatrix} -\frac{i\omega r}{f} & 0 & 0 & 0 \\ -fr^{2}\partial_{r}\frac{1}{r} & 0 & 1 & 0 \\ -\mathcal{B}_{l} & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathcal{T}_{\omega} \\ \mathcal{V}\mathcal{W}_{\omega}^{e} \end{pmatrix} \begin{pmatrix} v_{t} \\ v_{r} \\ u \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\omega^{2}r^{2}}{f} & -\frac{i\omega}{f}\partial_{r}r^{2}f & \mathcal{B}_{l}\frac{i\omega r}{f} \\ -i\omega r^{2}\partial_{r} & \omega^{2}r^{2} - \mathcal{B}_{l}f & \mathcal{B}_{l}f\partial_{r}r \\ -\mathcal{B}_{l}\frac{i\omega r}{f} & -\mathcal{B}_{l}r\partial_{r}f & \partial_{r}\mathcal{B}_{l}r^{2}f\partial_{r} + \mathcal{B}_{l}\frac{1}{f}(\omega^{2}r^{2} + f\frac{2M}{r}) \end{pmatrix} \begin{pmatrix} v_{t} \\ v_{r} \\ u \end{pmatrix}$$

Of course, the transformation from $(T_{\omega}, VW_{\omega}^{e})$ to \bigcirc_{ω} is invertible, also by a differential operator.

 VW_{ω} (even): adjoin the transversality condition The next equivalence square relates VW_{ω}^{e} acting on purely transverse vector fields to the joint system ($T_{\omega}, VW_{\omega}^{e}$), acting on unconstrained vector fields:

where
$$\bar{h}_{\omega} = K_{\omega} \mathcal{D}_{0,\omega}^{-1} \begin{pmatrix} -\frac{f}{i\omega r} & 0 & 0 \end{pmatrix},$$

 $g_{\omega} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \bar{g}_{\omega} = P_T' \frac{1}{i\omega r} \begin{pmatrix} -i\omega r & r\partial_r & -1 \\ -fr^3\partial_r \frac{f}{r^2} & i\omega r & 0 \\ -\mathcal{B}_I f & 0 & i\omega r \end{pmatrix}.$

 VW_{ω} (even): decouple to Regge-Wheeler The final equivalence square decouples $\bigcirc_{\omega} v = 0$ into two Regge-Wheeler equations $\mathcal{D}_{0,\omega}\phi_0 = 0$ and $\mathcal{D}_{1,\omega}\phi_1 = 0$:

where $(\phi_0, \phi_1)^T = k_{\omega} (v_t, v_u, u)^T$,

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- ▶ **Example:** the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations (\mathcal{D}_{s_i}) , with spins $(s_i) = (0, 0, 1 | 1)$.
- ► The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations (D_{si}), with spins (s_i) = (0,0,1,0,0,1,2 | 1,1,2). Similar to vector wave equation, but more complicated.
- ▶ Need to deal with low angular modes $(I \le 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- ▶ **Example:** the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations (D_{s_i}) , with spins $(s_i) = (0, 0, 1 | 1)$.
- ► The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations (D_{si}), with spins (s_i) = (0,0,1,0,0,1,2 | 1,1,2). Similar to vector wave equation, but more complicated.
- ▶ Need to deal with low angular modes $(I \le 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- ► **Example:** the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations (\mathcal{D}_{s_i}) , with spins $(s_i) = (0, 0, 1 | 1)$.
- ► The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations (\mathcal{D}_{s_i}) , with spins $(s_i) = (0, 0, 1, 0, 0, 1, 2 | 1, 1, 2)$. Similar to vector wave equation, but more complicated.
- ▶ Need to deal with low angular modes $(I \le 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- ► **Example:** the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations (D_{s_i}) , with spins $(s_i) = (0, 0, 1 | 1)$.
- ► The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations (D_{si}), with spins (si) = (0,0,1,0,0,1,2 | 1,1,2). Similar to vector wave equation, but more complicated.
- ▶ Need to deal with low angular modes $(I \le 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- ► **Example:** the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations (D_{s_i}) , with spins $(s_i) = (0, 0, 1 | 1)$.
- ► The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations (D_{si}), with spins (s_i) = (0,0,1,0,0,1,2 | 1,1,2). Similar to vector wave equation, but more complicated.
- ▶ Need to deal with low angular modes $(I \le 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- ► **Example:** the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations (D_{s_i}) , with spins $(s_i) = (0, 0, 1 | 1)$.
- ► The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations (D_{si}), with spins (s_i) = (0,0,1,0,0,1,2 | 1,1,2). Similar to vector wave equation, but more complicated.
- Need to deal with low angular modes $(I \le 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

- Complete separation of variables for Lichnerowicz and vector wave equations on Schwarzschild.
- Equivalence with decoupled Regge-Wheeler equations.
- ► **Example:** the vector wave equation is equivalent to 4 generalized Regge-Wheeler equations (D_{s_i}) , with spins $(s_i) = (0, 0, 1 | 1)$.
- ► The Lichnerowicz equation is equivalent to 10 generalized Regge-Wheeler equations (D_{si}), with spins (s_i) = (0,0,1,0,0,1,2 | 1,1,2). Similar to vector wave equation, but more complicated.
- Need to deal with low angular modes $(I \le 1)$ separately. (WIP)
- At the mode level, the equivalence maps are given (mostly) by differential operators. What is their relation with Debye potentials at the spacetime level?

Thank you for your attention!