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Introduction

Noncommutative geometry provides some “microlocal” structure to spacetime,
mixing the continuum with the discrete.

The Higgs field comes out as a connection 1-form, like the other bosons, but a
connection between the discrete and the continuum part of the geometry.

Recent developments - e.g. twist [D, a]→ Da− ρ(a)D, open the way to models
beyond the SM, and might help to solve old problems.

I This talk aims at explaining how gauge fields and gauge transformations are
constructed in noncommutative geometry,

spacetime → spectral triple,

gauge bundle → module,

gauge field → connection on module,

and how these constructions adapt to the twisted case.
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1. Noncommutative geometry

Spectral triple

Algebra A acting on a Hilbert H together with selfadjoint D such that

[D, a] is bounded ∀a ∈ A.
Graded spectral triple: there exists Γ = Γ∗, Γ2 = I, such that

{Γ,D} = 0, [Γ, a] = 0 ∀a ∈ A.
Real spectral triple: there exists antilinear operator J such that

J2 = ε(k)I, JD = ε′(k)DJ, JΓ = ε′′(k)ΓJ

where ε, ε′, ε′′ ∈ {−1,+1}, with k ∈ {0, 1, ..., 7} the KO-dimension.
As well, hold the order zero and the first order conditions

[a, Jb∗J−1] = 0, [[D, a], Jb∗J−1] = 0 ∀a, b ∈ A.
Example of Riemannian spin manifold M:

A = C∞ (M), H = L2(M,S), D = ∂/ = −iγµ∂µ, Γ = γ5, J = C ◦ cc :

[∂/, f ]ψ = ∂/f ψ − f ∂/ψ = (∂/f )ψ + f ∂/ψ − f ∂/ψ = (∂/f )ψ.



Connes’ reconstruction theorem

With other extra-conditions one has the following spectral characterization of
manifolds:

Compact Riemannian manifold M =⇒ spectral triple (C∞ (M) , L2(M,S), ∂/)

M such that A=C∞ (M) ⇐= (A,H,D) with A commutative, unital

commutative spectral triple → noncommutative spectral triple

l ↓
Riemannian geometry non-commutative geometry



2. Gauge theory in noncommutative geometry

Gauge theory with gauge group G

{
Fermionic fields = sections of a G -bundle E ,
Bosonic fields = connections on E .

Sections of a bundle on a manifold M ⇐⇒ a finite projective C∞(M)-module.
Serre-Swan

I A bundle in noncommutative geometry ⇐⇒ a finite projective A-module E .

Connection: example of the tangent bundle:

∇ : Γ∞(TM)→ Γ∞(TM)⊗ Ω1
d (M),

∂ν → Γρµν∂ρ ⊗ dxµ

Ω1
d (M) :=

{
f idgi

}
the C∞(M)-bimodule generated by the exterior derivative d .

I A connection on a (right) A-module E : an application E → E ⊗A Ω
satisfying the Leibniz rule

∇(ηa) = ∇(η)a + η ⊗ δ(a) ∀η ∈ E , a ∈ A,
where Ω is a A-bimodule generated by a derivation δ of A.



Fluctuation by Morita equivalence

A, B Morita equivalent ⇐⇒ B = EndA(E), E a Hermitian finite proj. A-module.

Let (A,H,D) be a spectral triple, E = ER a right A-module. B acts on

HR := ER ⊗A H
as

b(η ⊗ ψ) = bη ⊗ ψ ∀b ∈ B, η ∈ ER , ψ ∈ H.

The “natural” action of D, DR (η ⊗ ψ) := η ⊗ Dψ, is not A-linear on HR :

DR (ηa⊗ ψ)− DR (η ⊗ aψ) = −η ⊗ [D, a]ψ ∀a ∈ A.
I ∇ a connection on ER with value in the A-bimodule of (generalized) 1-forms

Ω1
D(A) := {ai [D, bi ], ai , bi ∈ A}

generated by the derivation δ(a) := [D, a].

The covariant derivative DR (η ⊗ ψ) := η ⊗ Dψ + (∇η)ψ is A-linear on HR .

For B = A, ER = A, then DR = D + AR with AR ∈ Ω1
D(A).



Same construction with left module E = EL, HL = H⊗A EL.

I ∇◦ a connection on EL with value in the bimodule

Ω1
D(A◦) =

{∑

i

a◦i [D, b◦i ], a◦i , b
◦
i ∈ A◦

}

generated by the derivation δ◦(a) := [D, a◦].

The covariant derivative DL(ψ ⊗ η) := Dψ ⊗ η + (∇◦η)ψ is well defined,

For B = A = EL, then DL = D + A◦ = D + ε′J AL J
−1 with A◦ ∈ Ω1

D(A◦),
AL ∈ Ω1

D(A).

Combining the two constructions yields

D ′ = D + AR + ε′J ALJ
−1.

One has that D ′J = ε′JD ′ if and only if there exists A ∈ Ω1
D(A) such that

D ′ = DA := D + A + J AJ−1

The substitution D → DA in the spectral triple is called a fluctuation of the
metric, and DA a covariant Dirac operator·



Gauge transformation

Unitary endomorphisms of E : u ∈ EndA(E) such that u∗u = I, where

〈T ∗η, ξ〉 := 〈η,T ξ〉 ∀T ∈ EndA(E), ξ, η ∈ E .

Form a group U(E), whose adjoint action on Ω-value connections on E ,

∇u := u∇u∗ ∀u ∈ U(E),

yields a new Ω-value connection ∇u. Hence

∇ = ∇0 + A, ∇u = ∇0 + Au,

where ∇0 is the Grassmann connection, while the gauge potentials A and Au are
A-linear maps E → E ⊗A Ω (right module case) or E → Ω⊗A E (left module).

A gauge transformation is the map

A→ Au.



Let (A,H,D) be a spectral triple and

DA = D + A + J A J−1 with A ∈ Ω1
D(A)

the covariant operator obtained by Morita equivalence.

Substituting ∇,∇◦ with ∇u, (∇◦)u, u ∈ U(A) in the previous construction yields

DAu = D + Au + J Au J−1

with
Au := u[D, u∗] + uAu∗.

I DAu is also obtained by the conjugate action of

Ad(u) : ψ → uψu∗ = u(u∗)◦ψ = uJuJ−1ψ,

namely
Ad(u)DA Ad(u)−1 = DAu .

The inner automorphisms of A yields the gauge potentials (in the commutative
case, the outer automorphisms give the diffeomorphisms of spacetime).



3. The standard model

A = C∞ (M)⊗Asm, H = L2(M,S)⊗Hsm, D = ∂/⊗ I32 + γ5 ⊗ Dsm

where

Asm = C⊕H⊕M3(C), Hsm = C32=2×2×8 = HR ⊕HL ⊕Hc
R ⊕HC

L ,

Dsm =




08 M 08 08

M† 08 08 08

08 08 08 M̄
08 08 MT 08




︸ ︷︷ ︸
D0

+




08 08 MR 08

08 08 08 08

M†R 08 08 08

08 08 08 08




︸ ︷︷ ︸
DR

.

I M is a matrix whose coefficients are the Yukawa couplings of the electron,
the quarks, and the neutrino (Dirac mass).

I MR contains only one non-zero entry kR (Majorana mass of the neutrino).

One also needs Γ = γ5 ⊗ γsm and J = J ⊗ Jsm with

γsm =




I8

−I8

−I8

I8


 , Jsm =

(
016 I16

I16 016

)
.



Spectral action

Let f be a smooth approximation of the characteristic function of [0, 1].
The asymptotic expansion Λ→∞ of

Tr f (
D2

A

Λ2
)

yields the bosonic Lagrangian of the SM coupled with the Einstein-Hilbert action

∫

M

√
gd4x (

1

κ2
0

R + α0CµνρσC
µνρσ + γ0 + τ0R

∗R∗

+
1

4
G i
µνḠ

µν
i +

1

4
Fαµν F̄

µν
α +

1

4
BµνB̄

µν

+
1

2
|DµH|2 − µ2

0|H|2−
1

12
R|H|2 + λ0|H|4 )

where λ0, α0, τ0, κ0, γ0 are functions of Λ and the momenta fβ =
∫∞

0
f (v)vβ−1dv ,

and we assume a unique unification scale

g2
3 f0

2π2
=

1

4
, g2

3 = g2
2 =

5

3
g2

1 .



Mass of the Higgs and instability

The spectral action provides initial conditions at a putative unification scale.

Physical predictions by running down the parameters of the theory under the
renormalization group equation. Assuming there is no new physics between the
unification scale and our scale, one finds mH ' 170 GeV 6= 125, 1GeV

Chamseddine, Connes, Marcolli

but...

for a Higgs boson with mass mH ≤ 130 Gev, the quartic coupling of the Higgs
field becomes negative at high energy, meaning the electroweak vacuum is
meta-stable rather than stable.



V (H) = −µ
2
H2 +

λ

4
H4

3

sufficiently large Higgs mass, the positive self interaction
term ∼ +λ2 is large enough to keep the beta function
positive, or only slightly negative, to avoid λ running
negative at sub-Planckian energies. For sufficiently small
Higgs mass, the negative top quark contribution ∼ −y4

t

can dominate and cause the beta function to go negative,
in turn causing λ to pass through zero at a sub-Planckian
energy, which we denote E∗. The top quark Yukawa cou-
pling itself runs toward small values at high energies with
1-loop beta function

βyt =
yt

(4π)2

[
−9

4
g2 − 17

12
g′2 − 8g2

s +
9

2
y2

t

]
, (3)

which is quite sensitive to the value of the strong cou-
pling gs. To compute the evolution of couplings and the
quantity E∗ = E∗(mH , yt, . . .) accurately, we do the fol-
lowing: (i) Starting with couplings defined at the Z mass,
we perform proper pole matching and running up to the
top mass, (ii) we include external leg corrections (and
the associated wavefunction renormalization), (iii) we si-
multaneously solve the 5 beta function differential equa-
tions for the 5 important couplings λ, yt, g

′, g, gs, and (iv)
we include the full 2-loop beta functions for the Stan-
dard Model; these are presented in the Appendix (see
Refs. [11, 12] for more information). In our numerics,
we use particular values of the couplings g′, g, gs, derived
from the best fit values

α(mZ) =
1

127.9
, sin2 θW = 0.2311, αs(mZ) = 0.1184.

(4)
In our final analysis, we will allow for three different val-
ues of mt =

√
2 yt vEW , namely the central value and 1-

sigma variation mt = 173.1±0.7GeV, and we will explore
a range of mH =

√
2λ vEW , with vEW = 246.22GeV.

Performing the RG evolution leads to the energy de-
pendent renormalized coupling λ(E). A plot of λ(E)
is given in Fig. 2 for three Higgs mass values, namely
mH = 116GeV (lower curve), mH = 126GeV (middle
curve), and mH = 130GeV (upper curve), with the top
mass fixed to the central value mt = 173.1GeV. This
shows clearly that for the lighter Higgs masses that the
coupling λ passes through zero at a sub-Planckian energy
scale E∗ and then remains negative. Furthermore, since
the coupling only runs logarithmically slowly with energy,
the value of E∗ can change by orders of magnitude if the
starting value of the couplings changes by relatively small
amounts. The domain E > E∗ involves a type of “attrac-
tive force” with negative potential energy density, as we
now examine in more detail.
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FIG. 2: Higgs self-coupling λ as a function of energy, for
different values of the Higgs mass from 2-loop RG evolu-
tion. Lower curve is for mH = 116 GeV, middle curve is for
mH = 126 GeV, and upper curve is for mH = 130 GeV. All
other Standard Model couplings have been fixed in this plot,
including the top mass at mt = 173.1 GeV.

III. META-STABILITY AND PROBABILITY

If we think of the field value h as being the typical
energy pushed into a scattering process at energy E, then
we can translate the RG evolution of the couplings into
an effective potential. Using λ(E) and replacing E → h,
we obtain the (RG improved) effective potential at high
energies (h % vEW )

Veff(h) =
1

4
λ(t)G(t)4 h4, (5)

where the wavefunction renormalization factor G is given
in terms of the anomalous dimension γ by G(t) =

exp(−
∫ t

0 γ(t′)dt′), and we replace t → ln h/µ. Hence
for a Higgs mass in the range observed by the LHC,
the effective potential Veff goes negative at a field value
h = E∗ that is several orders of magnitude below the
Planck scale, as can be deduced from the behavior of
λ(E) with mH = 126GeV in Fig. 2.

We could plot Veff(h) directly, however the factor of h4

makes it vary by many orders of magnitude as we explore
a large field range. Instead a schematic of the resulting
potential will be more illuminating for the present discus-
sion in order to highlight the important features, as given
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FIG. 3: Schematic of the effective potential Veff as a function
of the Higgs field h. This is not drawn to scale; for a Higgs
mass in the range indicated by LHC data, the heirarchy is
vEW ! E∗ ! MPl, where each of these 3 energy scales is
separated by several orders of magnitude.

in Fig. 3. The plot is not drawn to scale; the 3 energy
scales satisfy the hierarchy vEW ! E∗ ! MPl for a Higgs
mass as indicated by LHC data mH ∼ 125 − 126GeV.
Note that the local maximum in the potential occurs at
a field value that is necessarily very close to E∗ (only
slightly smaller) and so we shall discuss these 2 field val-
ues interchangeably.

In this situation, the electroweak vacuum is only meta-
stable. Its quantum mechanical tunneling rate can be es-
timated by Euclideanizing the action and computing the
associated bounce action S0. This leads to the following
probability of decaying in time TU through a bubble of
size R [13]

p ∼ (TU/R)4e−S0. (6)

The computation of the rate is rather involved, and we
shall not pursue the details here. Suffice to say that for
the central values of Higgs mass and top mass from LHC
data, it is found that the lifetime of the electroweak vac-
uum is longer than the present age of the universe [14, 15].

It is conceivable that it is an acceptable situation for
the electroweak vacuum to be meta-stable. However, here
we would like to present an argument that such a situ-
ation is statistically disfavorable. We imagine that in
the very early universe, the Higgs field was randomly

distributed in space. For instance, during cosmological
inflation the Higgs field could have been frozen at some
value as the universe rapidly expands (if high scale in-
flation) until after inflation when the field will oscillate
and its initial value could plausibly have been random
and uniformly distributed. If this is the case, then what
is the probability that the Higgs field began in the meta-
stable region h ! E∗, rather than the unstable region
h " E∗? The answer depends on the allowed domain the
Higgs can explore. Here we estimate the allowed domain
to be Planckian, i.e., 0 < h < MPl, but our argument
only depends on the upper value being much larger than
E∗. Naively, this would lead to a probability ∼ E∗/MPl,
however we should recall that the Higgs is a complex
doublet, composed of 4 real scalars, and each one would
need to satisfy h ! E∗ in the early universe to be in the
meta-stable region. Hence, we estimate the probability
as

Prob (Higgs begins in meta-stable region) ∼
(

E∗

MPl

)4

.

(7)
For instance, for mH ≈ 125.5GeV and mt = 173.1GeV,
we have E∗ ∼ 1011 GeV, leading to a probability ∼
(1011 GeV/1019 GeV)4 = 10−32, which indicates that the
chance of randomly landing in the meta-stable region in
the early universe is exceedingly unlikely. Instead it is
far more likely to land in the unstable region indicated
in Fig. 3. Here the effective potential is negative leading
to a catastrophic runaway instability, perhaps to a new
VEV that is close to Planckian. This would in turn lead
to a plethora of problems for the formation of complex
structures, etc, so we can safely assume such a regime is
uninhabitable and irrelevant. This leads us to examine
a scenario in which new physics enters and removes this
problem.

IV. PECCEI-QUINN DYNAMICS AND
DISTRIBUTION

One of the phenomenological reasons for new physics
beyond the Standard Model is the fine tuning of the CP
violating term in the QCD Lagrangian. The following
dimension 4 operator is gauge invariant and Lorentz in-
variant and should be included in the QCD Lagrangian
with a dimensionless coefficient θ

∆L =
θ

32π2
εµναβF a

µνF a
αβ . (8)

From bounds on the electric dipole moment of the neu-
tron, this term is experimentally constrained to satisfy

For h >> vEW , Veff (h) =
1
4
λ(t)G(t)4h4 with H = 1√

2
(0, vEW + h), t = ln h/µ.

M. P. Hertzberg, A correlation between the Higgs mass and dark matter, arXiv:1210.3624
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane. Right: Zoom in the region of the preferred experimental range of Mh and Mt (the
gray areas denote the allowed region at 1, 2, and 3�). The three boundaries lines correspond to
↵s(MZ) = 0.1184 ± 0.0007, and the grading of the colors indicates the size of the theoretical error.
The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

3.3 Phase diagram of the SM

The final result for the condition of absolute stability is presented in eq. (2). The central

value of the stability bound at NNLO on Mh is shifted with respect to NLO computations

(where the matching scale is fixed at µ = Mt) by about +0.5 GeV, whose main contributions

can be decomposed as follows:

+ 0.6 GeV due to the QCD threshold corrections to � (in agreement with [14]);

+ 0.2 GeV due to the Yukawa threshold corrections to �;

� 0.2 GeV from RG equation at 3 loops (from [12,13]);

� 0.1 GeV from the e↵ective potential at 2 loops.

As a result of these corrections, the instability scale is lowered by a factor ⇠ 2, for Mh ⇠ 125

GeV, after including NNLO e↵ects. The value of the instability scale is shown in fig. 4.

The phase diagram of the SM Higgs potential is shown in fig. 5 in the Mt–Mh plane,

taking into account the values for Mh favored by ATLAS and CMS data [1, 2]. The left

plot illustrates the remarkable coincidence for which the SM appears to live right at the

border between the stability and instability regions. As can be inferred from the right plot,

which zooms into the relevant region, there is significant preference for meta-stability of the

SM potential. By taking into account all uncertainties, we find that the stability region is

disfavored by present data by 2�. For Mh < 126 GeV, stability up to the Planck mass is

excluded at 98% C.L. (one sided).
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Degrassi, Di Vita, Elias-Miro, Espinosa, Guidice, Isidori and A. Sturmia, Higgs mass and Vacuum Stability in the SM at NNLO, arXiv:1205.6497



The instability of the electroweak vacuum can be cured by introducing a new
scalar field σ:†

V (H, σ) =
1

4
(λH4 + λσσ

4 + 2λHσH
2σ2).

In the spectral triple of the standard model, turning into a field the neutrino
Majorana mass, kR → kRσ, yields the required field, and alters the running of the
parameters so that to make the computation of mH compatible with 125 Gev.
Chamseddine, Connes 2012

The field σ cannot be obtained by a fluctuation of the Dirac operator, since

[γ5 ⊗ DR , a] = 0 ∀a, b ∈ A = C∞ (M)⊗Asm.

But it can be obtained by a twisted fluctuation

[γ5 ⊗ DR , a]ρ 6= 0.
Devastato, Lizzi, P.M.

†
Elias-Miro, Espinosa, Guidice, Lee and Sturmia, Stabilization of the Electroweak Vacuum by a Scalar Threshold effect, JHEP 1206 (2012) 031;

Degrassi, Di Vita, Elias-Miro, Espinosa, Guidice, Isidori and A. Sturmia, Higgs mass and Vacuum Stability in the SM at NNLO, arXiv:1205.6497;
Chian-Shu Chen and Yong Tang, Vacuum Stability, Neutrinos and Dark matter, JHEP 1204 (2012) 019;
Oleg Lebedev, On Stability of the Higgs Potential and the Higgs Portal, JHEP, arXiv:1203.0156.



4.Gauge theory for twisted spectral triple

Twisted spectral triples

Given a triple (A,H,D), instead of asking the commutators [D, a] to be
bounded, one asks the boundedness of the twisted commutator Connes, Moscovici 2008

[D, a]ρ := Da− ρ(a)D for some ρ ∈ Aut(A).

I Makes sense mathematically. Relevant to deal with type III algebras.

Twist compatible with the real structure. We define a twisted fluctuation of D as

DAρ
:= D + Aρ + J Aρ J

−1

where Aρ is an element of the set of twisted 1-forms

Ω1
D(A, ρ) := {ai [D, bi ]ρ, ai , bi ∈ A}

such that DAρ is selfadjoint.



Twisted fluctuations and Morita equivalence

(A,H,D; ρ) a twisted spectral triple, right A-module ER = pAN , B = EndA(ER ).

Need an operator on HR = ER ⊗A H whose non-linearity can be cured by an
Ω1

D(A, ρ)-value connection. Consider

((ρ⊗ I) ◦ DR )(η ⊗ ψ) = ρ(η)⊗ Dψ ∀η ∈ ER , ψ ∈ H,
where

ρ(η) := p




ρ(η1)
...

ρ(ηN )


 ∀η =




η1...
ηN


 ∈ ER , ηi ∈ A.

Then
((ρ⊗ I) ◦ DR ) (ηa⊗ ψ − η ⊗ aψ) = −ρ(η)⊗ [D, a]ρ ψ.

Proposition Landi, P.M. 2017

Let ∇ρ be an Ω1
D(A, ρ)-value connection on ER . Then the operator

D̃R := (ρ⊗ I) ◦ (DR +∇ρ)

is linear on HR . In case B = A = ER , one obtains

D̃R = D + AR
ρ with AR

ρ ∈ Ω1
D(A, ρ).



Similar construction for left module.

I ∇◦ρ a connection on EL with value in the A-bimodule

Ω1
D(A◦, ρ◦) :=

{∑

i

a◦i [D, b◦i ]ρ◦ , a◦i , b
◦
i ∈ A◦

}
.

generated by the derivation of A: δ◦(a) := [D, a◦]ρ◦ , with ρ◦(a◦) := ρ(a)◦.

Proposition Landi, P.M. 2017

The operator
D̃L := (I⊗ ρ) ◦ (DL +∇◦ρ)

is well defined on HL. In case B = A = EL, one obtains

D̃L = D + A◦ρ = D + ε′J AL
ρ J
−1

with A◦ρ ∈ Ω1
D(A◦, ρ), AL

ρ ∈ Ω1
D(A, ρ).



Combining the two constructions yields

D̃ ′ = D + AR
ρ + ε′JAL

ρJ
−1

with AR
ρ , AL

ρ two elements of Ω1
D(A, ρ), a priori distinct.

Proposition Landi, P.M. 2017

One has that D ′J = ε′D ′J if and only if there exists A′ρ ∈ Ω1
D(A, ρ) such that

D̃ ′ = DAρ
: D + A′ρ + ε′JA′ρJ

−1.

I Twisted fluctuations arise by Morita equivalence, in the same way as non
twisted ones. The only difference is that the “natural action” of D on HR,L,

η ⊗ ψ → η ⊗ Dψ, ψ ⊗ η → Dψ ⊗ η

needs to be twisted by ρ,

η ⊗ ψ → ρ(η)⊗ Dψ, ψ ⊗ η → Dψ ⊗ ρ(η).



Twisted gauge transformation

Let (A,H,D; ρ) be a real twisted spectral triple and

DAρ = D + Aρ + J Aρ J
−1 with Aρ ∈ Ω1

D(A, ρ)

the twisted-covariant operator obtained by Morita equivalence.

Proposition Landi, P.M. 2017

Substituting ∇ρ, ∇◦ρ with ∇u
ρ, (∇◦ρ)u yields

DAu
ρ

= D + Au
ρ + J Au

ρJ
−1

where
Au
ρ := ρ(u)[D, u∗]ρ+ ρ(u)Au∗.

Furthermore,
DAu

ρ
= ρ(U)DAρ

U−1 for U = Ad(u).

I The law of transformation of the twisted-gauge potential Aρ → Au
ρ is simply

the twisted version of the usual transformation A→ Au.
I The same is true for the conjugate action of U = Ad(u) = uJuJ−1,

UDAU
−1 → ρ(U)DAρ

U−1.



5. Applications and open questions

Twisted geometry for the standard model

(A⊗ C2, H,D; ρ)

with A,H,D as in the standard model, and

ρ(z1, z2) = z2, z1, z1, z2 ∈ C.

Spectral action computed with the twisted covariant operator

DAρ = D + Aρ + JAρJ
−1

where Aρ is a twisted 1-form yields Devastato, Lizzi, P.M. 2014, 2016

I A model beyond the SM that spontaneously breaks to the SM.

I The fluctuations around the standard model are encoded by

- the scalar field σ, coming from the twisted fluctuation of γ5 ⊗ DR ;

- a vector field Xµ, coming from the twisted fluctuation of ∂/⊗ I32.



Selfadjointness and the change of signature

In the non-twisted case (A,H,UDAU
−1) is a spectral triple.

In the twisted case, DAu
ρ

= ρ(U)DAρ
U−1 has no reason to be selfadjoint.

I May not be a problem for the spectral action, defining it as

lim
Λ→∞

f

(
D∗Au

ρ
DAu

ρ

Λ2

)
.

I Quid fermionic action ?

Possible solution: restrict to transformation such that ρ(U) = U.



In case of minimal twist (A,H,D)→ (A⊗ C2,H,D; ρ), one has

ρ(z1, z2) = (z2, z1) z1, z2 ∈ C.

Unitaries of C2 are u = (e iθ1 , e iθ2 ), and ρ(u) = u iff θ1 = θ2. Hence

Uρ(C2) :=
{
u ∈ C2, u∗u = I, ρ(u) = u

}
' U(1).

I Twisting the standard model would mean adding an extra U(1)-field.

Another possibility is to require ρ(U)∗ = U−1 without imposing U unitary.
In case of minimal twist, one has

ρ

(
z1 0
0 z2

)
=

(
z2 0
0 z1

)
= X

(
z1 0
0 z2

)
X with X =

(
0 1
1 0

)
.

Requiring ρ(u)∗ = u−1, i.e ρ(u∗)u = I, means requiring Xu∗Xu = I.
Working in the base where X is diagonal (X → η = diag(1,−1), u → v) yields

ηv∗ηv = I that is v ∈ U(1, 1).

I In the case of the standard model, could mean passing from
Spin(4) = SU(2)× SU(2) to U(1, 1)× SU(2): twisting = changing the
signature ?
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Covariant Dirac operator

A fluctuation of D by A is

DA = D + A + J A J−1

with
A = Σ

i
ai [D, bi ] = A∗ ai , bi ∈ A.

I DA is called the covariant Dirac operator.

A = C∞(M)⊗AF

H = L2(M,S)⊗HF

D = ∂/⊗ I32 + γ5 ⊗ DF



 =⇒ A = γ5 ⊗ H − i

∑

µ

γµ ⊗ Aµ.

I H: scalar field on M with value in AF → Higgs.

I Aµ: 1-form field with value in Lie(U(AF )) → gauge field.
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