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Introduction

Noncommutative geometry provides some “microlocal” structure to spacetime,
mixing the continuum with the discrete.

The Higgs field comes out as a connection 1-form, like the other bosons, but a
connection between the discrete and the continuum part of the geometry.

Recent developments - e.g. twist [D, a] — Da — p(a)D, open the way to models
beyond the SM, and might help to solve old problems.

» This talk aims at explaining how gauge fields and gauge transformations are
constructed in noncommutative geometry,

spacetime —  spectral triple,
gauge bundle —  module,

gauge field —  connection on module,

and how these constructions adapt to the twisted case.
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1. Noncommutative geometry

Spectral triple

Algebra A acting on a Hilbert H together with selfadjoint D such that
[D, a] is bounded Vace A.
Graded spectral triple: there exists [ = I'*, [? =1, such that
{I,D}=0, [[La]=0 Vae A
Real spectral triple: there exists antilinear operator J such that
P2 =e(K)I, JD = €' (k)DJ, JT = €' (k)T J

where €,€¢', ¢’ € {—1,+1}, with k € {0,1,...,7} the KO-dimension.
As well, hold the order zero and the first order conditions

[a, Jb* 1] =0, [[D,a],Jb*J =0 Vabec A

Example of Riemannian spin manifold M:

A=C®(M), H=L[*M,S), D=J=—-iv'd,, T=2°>, J=Cocc
[, flib = If Y — £ = (PF ) + £ Pop — FP = (PF )y



Connes’ reconstruction theorem

With other extra-conditions one has the following spectral characterization of
manifolds:

Compact Riemannian manifold M = spectral triple (C> (M), [*(M,S), )
M such that A=C>* (M) < (A, H, D) with A commutative, unital

commutative spectral triple — noncommutative spectral triple

! e

Riemannian geometry non-commutative geometry



2. Gauge theory in noncommutative geometry

Fermionic fields = sections of a G-bundle &,

Gauge theory with gauge group G { Bosonic fields = connections on £.

Sections of a bundle on a manifold M <= a finite projective C*°(M)-module.

Serre-Swan

> A bundle in noncommutative geometry <= a finite projective A-module £.

Connection: example of the tangent bundle:
V :T(TM) — I°(TM) @ Q4 (M),
0y — T1,0, @ dx"

QL(M) := {fidg;} the C>(M)-bimodule generated by the exterior derivative d.

» A connection on a (right) A-module £: an application £ — £ ®4 Q
satisfying the Leibniz rule

V(na) =V(na+n®d(a) Vnel acA,

where Q is a A-bimodule generated by a derivation § of A.



Fluctuation by Morita equivalence )

A, B Morita equivalent <= B = End 4(£), £ a Hermitian finite proj. .A-module.
Let (A, H, D) be a spectral triple, £ = Eg a right A-module. B acts on

Hr =ER®@AH
as
b(n®y)=bny Vb e B,n € &g, €H.
The “natural” action of D, DR(n ® ) := 1 ® D1}, is not A-linear on Hpg:
DR(ma®@y) — DR(n®@ay) = —n@[D,ay  Vac A.
» V a connection on g with value in the A-bimodule of (generalized) 1-forms
QID(.A) = {a,-[D, b,‘], aj, b € .A}
generated by the derivation 6(a) := [D, a.

The covariant derivative Dg(n ® ¢) :=n ® Dy + (V)i is A-linear on Hg.

For B=A, Egr = A, then Dg = D + Ag with Ag € Q) (A).




Same construction with left module £ =&, H; = H Q4 &,

» V° a connection on £ with value in the bimodule

QL(A°) —{Za (D, b°], a,‘-’,b,‘-’er}

generated by the derivation §°(a) := [D, a°].
The covariant derivative Dy () ® 1) := Dy @ n + (V°n)y is well defined,

For B=A=¢&, then D, =D+ A° =D +¢€'JA, J~! with A° € Q}(A°),
AL € QID(.A)

Combining the two constructions yields
D'=D+Ag+JA I
One has that D’J = €/JD' if and only if there exists A € Q}(.A) such that

D'=Da:=D+A+JAJ?

The substitution D — D4 in the spectral triple is called a fluctuation of the
metric, and D4 a covariant Dirac operator-



Gauge transformation

Unitary endomorphisms of £: u € End 4(€) such that u*u =T, where
(T, &) == (n, T&) VT € Enda(€), {mel.
Form a group U(E), whose adjoint action on Q-value connections on &,
VY .= uVu* Yuel(E),
yields a new Q-value connection V. Hence
V=Vo+A, V'=Vy+A“

where Vj is the Grassmann connection, while the gauge potentials A and AY are
A-linear maps £ — £ ® 4 Q (right module case) or £ — Q ® 4 & (left module).

A gauge transformation is the map

A — AY.



Let (A, H, D) be a spectral triple and

Da=D+A+JAJ! with Ac Qh(A)

the covariant operator obtained by Morita equivalence.

» Dy is also obtained by the conjugate action of
Ad(u) : ¢ — upu* = u(u*)°y = udud ™19,

namely
Ad(u) DaAd(u)™ = Da..

The inner automorphisms of A yields the gauge potentials (in the commutative
case, the outer automorphisms give the diffeomorphisms of spacetime).



3. The standard model

A=C®(M)® Asm, H=1*(M,S)®Hsm,

where

D:@®H32+’75®Dsm

Asm =COHS M3(C),  Hem = C3F2X28 —Hp @ H, & HS @ HS,
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» M is a matrix whose coefficients are the Yukawa couplings of the electron,

the quarks, and the neutrino (Dirac mass).

» Mg contains only one non-zero entry kg (Majorana mass of the neutrino).

One also needs ' = v° ® v and J = J ® Jg with
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Spectral action

Let £ be a smooth approximation of the characteristic function of [0, 1].
The asymptotic expansion A — oo of

D2
Tr £(2A
r (/\ ) o
yields the bosonic Lagrangian of the SM coupled with the Einstein-Hilbert action
1
/ \/§d4x ( 3/? + @0 Cuvpo CHP7 + vo + ToR* R
M

+ = G’ GH + = FC‘F*“’Jr B B

pv i 4 Wl
*ID H|? — g HI*~ RIH\2+A0|HI4)

where g, a, To, Ko, Y0 are functions of A and the momenta f3 = [ f(v)v’'dv,
and we assume a unique unification scale

gify 1

_ 2 _ 2 _
o2 g3—g2f§g1.



Mass of the Higgs and instability

The spectral action provides initial conditions at a putative unification scale.

Physical predictions by running down the parameters of the theory under the
renormalization group equation. Assuming there is no new physics between the
unification scale and our scale, one finds my ~ 170 GeV # 125, 1GeV

Chamseddine, Connes, Marcolli

but...

for a Higgs boson with mass my < 130 Gev, the quartic coupling of the Higgs
field becomes negative at high energy, meaning the electroweak vacuum is
meta-stable rather than stable.
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FIG. 2: Higgs self-coupling A as a function of energy, for FIG. 3: Schematic of the effective potential V. as a function

different, values of the Higgs mass from 2-loop RG evolu- of the Higgs field h. This is not drawn to scale; for a Higgs
tion. Lower curve is for my = 116 GeV, middle curve is for

s — 126 GeV, and upper curve is for mu — 130 GeV. All mass in the range indicated by LHC data, the heirarchy is
other Standard Model couplings have been fixed in this plot, vew < E7 < Mg, where each of these 3 energy scales is
including the top mass at m; = 173.1 GeV. separated by several orders of magnitude.

For h > vew, Verr(h) = &

A(t)G(t)*h* with H = 25(0, vew + h), t =Inh/p.

M. P. Hertzberg, A correlation between the Higgs mass and dark matter, arXiv:1210.3624
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The instability of the electroweak vacuum can be cured by introducing a new
scalar field o1

1
V(H,0) = Z(AH4 + Aot + 22y, H?0?).

In the spectral triple of the standard model, turning into a field the neutrino
Majorana mass, kg — kro, yields the required field, and alters the running of the
parameters so that to make the computation of my compatible with 125 Gev.

Chamseddine, Connes 2012

The field o cannot be obtained by a fluctuation of the Dirac operator, since

[/*® Dr,a] =0 Va,be A= C®(M)® A

But it can be obtained by a twisted fluctuation

[75 b2y DR7 a]p 7é 0.

Devastato, Lizzi, P.M.

T Elias-Miro, Espinosa, Guidice, Lee and Sturmia, Stabilization of the Electroweak Vacuum by a Scalar Threshold effect, JHEP 1206 (2012) 031;
Degrassi, Di Vita, Elias-Miro, Espinosa, Guidice, Isidori and A. Sturmia, Higgs mass and Vacuum Stability in the SM at NNLO, arXiv:1205.6497;
Chian-Shu Chen and Yong Tang, Vacuum Stability, Neutrinos and Dark matter, JHEP 1204 (2012) 019;

Oleg Lebedev, On Stability of the Higgs Potential and the Higgs Portal, JHEP, arXiv:1203.0156.



4.Gauge theory for twisted spectral triple

Twisted spectral triples

Given a triple (A, H, D), instead of asking the commutators [D, a] to be
bounded, one asks the boundedness of the twisted commutator Connes, Moscovici 2008

[D,a, := Da— p(a)D for some p € Aut(A).

> Makes sense mathematically. Relevant to deal with type Il algebras.

Twist compatible with the real structure. We define a twisted fluctuation of D as
Da,:==D+A,+JA,J*
where A, is an element of the set of twisted 1-forms
Qp(A, p) = {ai[D, bi],, ai, b € A}

such that Dp, is selfadjoint.



Twisted fluctuations and Morita equivalence )

(A, H, D; p) a twisted spectral triple, right A-module g = p AN, B = End 4(€R).

Need an operator on Hg = Egr ® 4 H whose non-linearity can be cured by an
QL (A, p)-value connection. Consider

(p@1) o DRY @) = p(n) ® DY Vn € Er, Y € H,

where
p(m) m
p(n) =p : Vn = : € &g, ni € A.
p(nn) N
Then "
(p@D) o DY) (na®y —n®@ay) = —p(n) @ [D,al, .
Proposition Landi, P.M. 2017

Let V, be an Q} (A, p)-value connection on Eg. Then the operator
Br = (p@T) o (DF +V,)

is linear on Hpr. In case B = A = &g, one obtains

Dr =D+ A% with AR € Qp(A, p).




Similar construction for left module.

» V7 a connection on & with value in the A-bimodule

QL (A°, p°) {Zao[Db]po aj?,bf’er}.

generated by the derivation of A: 6°(a) := [D, a°],0, with p°(a°) := p(a)°.

Proposition Landi, P.M. 2017

The operator .
D, :=(1®p)o (D" + V)

is well defined on H;. In case B = A = &, one obtains
Di=D+A =D+eJAL !

with A> € Qp(A°, p), A5 € QL (A, p).




Combining the two constructions yields
D'=D+ AR+ JALS!

with AR AL two elements of QF (A, p), a priori distinct.

Proposition Landi, P.M. 2017

One has that D'J = ¢'D'J if and only if there exists A, € Qp(A, p) such that

» A . -1
D' = Da, : D+ A, + €JA, I,

» Twisted fluctuations arise by Morita equivalence, in the same way as non
twisted ones. The only difference is that the “natural action” of D on Hg ,

neY =Dy, Yon— DY
needs to be twisted by p,

n@Y = p(n) @ DY, p@n— DY ® p(n).



Twisted gauge transformation )

Let (A, H, D; p) be a real twisted spectral triple and
Da, =D+ A, +JA,J7" with A, € Qp(A, p)
the twisted-covariant operator obtained by Morita equivalence.

Proposition Landi, P.M. 2017

Substituting V,, V7 with V7, (V7)Y yields

Dag =D+ A+ JA

where
A4 = p(u)[D, "] + p(u)Au*.

Furthermore,

Das = p(U)Da,U" for U = Ad(u).

w

» The law of transformation of the twisted-gauge potential A, — A7 is simply
the twisted version of the usual transformation A — A".
» The same is true for the conjugate action of U = Ad(u) = uJuJ™1,

UDAU™ — p(U)Da, U



5. Applications and open questions

Twisted geometry for the standard model

(A®C? H,D;p)
with A, H, D as in the standard model, and

o(z1,2) = z2,z1, z1,20 € C.
Spectral action computed with the twisted covariant operator
Da, =D+ A, +JAJ!
where A, is a twisted 1-form yields Devastato, Lizzi, P.M. 2014, 2016
» A model beyond the SM that spontaneously breaks to the SM.

» The fluctuations around the standard model are encoded by
- the scalar field o, coming from the twisted fluctuation of v° ® Dg;

- a vector field X,,, coming from the twisted fluctuation of @ ® Is.

[



Selfadjointness and the change of signature

In the non-twisted case (A, H, UDaU™!) is a spectral triple.
In the twisted case, Day = p(U)Da, U~! has no reason to be selfadjoint.

» May not be a problem for the spectral action, defining it as

D%, Das
lim £ 26 "
/\I~>moo /\2

» Quid fermionic action ?

Possible solution: restrict to transformation such that p(U) = U.



In case of minimal twist (A, H, D) — (A ® C%,H, D; p), one has
p(z1,2) = (22,21) z1,22 € C.
Unitaries of C? are u = (&1, e%?), and p(u) = v iff §; = ;. Hence

U(C?) :i={ueC uu=1 plu)=u} ~ U(

» Twisting the standard model would mean adding an extra U(1)-field.

Another possibility is to require p(U)* = U~! without imposing U unitary.
In case of minimal twist, one has

Z 0 . Vi) 0 o V4] 0 . o 01
p(o 22>_<0 21>_X<0 Z2)X with X‘<1 0)'
1

Requiring p(u)* = u™!, i.e p(u*)u = I, means requiring Xu*Xu = L.
Working in the base where X is diagonal (X — n = diag(1, —1), u — v) yields

nv'nv =T thatis v € U(1,1).

> In the case of the standard model, could mean passing from
Spin(4) = SU(2) x SU(2) to U(1,1) x SU(2): twisting = changing the
signature 7



Gauge transformation for twisted spectral triples,
with G. Landi, in preparation.

Twisted spectral triple for the standard model and spontaneous breaking of the
grand symmetry, with A. Devastato, Mathematical Physics, Analysis and
Geometry (2016).

Grand symmetry, spectral action and the Higgs mass,
with A. Devastato, F. Lizzi, JHEP 01 (2014).

Twisted spectral geometry for the Standard Model,
P.M. Proc. of Science (2015).

Noncommutative geometry, grand symmetry and twisted spectral triple,
A. Devastato, J. Phys. Conf. Serie (2015).

Higgs mass in noncommutative geometry,
with A. Devastato and F. Lizzi, Fortschritte der Physik 62 9-10 (2014) 863-868.



Covariant Dirac operator

A fluctuation of D by A is
Da=D+A+JAJ!
with

A=Y a[D,b]=A" & b e A

» D, is called the covariant Dirac operator.

A = C®(M)® Af

o= (M. S) & He = A=1"@H-—i) 7"®A.
D = Jolp++°®@Df "
> H: scalar field on M with value in Af — Higgs.

» A,: 1-form field with value in Lie(U(AfF)) — gauge field.



	1. Noncommutative geometry
	 spectral triple
	 Connes' reconstruction theorem

	2. Gauge theory in noncommutative geometry
	 Connection on module
	 Gauge field from Morita equivalence
	 Gauge transformation

	3. The standard model
	 Spectral action
	 Mass of the Higgs and instability

	4. Gauge theory in twisted non-commutative geometry
	 Twisted spectral triple
	 Twisted fluctuation and Morita equivalence
	 Twisted gauge transformation

	5. Application and open questions
	 Twisted geometry for the standard model
	 Selfadjointness and change of signature


