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Motivations

Most interesting observables in field theory are local and nonlinear
(in the field):

• Field squared A2

• Stress-energy tensor Tµν

• Currents ψ̄γµψ

In Minkowskian QFT these observables are defined using normal
ordering. For a scalar field, in position space:

: ϕ2(x) := lim
x1→x2

ϕ(x1)ϕ(x2)− 〈0|ϕ(x1)ϕ(x2)|0〉I

In curved spacetime it is not so simple: There is no preferred
vacuum state.
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Motivation

In CST the best we can do is to replace |0〉 with a Hadamard state:

: ϕ2(x) := lim
x1→x2

ϕ(x1)ϕ(x2)− ω(ϕ(x1)ϕ(x2))︸ ︷︷ ︸
ω instead of |0〉

I

Since this expression is ambiguous, it is necessary to classify all
ambiguities: Hollands&Wald studied the scalar field case

:̃ ϕk :(x) =: ϕk : (x) +
k−2∑
l=0

(
k

l

)
Ck−l(x) : ϕl : (x)

Ck(x) ≡ Ck

[
gab(x),Rabcd(x), . . . ,∇(e1 · · · ∇ek−2)Rabcd(x),m2, ξ

]
each Ck is a scalar that depends polynomially on m2, on the
Riemann tensor R and its derivatives and depends analytically on ξ

5 of 18



Motivation

In CST the best we can do is to replace |0〉 with a Hadamard state:

: ϕ2(x) := lim
x1→x2

ϕ(x1)ϕ(x2)− ω(ϕ(x1)ϕ(x2))︸ ︷︷ ︸
ω instead of |0〉

I

Since this expression is ambiguous, it is necessary to classify all
ambiguities: Hollands&Wald studied the scalar field case

:̃ ϕk :(x) =: ϕk : (x) +
k−2∑
l=0

(
k

l

)
Ck−l(x) : ϕl : (x)

Ck(x) ≡ Ck

[
gab(x),Rabcd(x), . . . ,∇(e1 · · · ∇ek−2)Rabcd(x),m2, ξ

]
each Ck is a scalar that depends polynomially on m2, on the
Riemann tensor R and its derivatives and depends analytically on ξ

5 of 18



Motivation

Among other axioms, Hollands&Wald require analytic
dependence of Wick powers on the set of analytic metrics.

This requirement has been always considered as very unnatural:

• Physically unnatural: special behavior on analytic metrics

• Technical difficulties: analytic families of Hadamard states

• Analyticity is used to establish that Ck are differential
operators of finite order

Recently Khavkine&Moretti elaborated a new proof dropping the
analyticity requirement

We adopt the same approach to study the renormalization of
vector fields.

6 of 18



Motivation

Among other axioms, Hollands&Wald require analytic
dependence of Wick powers on the set of analytic metrics.

This requirement has been always considered as very unnatural:

• Physically unnatural: special behavior on analytic metrics

• Technical difficulties: analytic families of Hadamard states

• Analyticity is used to establish that Ck are differential
operators of finite order

Recently Khavkine&Moretti elaborated a new proof dropping the
analyticity requirement

We adopt the same approach to study the renormalization of
vector fields.

6 of 18



Motivation

Among other axioms, Hollands&Wald require analytic
dependence of Wick powers on the set of analytic metrics.

This requirement has been always considered as very unnatural:

• Physically unnatural: special behavior on analytic metrics

• Technical difficulties: analytic families of Hadamard states

• Analyticity is used to establish that Ck are differential
operators of finite order

Recently Khavkine&Moretti elaborated a new proof dropping the
analyticity requirement

We adopt the same approach to study the renormalization of
vector fields.

6 of 18



Outline

1 Motivations

2 Technical tools: Peetre’s theorem

3 Renormalization of Vector fields in AQFT

7 of 18



Peetre’s theorem and other results

Peetre’s theorem: If E ,F are smooth bundles, a map
Γ(E )→ Γ(F ) that is local must be a smooth differential operator
(generally non linear) of locally bounded order.

Thomas theorem: A tensor function of g and its derivatives at x
is covariant under diffeomorphisms fixing x iff it is a tensor
tensorially constructed out of g, R, ∂R,...

−→ Old result but new proof for tensor valued functions
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Peetre’s theorem and other results

Theorems on scaling: A function which is homogeneous under
physical scaling (dilatation of parameters) and smooth at 0 under
coordinate scaling is a polynomial.

−→ Polynomial with respect to the parameters (m2, . . .)

Definition (Equivariant tensors)

A map T k
l 3 s 7→ t(s) ∈ T k ′

l ′ is equivariant with respect to the
action of GL(n) if ũt(s) = t(us)

Theorem on equivariant tensors: The only tensors equivariant
under the action of GL(n) are tensors polynomially built with g.

−→ Polynomial with respect to the metric
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Locally covariant vector and tensor fields

Let T k
l M be the usual tensor bundle.

Let E (T k
l M), D(T k

l M) be the space of smooth and smooth
compactly supported sections of T k

l respectively.

Definition

A locally covariant quantum tensor field A of order k is an
algebra-valued distribution

A(M,h) : D(T kM)→W(M,h)

which respects the inclusions and isomorphisms induced by
isometries.

For k = 1 we have a vector field.
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Axioms of Wick powers

Let A be a vector field. Our result is compatible with all
prescriptions that satisfy the following conditions:

• Locality and covariance: Each Wick power :Ak : is a locally
covariant quantum symmetric tensor field of order k .

• Low power: :A : = A

• Scaling: (g,m2, ξ,A) 7→ (λ−2g, λ2m2, ξ, λdAA)

=⇒ :Ak : 7→ λk :Ak : +λkO(log λ)

• Commutator:
[
Ak
µ1···µk

(x),Aν(y)
]

= ikAk−1
(µ1···µk−1

(x)∆µk )ν(x , y)

• Smoothness: with respect to x ,m2 and ξ

−→ No analytic dependence is required!
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Renormalization of Vector fields

Theorem (Main result)

Let {Ãk} and {Ak} be two families (k ∈ N) of Wick powers

Ãk
µ1···µk (x) = Ak

µ1···µk (x) +
k−2∑
l=0

(
k

l

)
C(µ1···µk−l

(x)Al
µ1···µl )(x)

with Cµ1···µk−l
fully symmetric (tensors) for all k , l .

Ck(x) ≡ Ck

[
gab(x),Rabcd(x), . . . ,∇(e1 · · · ∇ek−2)Rabcd(x),m2, ξ

]
each Ck is a tensor that depends polynomially on m2, on the
Riemann tensor R and its derivatives and depends analytically on ξ
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Sketch of proof: Part I

• We considered only Wick powers of A, without products with
derivatives of A or time ordered products

• Consider finite renormalization αk = :̃Ak : − :Ak :

• Use Low power axiom and commutators to show that

αk =
∑
l

(
k

l

)
Ck−l :Al :

with Ck−l = Ck−l [g,m
2, ξ]

• We can now use smoothness to show that

Ck−l : (g,m2, ξ) 7→ E (Tk−l)

Remark. All these results do not depend on the dynamics.
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Sketch of proof: Part II

• Use locality and Peetre theorem to show that Cj are
differential operators of locally bounded order.

• Use Thomas theorem to prove that Ck−l are (k − l)-tensors
build with metric and curvatures.

• Use results on equivariance and scaling to show that Ck−l
are polynomial with respet to the metric and all parameters
(except ξ).
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Example: the squared field

For example, in 4-dimension, if k = 2 we have

Ã2
µν = A2

µν + αgµνm
2 + βgµνR + γRµν

α, β, γ are physical parameters that must be measured.

Remark. An important result obtained studying the
renormalization in a locally covariant approach is that

−→ α, β, γ are the same on all spacetimes
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Conclusion

• In a seminal work, Hollands&Wald studied the renormalization
of scalar fields in the framework of locally covariant QFT.

• They use an unnatural analyticity hypothesis.

• Khavkine&Moretti streamlined the proof for scalar fields
without using the analyticity hypothesis.

• We successfully use the same scheme to study the
renormalization of vector fields.

Future development

• Currently we are working also on the renormalization of spinor
fields

• It remains to generalize the result to tensor fields, products
with derivatives and time ordered products
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