Why don't we formulate quantum theories on real Hilbert spaces?

Marco Oppio
marco.oppio@unitn.it
University of Trento

Friday, January 132017

Based on the paper arXiv:1611.09029 in collaboration with V. Moretti

Contents

1 Standard Quantum Mechanics

2 Quantum Logic and Piron-Solèr Theorem

3 Real Quantum Mechanics

- naive approach
- correct approach

4 Conclusions

5 Work in progress

Standard Quantum Mechanics

General setting: Complex Hilbert space $(\mathcal{H},(\cdot \mid \cdot))$

- (Bounded) Observables: Self-adjoint elements of $\mathfrak{B}(\mathcal{H})$

$$
A^{*}=A
$$

- Possibile outcomes: $\sigma(A) \subset \mathbb{R}$

Standard Quantum Mechanics

General setting: Complex Hilbert space $(\mathcal{H},(\cdot \mid \cdot))$

- (Bounded) Observables: Self-adjoint elements of $\mathfrak{B}(\mathcal{H})$

$$
A^{*}=A
$$

■ Possibile outcomes: $\sigma(A) \subset \mathbb{R}$

Preferred class of observables: Orthogonal Projections $\mathfrak{P}(\mathcal{H})$

$P \in \mathfrak{B}(\mathcal{H}), P^{*}=P, P P=P$
■ 1-1 correspondence with closed subspaces $\mathcal{H} \supset K \mapsto P_{K}$

- $P_{K}: \psi \mapsto$ orthogonal projection of ψ on K

Standard Quantum Mechanics

Why are they so important?

- $\sigma(P)=\{0,1\}$: two possibile outcomes: \{False, True \}
- P is a question-observable: "is it true that?"

Standard Quantum Mechanics

Why are they so important?

- $\sigma(P)=\{0,1\}$: two possibile outcomes: \{False, True $\}$

■ P is a question-observable: "is it true that?"

- Spectral Theorem: let $A^{*}=A \in \mathfrak{B}(\mathcal{H})$

$$
\left\{\begin{array}{l}
A=\int_{\sigma(A)} \lambda d P^{A}(\lambda) \\
\sigma(A) \supset \Delta \mapsto P^{A}(\Delta) \in \mathfrak{P}(\mathcal{H}),
\end{array}\right.
$$

- $P_{\Delta}^{(A)}$: Is it true that the value of A falls within $\Delta \subset \mathbb{R}$?

Standard Quantum Mechanics

The answer to be given w.r.t. a given state of the system
■ States: σ-addirive probability measures: $\mu: \mathfrak{P}(\mathcal{H}) \rightarrow[0,1]$

$$
\left\{\begin{array}{l}
\mu(I)=1 \\
\mu\left(s-\sum_{n} P_{n}\right)=\sum_{n} \mu\left(P_{n}\right), P_{n} P_{m}=0
\end{array}\right.
$$

Interpretation of $\mu(P)$: probability that P is true if the state is μ

Standard Quantum Mechanics

The answer to be given w.r.t. a given state of the system
■ States: σ-addirive probability measures: $\mu: \mathfrak{P}(\mathcal{H}) \rightarrow[0,1]$

$$
\left\{\begin{array}{l}
\mu(I)=1 \\
\mu\left(s-\sum_{n} P_{n}\right)=\sum_{n} \mu\left(P_{n}\right), P_{n} P_{m}=0
\end{array}\right.
$$

Interpretation of $\mu(P)$: probability that P is true if the state is μ
Finally, we must to be able to define symmetries:

- Symmetries: Bijection $\alpha: \mathfrak{P}(\mathcal{H}) \rightarrow \mathfrak{P}(\mathcal{H})$
- preserve the lattice structure of $\mathfrak{P}(\mathcal{H})$
- Wigner Theorem $\alpha=U \cdot U^{-1}$

Standard Quantum Mechanics

The answer to be given w.r.t. a given state of the system
■ States: σ-addirive probability measures: $\mu: \mathfrak{P}(\mathcal{H}) \rightarrow[0,1]$

$$
\left\{\begin{array}{l}
\mu(I)=1 \\
\mu\left(s-\sum_{n} P_{n}\right)=\sum_{n} \mu\left(P_{n}\right), P_{n} P_{m}=0
\end{array}\right.
$$

Interpretation of $\mu(P)$: probability that P is true if the state is μ
Finally, we must to be able to define symmetries:

- Symmetries: Bijection $\alpha: \mathfrak{P}(\mathcal{H}) \rightarrow \mathfrak{P}(\mathcal{H})$
- preserve the lattice structure of $\mathfrak{P}(\mathcal{H})$
- Wigner Theorem $\alpha=U \cdot U^{-1}$

This is the most general theoretical settings of a quantum particle (abstraction of Quantum Theory of wave-functions on $\mathcal{L}^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)$)

Standard Quantum Mechanics

The structure of the main character of the theory: $\mathfrak{P}(\mathcal{H})$ elements of $\mathfrak{P}(\mathcal{H})$ are the statements about the system
\Rightarrow logical connectives (at least for commuting P, Q)

- conjuction $P \wedge Q:=\inf \{P, Q\}$: projector on $P(\mathcal{H}) \cap Q(\mathcal{H})$
- disjunction $P \vee Q=\sup \{P, Q\}$: projector on $\langle P(\mathcal{H}) \cup Q(\mathcal{H})\rangle$
- negation $\neg P:=P^{\perp}$: projector on $P(\mathcal{H})^{\perp}$

Standard Quantum Mechanics

The structure of the main character of the theory: $\mathfrak{P}(\mathcal{H})$
elements of $\mathfrak{P}(\mathcal{H})$ are the statements about the system
\Rightarrow logical connectives (at least for commuting P, Q)

- conjuction $P \wedge Q:=\inf \{P, Q\}$: projector on $P(\mathcal{H}) \cap Q(\mathcal{H})$

■ disjunction $P \vee Q=\sup \{P, Q\}$: projector on $\langle P(\mathcal{H}) \cup Q(\mathcal{H})\rangle$

- negation $\neg P:=P^{\perp}$: projector on $P(\mathcal{H})^{\perp}$

Logic of standard Quantum Mechanics (von Neumann)

$\mathfrak{P}(\mathcal{H})$ is a non-distributive bounded, σ-complete, atomic, atomistic orthocomplemented, weakly-modular lattice which satisfies the covering law.

Quantum Logic

The lattice structure of $\mathfrak{P}(\mathcal{H})$ is more fundamental than its particular realization, so why don't we reverse our perspective?

What if we start from an abstract lattice which resemble $\mathfrak{P}(\mathcal{H})$?

Quantum Logic

The lattice structure of $\mathfrak{P}(\mathcal{H})$ is more fundamental than its particular realization, so why don't we reverse our perspective?

What if we start from an abstract lattice which resemble $\mathfrak{P}(\mathcal{H})$?

Quantum Logic

The set of quantum propositions is a bounded, σ-complete, atomic, atomistic, orthocomplemented, weakly-modular lattice which satisfies the covering law
Every axioms is justified in an operational way

Achtung!

Some of these axioms are very strong, we will discard them later on

Quantum Logic: Piron-Solèr Theorem

Elementary Particle $\Rightarrow \mathcal{L}$ not reducible into sum of sublattices

Quantum Logic: Piron-Solèr Theorem

Elementary Particle $\Rightarrow \mathcal{L}$ not reducible into sum of sublattices

Piron-Solèr Theorem

Adding other technical hypotheses it holds

$$
\mathcal{L} \cong \mathfrak{P}(\mathcal{H})
$$

where \mathcal{H} is a Hilbert space over the field \mathbb{R}, \mathbb{C} or \mathbb{H}

Quantum Logic: Piron-Solèr Theorem

Elementary Particle $\Rightarrow \mathcal{L}$ not reducible into sum of sublattices

Piron-Solèr Theorem

Adding other technical hypotheses it holds

$$
\mathcal{L} \cong \mathfrak{P}(\mathcal{H})
$$

where \mathcal{H} is a Hilbert space over the field \mathbb{R}, \mathbb{C} or \mathbb{H}
Meaning of a quantum theory over \mathbb{R} or \mathbb{H} ?

Quantum Logic: Piron-Solèr Theorem

Elementary Particle $\Rightarrow \mathcal{L}$ not reducible into sum of sublattices

Piron-Solèr Theorem

Adding other technical hypotheses it holds

$$
\mathcal{L} \cong \mathfrak{P}(\mathcal{H})
$$

where \mathcal{H} is a Hilbert space over the field \mathbb{R}, \mathbb{C} or \mathbb{H}
Meaning of a quantum theory over \mathbb{R} or \mathbb{H} ?
The main difficulty regards Noether Theorem:

- Time evolution: $t \mapsto V_{t}$
- Dynamical symmetry: $s \mapsto U_{s}$ such that $V_{t} U_{s} V_{t}^{-1}=U_{s}$
- Stone Theorem: $U_{s}=e^{s A}$ with $A^{*}=-A$

Quantum Logic: Piron-Solèr Theorem

Elementary Particle $\Rightarrow \mathcal{L}$ not reducible into sum of sublattices

Piron-Solèr Theorem

Adding other technical hypotheses it holds

$$
\mathcal{L} \cong \mathfrak{P}(\mathcal{H})
$$

where \mathcal{H} is a Hilbert space over the field \mathbb{R}, \mathbb{C} or \mathbb{H}
Meaning of a quantum theory over \mathbb{R} or \mathbb{H} ?
The main difficulty regards Noether Theorem:

- Time evolution: $t \mapsto V_{t}$
- Dynamical symmetry: $s \mapsto U_{s}$ such that $V_{t} U_{s} V_{t}^{-1}=U_{s}$
- Stone Theorem: $U_{s}=e^{s A}$ with $A^{*}=-A$

$$
\Longrightarrow V_{t} A V_{t}^{-1}=A
$$

Quantum Logic: Piron-Solèr Theorem

In the \mathbb{C}-case we multiply everything by i and get $\left((i A)^{*}=i A\right)$

$$
V_{t}(i A) V_{t}^{-1}=i A
$$

Noether: dynamical symmetry $s \mapsto U_{s} \Rightarrow$ conserved observable (iA)

Quantum Logic: Piron-Solèr Theorem

In the \mathbb{C}-case we multiply everything by i and get $\left((i A)^{*}=i A\right)$

$$
V_{t}(i A) V_{t}^{-1}=i A
$$

Noether: dynamical symmetry $s \mapsto U_{s} \Rightarrow$ conserved observable (iA)

What about the other cases introduced by Piron-Soler?

- \mathbb{R} : there are no imaginary units

■ \mathbb{H} : the operator $j A$ is not well-defined

Quantum Logic: Piron-Solèr Theorem

In the \mathbb{C}-case we multiply everything by i and get $\left((i A)^{*}=i A\right)$

$$
V_{t}(i A) V_{t}^{-1}=i A
$$

Noether: dynamical symmetry $s \mapsto U_{s} \Rightarrow$ conserved observable (iA)

What about the other cases introduced by Piron-Soler?

- \mathbb{R} : there are no imaginary units

■ \mathbb{H} : the operator $j A$ is not well-defined

Solution: Imaginary Operator

$J \in \mathfrak{B}(\mathcal{H})$ such that $J^{*}=-J J J=-I$

Quantum Logic: Piron-Solèr Theorem

Find J such that $J U_{s}=U_{s} J$ and $J V_{t}=V_{t} J$ then
Noether is safe: $(J A)^{*}=J A$ and $V_{t}(J A) V_{t}^{-1}=J A$

Quantum Logic: Piron-Solèr Theorem

Find J such that $J U_{s}=U_{s} J$ and $J V_{t}=V_{t} J$ then
Noether is safe: $(J A)^{*}=J A$ and $V_{t}(J A) V_{t}^{-1}=J A$

Question marks

- Does such a J exists for any fixed dynamical symmetry?
- If it exists, is it the same for all the dynamical symmetries?

Now we stick to the real and complex cases and face them in a very general fashion. Let us see what happens!

Real Quantum Mechanics

Strategy

1 Take Piron-Solèr thesis simply as a clue on the nature of \mathcal{L}
2 Forget the unnatural axioms
3 Weaken the Piron-Solèr thesis
4 find a good candidate which satisfies the natural axioms

Real Quantum Mechanics

Strategy

1 Take Piron-Solèr thesis simply as a clue on the nature of \mathcal{L}
2 Forget the unnatural axioms
3 Weaken the Piron-Solèr thesis
4 find a good candidate which satisfies the natural axioms

Our framework

Let \mathcal{H} be over \mathbb{R} or \mathbb{C} and $\mathcal{M} \subset \mathfrak{B}(\mathcal{H})$ a von Neumann algebra.

- Quantum propositions are the elements of $\mathfrak{P}(\mathcal{M})$
- Observables are the self-adjoint elements of \mathcal{M}
- States are probability measures $\mu: \mathfrak{P}(\mathcal{M}) \rightarrow[0,1]$
- Symmetries are automorphisms $\alpha: \mathfrak{P}(\mathcal{M}) \rightarrow \mathfrak{P}(\mathcal{M})$

Real Quantum Mechanics

We are interested in relativistic elementary particles
Relativistic system not decomposable into subsystems

Real Quantum Mechanics

We are interested in relativistic elementary particles
Relativistic system not decomposable into subsystems
$1 \mathcal{M}$ is irreducible as a consequence of

- non existence of Super Selection Rules
- existence of a Maximal Set of Commuting Observables:

Real Quantum Mechanics

We are interested in relativistic elementary particles

Relativistic system not decomposable into subsystems
$1 \mathcal{M}$ is irreducible as a consequence of

- non existence of Super Selection Rules
- existence of a Maximal Set of Commuting Observables:

2 Poincaré symmetry $\mathcal{P} \ni g \mapsto \alpha_{g} \in \operatorname{Aut}(\mathfrak{P}(\mathcal{M}))$

- no proper fixed points: $\left\{\begin{array}{l}\alpha_{g}(P)=P \forall P \Rightarrow P=0, I \\ \text { otherwise } \mathfrak{P}(\mathcal{H})_{P} \text { closed under } \alpha\end{array}\right.$
- faithfulness
- weak continuity: $g \mapsto \mu\left(\alpha_{g}(P)\right)$ is continuous $\forall \mu, P$

Real Quantum Mechanics

Let us stick to the complex case:

- Irreducibility: $\mathcal{M}=\mathcal{M}^{\prime \prime}=\{\mathbb{C} /\}^{\prime}=\mathfrak{B}(\mathcal{H})$
- Wigner: $\alpha_{g}=U_{g} \cdot U_{g}$
- Bargmann: $g \mapsto U_{g}$ strongly-continuous faithful unitary repres.

■ $g \mapsto U_{g}$ is irreducible, hence $\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime}=\mathfrak{B}(\mathcal{H})$

Real Quantum Mechanics

Let us stick to the complex case:

- Irreducibility: $\mathcal{M}=\mathcal{M}^{\prime \prime}=\{\mathbb{C} /\}^{\prime}=\mathfrak{B}(\mathcal{H})$
- Wigner: $\alpha_{g}=U_{g} \cdot U_{g}$
- Bargmann: $g \mapsto U_{g}$ strongly-continuous faithful unitary repres.

■ $g \mapsto U_{g}$ is irreducible, hence $\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime}=\mathfrak{B}(\mathcal{H})$
The particle is completely characterized by $\mathcal{P} \ni g \mapsto U_{g}$

Real Quantum Mechanics

Let us stick to the complex case:

- Irreducibility: $\mathcal{M}=\mathcal{M}^{\prime \prime}=\{\mathbb{C} /\}^{\prime}=\mathfrak{B}(\mathcal{H})$
- Wigner: $\alpha_{g}=U_{g} \cdot U_{g}$
- Bargmann: $g \mapsto U_{g}$ strongly-continuous faithful unitary repres.

■ $g \mapsto U_{g}$ is irreducible, hence $\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime}=\mathfrak{B}(\mathcal{H})$
The particle is completely characterized by $\mathcal{P} \ni g \mapsto U_{g}$
This agrees with the definition of Wigner for elementary particles

A (complex) elementary particle is an irreducible strongly-continuous faithful unitary representation of \mathcal{P} on a complex Hilbert space.

Real Quantum Mechanics: naive approach

What about the real case?
Naive approach: mimic the complex case
A real elementary particle is an irreducible strongly-continuous faithful unitary representation of \mathcal{P} on a real Hilbert space.
The VN algebra of the system is $\mathcal{M}_{U}:=\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime}$

Real Quantum Mechanics: naive approach

What about the real case?
Naive approach: mimic the complex case
A real elementary particle is an irreducible strongly-continuous faithful unitary representation of \mathcal{P} on a real Hilbert space.
The VN algebra of the system is $\mathcal{M}_{U}:=\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime}$
Take time-translation $\mathbb{R} \ni t \mapsto g_{t} \in \mathcal{P}$
■ Stone Theorem: $U_{g_{t}}=e^{t P_{0}}$ with $P_{0}^{*}=-P_{0}$
■ Polar Decomposition: $P_{0}=J\left|P_{0}\right|$ where
$1\left|P_{0}\right| \geq 0$ e $\left|P_{0}\right|^{*}=\left|P_{0}\right|$: energy operator
$2 J^{*}=-J$ and J partial isometry

Real Quantum Mechanics: naive approach

What about the real case?
Naive approach: mimic the complex case
A real elementary particle is an irreducible strongly-continuous faithful unitary representation of \mathcal{P} on a real Hilbert space.
The VN algebra of the system is $\mathcal{M}_{U}:=\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime}$
Take time-translation $\mathbb{R} \ni t \mapsto g_{t} \in \mathcal{P}$
■ Stone Theorem: $U_{g_{t}}=e^{t P_{0}}$ with $P_{0}^{*}=-P_{0}$
■ Polar Decomposition: $P_{0}=J\left|P_{0}\right|$ where
$1\left|P_{0}\right| \geq 0$ e $\left|P_{0}\right|^{*}=\left|P_{0}\right|$: energy operator
$2 J^{*}=-J$ and J partial isometry
Naive approach: main result
J is an imaginary operator and $J \in \mathcal{M}_{U} \cap \mathcal{M}_{U}^{\prime}$

Real Quantum Mechanics: naive approach

Definition (Complexification)

The real Hilbert space \mathcal{H} equipped with
1 complex multiplication $(a+i b) v:=(a l+b J) v$
2 hermitean scalar product $(u \mid v)_{J}:=(u \mid v)-i(u \mid J v)$
is a complex Hilbert space, denoted by \mathcal{H}_{J}

Real Quantum Mechanics: naive approach

Definition (Complexification)

The real Hilbert space \mathcal{H} equipped with
1 complex multiplication $(a+i b) v:=(a l+b J) v$
2 hermitean scalar product $(u \mid v)_{J}:=(u \mid v)-i(u \mid J v)$
is a complex Hilbert space, denoted by \mathcal{H}_{J}

Proposition

A \mathbb{R}-linear operator A is \mathbb{C}-linear iff $A J=J A$. If this is true:
$1 A$ is unitary on \mathcal{H} iff it is unitary on \mathcal{H}_{J}
$2 A$ is (anti) selfadjoint on \mathcal{H} iff it is (anti) selfadjoint on \mathcal{H}_{J}

Real Quantum Mechanics: naive approach

This has several consequences:
$1 J \in \mathcal{M}_{U}^{\prime}$ hence $\mathcal{M}_{U} \subset \mathfrak{B}\left(\mathcal{H}_{J}\right)$. Actually $\mathcal{M}_{U}=\mathfrak{B}\left(\mathcal{H}_{J}\right)$
2 every U_{g} is \mathbb{C}-linear and unitary
3 $U: g \mapsto U_{g}\left\{\begin{array}{l}\text { real irreduciblity } \Rightarrow \text { complex irreduciblity } \\ \text { strong-continuity is preserved }\left(\|\cdot\|_{J}=\|\cdot\|\right) \\ \text { faithfulness is preserved }\end{array}\right.$

Real Quantum Mechanics: naive approach

This has several consequences:
$1 J \in \mathcal{M}_{U}^{\prime}$ hence $\mathcal{M}_{U} \subset \mathfrak{B}\left(\mathcal{H}_{J}\right)$. Actually $\mathcal{M}_{U}=\mathfrak{B}\left(\mathcal{H}_{J}\right)$
2 every U_{g} is \mathbb{C}-linear and unitary
3 $U: g \mapsto U_{g}\left\{\begin{array}{l}\text { real irreduciblity } \Rightarrow \text { complex irreduciblity } \\ \text { strong-continuity is preserved }\left(\|\cdot\|_{J}=\|\cdot\|\right) \\ \text { faithfulness is preserved }\end{array}\right.$
\Rightarrow recover the standard definition of complex elementary particle

Conclusion

naive real theory is a fake: equivalent to standard complex theory

Real Quantum Mechanics: correct approach

Deficiency of this approach

Existence of such a $g \mapsto U_{g}$ is too strong a requirement!

Real Quantum Mechanics: correct approach

Deficiency of this approach

Existence of such a $g \mapsto U_{g}$ is too strong a requirement!
As said before we should start with
1 irreducible von Neumann algebra \mathcal{M}
2 Poincaré symmetry $\mathcal{P} \ni g \mapsto \alpha_{g} \in \operatorname{Aut}(\mathcal{L}(\mathcal{M}))$
This is the only physical assumption we can made!

Real Quantum Mechanics: correct approach

Deficiency of this approach

Existence of such a $g \mapsto U_{g}$ is too strong a requirement!
As said before we should start with
1 irreducible von Neumann algebra \mathcal{M}
2 Poincaré symmetry $\mathcal{P} \ni g \mapsto \alpha_{g} \in \operatorname{Aut}(\mathcal{L}(\mathcal{M}))$
This is the only physical assumption we can made!
■ in the \mathbb{C}-case this immediately leads to $g \mapsto U_{g}$

- in the \mathbb{R}-case this is not obvious: in general $\mathcal{M} \neq \mathfrak{B}(\mathcal{H})$ and Wigner result does not apply

Real Quantum Mechanics: correct approach

Proposition

One and only one of the following holds for \mathcal{M} irreducible
$1 \mathcal{M}^{\prime}=\{a l, a \in \mathbb{R}\}$
$2 \mathcal{M}^{\prime}=\{a l+b J, a, b \in \mathbb{R}\} \quad(J \in \mathcal{M})$
$3 \mathcal{M}^{\prime}=\{a l+b J+c K+d J K, a, b, c, d \in \mathbb{R}\} \quad(J, K \notin \mathcal{M})$
where J, K are imaginary operators, with $J K=-K J$

Real Quantum Mechanics: correct approach

Proposition

One and only one of the following holds for \mathcal{M} irreducible
$1 \mathcal{M}^{\prime}=\{a l, a \in \mathbb{R}\}$
$2 \mathcal{M}^{\prime}=\{a l+b J, a, b \in \mathbb{R}\} \quad(J \in \mathcal{M})$
$3 \mathcal{M}^{\prime}=\{a l+b J+c K+d J K, a, b, c, d \in \mathbb{R}\} \quad(J, K \notin \mathcal{M})$
where J, K are imaginary operators, with $J K=-K J$

Proposition

It holds respectively

$$
\begin{aligned}
& 1 \quad \mathcal{M}=\mathfrak{B}(\mathcal{H}) \quad \mathfrak{P}(\mathcal{M})=\mathfrak{P}(\mathcal{H}) \\
& 2 \quad \mathcal{M}=\mathfrak{B}\left(\mathcal{H}_{J}\right) \quad \mathfrak{P}(\mathcal{M})=\mathfrak{P}\left(\mathcal{H}_{J}\right)
\end{aligned}
$$

Real Quantum Mechanics: correct approach

Proposition

One and only one of the following holds for \mathcal{M} irreducible
$1 \mathcal{M}^{\prime}=\{a l, a \in \mathbb{R}\}$
$2 \mathcal{M}^{\prime}=\{a l+b J, a, b \in \mathbb{R}\} \quad(J \in \mathcal{M})$
$3 \mathcal{M}^{\prime}=\{a l+b J+c K+d J K, a, b, c, d \in \mathbb{R}\} \quad(J, K \notin \mathcal{M})$
where J, K are imaginary operators, with $J K=-K J$

Proposition

It holds respectively
$1 \mathcal{M}=\mathfrak{B}(\mathcal{H}) \quad \mathfrak{P}(\mathcal{M})=\mathfrak{P}(\mathcal{H})$
2 $\mathcal{M}=\mathfrak{B}\left(\mathcal{H}_{J}\right) \quad \mathfrak{P}(\mathcal{M})=\mathfrak{P}\left(\mathcal{H}_{J}\right)$
з $\mathcal{M}=\mathfrak{B}\left(\mathcal{H}_{J K}\right) \quad \mathfrak{P}(\mathcal{M})=\mathfrak{P}\left(\mathcal{H}_{J K}\right)$

Real Quantum Mechanics: correct approach

$$
\alpha_{g} \text { automorphism over } \mathfrak{P}\left(\mathcal{H}_{\mathbb{K}}\right) \text { with } \mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H} \text {, respectively. }
$$

Real Quantum Mechanics: correct approach

α_{g} automorphism over $\mathfrak{P}\left(\mathcal{H}_{\mathbb{K}}\right)$ with $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$, respectively.
\Rightarrow standard Wigner et al. results apply:

Theorem

There exists an irreducible strongly-continuous faithful unitary representation $g \mapsto U_{g}$ on $\mathcal{H}, \mathcal{H}_{J}, \mathcal{H}_{J K}$, respectively, such that

$$
\alpha_{g}=U_{g} \cdot U_{g}^{*}
$$

Real Quantum Mechanics: correct approach

α_{g} automorphism over $\mathfrak{P}\left(\mathcal{H}_{\mathbb{K}}\right)$ with $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$, respectively.
\Rightarrow standard Wigner et al. results apply:

Theorem

There exists an irreducible strongly-continuous faithful unitary representation $g \mapsto U_{g}$ on $\mathcal{H}, \mathcal{H}_{J}, \mathcal{H}_{J K}$, respectively, such that

$$
\alpha_{g}=U_{g} \cdot U_{g}^{*}
$$

Some remarks:
1 on \mathcal{H}_{J} association $\alpha_{g} \leftrightarrow U_{g}$ up to "phases" $e^{\alpha J}$ for $\alpha \in \mathbb{R}$
2 on \mathcal{H} and $\mathcal{H}_{J K}$ association $\alpha_{g} \leftrightarrow U_{g}$ up to "phases" ± 1
3 phases: unitary elements of the center $\mathcal{Z}=\mathcal{M} \cap \mathcal{M}^{\prime}$

Real Quantum Mechanics: correct approach

We must make another important physical assumption

Physical assumption

Elementary particle characterized by its maximal symmetry group
Its observables must come from its representation somehow.

Real Quantum Mechanics: correct approach

We must make another important physical assumption

Physical assumption

Elementary particle characterized by its maximal symmetry group

Its observables must come from its representation somehow.
How? There is a natural way this can be achieved in

$$
\mathfrak{P}(\mathcal{M}) \subset\left\{\left\{U_{g} \mid g \in \mathcal{P}\right\} \cup \mathcal{Z}\right\}^{\prime \prime}
$$

Phases must be included: only α_{g} has physical meaning and

$$
\alpha_{g} \cong " U_{g} \text { up to phases" }
$$

Real Quantum Mechanics: correct approach

1 Real commutant: $\mathcal{M}=\mathfrak{B}(\mathcal{H})$

- $\mathfrak{P}(\mathcal{H})=\mathfrak{P}(\mathcal{M}) \subset\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime} \subset \mathfrak{B}(\mathcal{H})$ from which

$$
\mathfrak{B}(\mathcal{H})=\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime}=: \mathcal{M}_{U}
$$

- $g \mapsto U_{g}$ irreducible faithful strongly-cont. unitary repr. on \mathcal{H}

Real Quantum Mechanics: correct approach

1 Real commutant: $\mathcal{M}=\mathfrak{B}(\mathcal{H})$

- $\mathfrak{P}(\mathcal{H})=\mathfrak{P}(\mathcal{M}) \subset\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime} \subset \mathfrak{B}(\mathcal{H})$ from which

$$
\mathfrak{B}(\mathcal{H})=\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime}=: \mathcal{M}_{U}
$$

- $g \mapsto U_{g}$ irreducible faithful strongly-cont. unitary repr. on \mathcal{H}

Naive result: exists imaginary operator $J_{0} \in \mathcal{M}_{U} \cap \mathcal{M}_{U}^{\prime}$

Real Quantum Mechanics: correct approach

1 Real commutant: $\mathcal{M}=\mathfrak{B}(\mathcal{H})$

- $\mathfrak{P}(\mathcal{H})=\mathfrak{P}(\mathcal{M}) \subset\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime} \subset \mathfrak{B}(\mathcal{H})$ from which

$$
\mathfrak{B}(\mathcal{H})=\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime}=: \mathcal{M}_{U}
$$

- $g \mapsto U_{g}$ irreducible faithful strongly-cont. unitary repr. on \mathcal{H}

Naive result: exists imaginary operator $J_{0} \in \mathcal{M}_{U} \cap \mathcal{M}_{U}^{\prime}$
CONTRADICTION! $\mathcal{M}_{U}^{\prime}=\mathfrak{B}(\mathcal{H})^{\prime}=\mathbb{R} /$ and $J_{0}^{*}=-J_{0} \neq 0$

Real Quantum Mechanics: correct approach

1 Real commutant: $\mathcal{M}=\mathfrak{B}(\mathcal{H})$

- $\mathfrak{P}(\mathcal{H})=\mathfrak{P}(\mathcal{M}) \subset\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime} \subset \mathfrak{B}(\mathcal{H})$ from which

$$
\mathfrak{B}(\mathcal{H})=\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime}=: \mathcal{M}_{U}
$$

- $g \mapsto U_{g}$ irreducible faithful strongly-cont. unitary repr. on \mathcal{H}

Naive result: exists imaginary operator $J_{0} \in \mathcal{M}_{U} \cap \mathcal{M}_{U}^{\prime}$
CONTRADICTION! $\mathcal{M}_{U}^{\prime}=\mathfrak{B}(\mathcal{H})^{\prime}=\mathbb{R} I$ and $J_{0}^{*}=-J_{0} \neq 0$

2 Quaternionic commutant: $\mathcal{M}=\mathfrak{B}\left(\mathcal{H}_{J K}\right)$
Different treatment same conclusion: CONTRADICTION!

Conclusions

- A Wigner elementary particle on a real Hilbert space is equivalent to a standard Wigner elementary particle on a complex Hilbert space
- Trying a more natural and abstract approach we end up with three mutually exclusive possibilities:
1 Wigner elementary particle on real Hilbert space
2 Wigner elementary particle on complex Hilbert space
3 Wigner elementary particle on quaternionic Hilbert space The extremal possibilities lead to a contradiction: only the complex option survives.

Conclusions

- A Wigner elementary particle on a real Hilbert space is equivalent to a standard Wigner elementary particle on a complex Hilbert space
- Trying a more natural and abstract approach we end up with three mutually exclusive possibilities:
1 Wigner elementary particle on real Hilbert space
2 Wigner elementary particle on complex Hilbert space
3 Wigner elementary particle on quaternionic Hilbert space The extremal possibilities lead to a contradiction: only the complex option survives.

THE THEORY IS NECESSARILY COMPLEX

- Even though we discard some unnatural axioms and weaken Piron-Solér thesis we eventually recover it.

Work in progress

What about the quaternionic case suggested by Piron-Soler?

Work in progress

What about the quaternionic case suggested by Piron-Soler?

STRATEGY: mimic the discussion done for the real case
1 take a quaternionic Hilbert space \mathcal{H}
2 consider an irreducible von Neumann algebra $\mathcal{M} \subset \mathfrak{B}(\mathcal{H})$
3 see what happens...

Work in progress

What about the quaternionic case suggested by Piron-Soler?
STRATEGY: mimic the discussion done for the real case
1 take a quaternionic Hilbert space \mathcal{H}
2 consider an irreducible von Neumann algebra $\mathcal{M} \subset \mathfrak{B}(\mathcal{H})$
3 see what happens...

OBSTRUCTION

What is a quaternionic von Neumann algebra?

Work in progress

What about the quaternionic case suggested by Piron-Soler?
STRATEGY: mimic the discussion done for the real case
1 take a quaternionic Hilbert space \mathcal{H}
2 consider an irreducible von Neumann algebra $\mathcal{M} \subset \mathfrak{B}(\mathcal{H})$
3 see what happens...

OBSTRUCTION

What is a quaternionic von Neumann algebra?

Current situation

1 we chose a real subalgebra $\mathcal{M} \subset \mathfrak{B}(\mathcal{H})$ such that $\mathcal{M}^{\prime \prime}=\mathcal{M}$
2 mimicked the real theory
3 three mutually exclusive possibilities came out.
4 it remains to study them in detail...

And to conclude, some bibliography..

R. Engesser, D.M. Gabbay, D. Lehmann (editors): Handbook of Quantum Logic and Quantum Structures. Elsevier, Amsterdam (2009)
R R. Kadison, J.R. Ringrose: Fundamentals of the Theory of Operator Algebras, (Vol. I, II, III, IV) Graduate Studies in Mathematics, AMS (1997)
圊 B. Li: Real Operator Algebras. World Scientific (2003)
围 V. Moretti: Spectral Theory and Quantum Mechanics, With an Introduction to the Algebraic Formulation. Springer, 2013
V.S. Varadarajan, The Geometry of Quantum Mechanics. 2nd Edition, Springer (2007)

Thank you for the attention!

Appendix: quaternionic commutant case

Quaternionic commutant $\mathcal{M}=\mathfrak{B}\left(\mathcal{H}_{J K}\right), \mathfrak{P}(\mathcal{M})=\mathfrak{P}\left(\mathcal{H}_{\mathcal{J K}}\right)$
$1 \mathfrak{P}\left(\mathcal{H}_{J K}\right) \subset\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime \prime}$
$2 g \mapsto U_{g}$ is quaternionic irreducible on $\mathcal{H}_{J K}$
Take $J \in \mathcal{M}^{\prime}$ (or K) and define \mathcal{H}_{J} the usual way. 1) and 2) imply

Theorem

The map $g \mapsto U_{g}$ is a irreducible strongly-continuous faithful unitary representation on \mathcal{H}_{J}

Appendix: quaternionic commutant case

Let us work on \mathcal{H}_{J} : Take the time-translation $t \mapsto g_{t}$
■ Stone Theorem $U_{g_{t}}=e^{t P_{0}}$ with $P_{0}^{*}=-P_{0}$

- Polar decomposition: $P_{0}=J_{0}\left|P_{0}\right|$
$1\left|P_{0}\right| \geq 0$ and $\left|P_{0}\right|^{*}=\left|P_{0}\right|$
$2 J_{0}^{*}=-J_{0}$ and J_{0} is a partial isometry
Naive result (complex version)
It holds $J_{0}= \pm i l= \pm J$
Let us go back to \mathcal{H} : it still holds $U_{g_{t}}=e^{t P_{0}}$ and $P_{0}=J_{0}\left|P_{0}\right|$
Properties of Polar Decomposition
$K \in\left\{U_{g} \mid g \in \mathcal{P}\right\}^{\prime} \Rightarrow K e^{t P_{0}}=e^{t P_{0}} K \Rightarrow K P_{0}=P_{0} K \Rightarrow K J_{0}=J_{0} K$
IMPOSSIBLE! because $J K=-K J$

