Topological charges of the electromagnetic quantum fields and spacelike linearity

Giuseppe Ruzzi

Roma "Tor Vergata"

Genova 13.01.2017

Giuseppe Ruzzi (Roma "Tor Vergata") Topological charges of the electromagnetic quantum file

Image: A math a math

2 The universal C*-algebra

Spacelike linearity, topological charges and quantum currents

イロン イロン イヨン イヨン

- The universal C*-algebras of the e.m. quantum field, is a C*-algebra represented in any theory of the e.m. quantum field.
- Surprisingly, commutators of the field in some topologically nontrivial and spacelike seperated regions do not vanish, in general, but give rise to topological charges
- Topological charges turn out to be trivial in any regular representation in which the field is linear on test functions.
- However, regular representations of this C*-algebra in which topological charges are non-trivially represented exist, also in presence of a electric current. The corresponding fields satisfies a weak form of linearity: spcelike linearity.

The talk is based on two joint works with D.Buchholz, F.Ciolli and E.Vasselli [LMP 16] (the other will appear on LMP).

n-Forms on Minkowski spacetime

- Minkowski spacetime: \mathbb{R}^4 with signature (+, -, -, -). \perp spacelike separation.
- D_k set smooth k-forms with compact support in the Minkowski spacetime. f, h are spacelike separated, $f \perp h$, whenever

$$\operatorname{supp}(f) \perp \operatorname{supp}(h)$$
.

• $d: \mathcal{D}_k \to \mathcal{D}_{k+1}$, $d^2 = 0$ differential operator • $\star: \mathcal{D}_k \to \mathcal{D}_{4-k}$, $\star \star = (-)^{k+1} id_k$ Hodge dual • $\delta: \mathcal{D}_{k+1} \to \mathcal{D}_k$, $\delta:= -\star d\star$ co-differential (gen. divergence)

$$\delta^2 = 0 \quad , \quad \Box = \delta d + d\delta$$

(日) (同) (三) (三)

Of particular importance: C_k set of co-closed k-forms (divergence-free): δf = 0.
 Geometrical examples: f ∈ D₀ a test function; a k-simplex χ : [0, 1]^k → ℝ⁴, let f_χ be the k-form

$$f_{\chi}(y) := \int f(y-\chi) d\chi$$

then $\operatorname{supp}(f_{\chi}) \subseteq \operatorname{supp}(f) + \chi$ and the Stokes theorem reads

$$\delta f_{\chi} = f_{\partial \chi}$$

We call these forms smearing chains. Note that if χ is a cycle i.e. $\partial \chi = 0$, then $\delta f_{\chi} = 0$. We shall refer in this case as smearing cycles or divergece-free forms.

イロト 不得下 イヨト イヨト

Outline

2) The universal C*-algebra

Spacelike linearity, topological charges and quantum currents

イロン イロン イヨン イヨン

The e.m. quantum field and the intrinsic vector potential

We start from the observables as we know spacelike separated observables commute. Then we deduce the potential.

・ロト ・日子・ ・ ヨト・

The e.m. quantum field and the intrinsic vector potential

We start from the observables as we know spacelike separated observables commute. Then we deduce the potential.

The e.m. quantum field F linear mapping $F : \mathcal{D}_2 \ni h \to F(h) \in \mathscr{A}$ to some *-algebra \mathscr{A} (i) Causality

 $h_1 \perp h_2 \Rightarrow [F(h_1), F(h_2)] = 0$,

(ii) 1st Maxwell equation

$$dF(\tau) := F(\delta \tau) = 0$$
, $\tau \in \mathcal{D}_3$.

The e.m. quantum field and the intrinsic vector potential

We start from the observables as we know spacelike separated observables commute. Then we deduce the potential.

The e.m. quantum field F linear mapping $F : \mathcal{D}_2 \ni h \to F(h) \in \mathscr{A}$ to some *-algebra \mathscr{A} (i) Causality

$$h_1 \perp h_2 \Rightarrow [F(h_1), F(h_2)] = 0$$
,

(ii) 1st Maxwell equation

$$dF(\tau) := F(\delta \tau) = 0$$
, $\tau \in \mathcal{D}_3$.

We get the 2nd Maxwell equation

$$j(f) := \delta F(f) = F(df) , \qquad f \in \mathcal{D}_1$$

where *j* is the conserved current: $\delta j = 0$.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

F is a "quantum" closed 2-form

Exists a "quantum" 1-form A (a vector potential) which is causal and s.t.

F = dA ?

Positive answer: this is possible in a "covariant and gauge independent" way, but a new causality relations arise.

F is a "quantum" closed 2-form

Exists a "quantum" 1-form A (a vector potential) which is causal and s.t.

F = dA ?

Positive answer: this is possible in a "covariant and gauge independent" way, but a new causality relations arise.

• Such a "quantum" 1-form A must verifies

$$F(h) = dA(h) = A(\delta h)$$
, $h \in \mathcal{D}_2$

and δh is a divergence-free 1-form of C_1 (recall $\delta^2 = 0$).

イロト 不得下 イヨト イヨト

F is a "quantum" closed 2-form

Exists a "quantum" 1-form A (a vector potential) which is causal and s.t.

F = dA ?

Positive answer: this is possible in a "covariant and gauge independent" way, but a new causality relations arise.

• Such a "quantum" 1-form A must verifies

$$F(h) = dA(h) = A(\delta h)$$
, $h \in \mathcal{D}_2$

and δh is a divergence-free 1-form of C_1 (recall $\delta^2 = 0$).

• By Local Poincaré lemma any divergence-free 1-form $f \in C_1$ have co-primitives

$$\exists \widehat{f} \in \mathcal{D}_2 \ , \ \delta \widehat{f} = f \ .$$

イロト 不得下 イヨト イヨト

F is a "quantum" closed 2-form

Exists a "quantum" 1-form A (a vector potential) which is causal and s.t.

F = dA ?

Positive answer: this is possible in a "covariant and gauge independent" way, but a new causality relations arise.

• Such a "quantum" 1-form A must verifies

$$F(h) = dA(h) = A(\delta h) , \qquad h \in \mathcal{D}_2$$

and δh is a divergence-free 1-form of C_1 (recall $\delta^2 = 0$).

• By Local Poincaré lemma any divergence-free 1-form $f \in C_1$ have co-primitives

$$\exists \widehat{f} \in \mathcal{D}_2 \ , \ \delta \widehat{f} = f \ .$$

• So restricting to divergence-free 1-forms we may define

$$A(f) := F(\widehat{f}) , \qquad f \in \mathcal{C}_1 ,$$

well defined i.e. independent of the choice of the co-primitive \hat{f} by 1^{st} -Maxwell eq.

The intrinsic vector potential is a linear mapping $C_1 \ni f \mapsto A(f) \in A$ s.t.

(i) Strong causality

$$f_1 \bowtie f_2 \quad \Rightarrow \quad [A(f_1), A(f_2)] = 0$$

where $f_1 \bowtie f_2$ means that the supports of f_1 and f_2 are contained, respectively, in two contractible and spacelike separated regions \mathcal{O}_1 and \mathcal{O}_2 (for instance double cones).

- ▷ The e.m. field F = dA
- \triangleright The 1st Maxwell equation $dF = d^2A = 0$
- ▷ The conserved current: $j = \delta F = \delta dA$.
- \triangleright Covariance: $\gamma_P : \mathcal{C}_1 \to \mathcal{C}_1$ with $(\gamma_P f)^{\mu} := (Pf)^{\mu} \circ P^{-1}$ then

$$\Gamma_P \circ A := A \circ \gamma_P , \qquad P \in \mathcal{P}_+^{\uparrow} .$$

The intrinsic vector potential is a linear mapping $C_1 \ni f \mapsto A(f) \in A$ s.t.

(i) Strong causality

$$f_1 \bowtie f_2 \quad \Rightarrow \quad [A(f_1), A(f_2)] = 0$$

where $f_1 \bowtie f_2$ means that the supports of f_1 and f_2 are contained, respectively, in two contractible and spacelike separated regions \mathcal{O}_1 and \mathcal{O}_2 (for instance double cones).

- ▷ The e.m. field F = dA
- \triangleright The 1st Maxwell equation $dF = d^2A = 0$
- ▷ The conserved current: $j = \delta F = \delta dA$.
- \triangleright Covariance: $\gamma_P : \mathcal{C}_1 \to \mathcal{C}_1$ with $(\gamma_P f)^\mu := (Pf)^\mu \circ P^{-1}$ then

$$\Gamma_P \circ A := A \circ \gamma_P , \qquad P \in \mathcal{P}_+^{\uparrow} .$$

Basic question: understand strong causality. Clearly $f_1 \bowtie f_2 \Rightarrow f_1 \perp f_2$. But

$$f_1 \perp f_2 \quad \Rightarrow \quad [A(f_1), A(f_2)] = ?$$

< ロ > < 同 > < 三 > < 三 >

- Clearly $f_1 \bowtie f_2 \Rightarrow f_1 \perp f_2$
- The converse does not hold in general:

Figure: Spacelike separated linked curves at the subspace t = 0

A B > A B >

- Clearly $f_1 \bowtie f_2 \Rightarrow f_1 \perp f_2$
- The converse does not hold in general:

Figure: Spacelike separated linked curves at the subspace t = 0

• Basic question: understand strong causality:

$$f_1 \perp f_2 \quad \Rightarrow \quad [A(f_1), A(f_2)] = ?$$

・ロン ・回 と ・ ヨン・

イロン イロン イヨン イヨン

Cohomological invariance: if $f_1 \perp f_2$ then $[A(f_1), A(f_2)]$ is independent of co-cohomology class of f_1 w.r.t.the causal complement of $supp(f_2)$ i.e.

 $h \in \mathcal{D}_2, \ \delta h = f_1 - f \ , \operatorname{supp}(h) \perp \operatorname{supp}(f_2) \ \Rightarrow \ [A(f_1), A(f_2)] = [A(f), A(f_2)]$

(日) (同) (日) (日)

Cohomological invariance: if $f_1 \perp f_2$ then $[A(f_1), A(f_2)]$ is independent of co-cohomology class of f_1 w.r.t.the causal complement of $supp(f_2)$ i.e.

 $h \in \mathcal{D}_2, \ \delta h = f_1 - f \ , \operatorname{supp}(h) \perp \operatorname{supp}(f_2) \ \Rightarrow \ [A(f_1), A(f_2)] = [A(f), A(f_2)]$

• Translation invariance

$$f_1 \perp f_2 \quad \Rightarrow \quad [A(f_{1,x}), A(f_{2,x})] = [A(f_1), A(f_2)] \;, \qquad \forall x \in \mathbb{R}^4$$

• Dilation invariance

$$f_1 \perp f_2 \quad \Rightarrow \quad [A(\tau_\lambda(f_1)), A(\tau_\lambda(f_2))] = \lambda^{-6} \left[A(f_1), A(f_2) \right], \qquad \forall \lambda > 0$$

イロト 不得下 イヨト イヨト

Cohomological invariance: if $f_1 \perp f_2$ then $[A(f_1), A(f_2)]$ is independent of co-cohomology class of f_1 w.r.t.the causal complement of $supp(f_2)$ i.e.

 $h \in \mathcal{D}_2, \ \delta h = f_1 - f \ , \operatorname{supp}(h) \perp \operatorname{supp}(f_2) \ \Rightarrow \ [A(f_1), A(f_2)] = [A(f), A(f_2)]$

• Translation invariance

$$f_1 \perp f_2 \quad \Rightarrow \quad [A(f_{1,x}), A(f_{2,x})] = [A(f_1), A(f_2)] \ , \qquad \forall x \in \mathbb{R}^4$$

• Dilation invariance

$$f_1 \perp f_2 \quad \Rightarrow \quad [A(\tau_\lambda(f_1)), A(\tau_\lambda(f_2))] = \lambda^{-6} [A(f_1), A(f_2)] \ , \qquad \forall \lambda > 0$$

• Centrality (topological charges ?) by translation invariance

 $f_1 \perp f_2 \quad \Rightarrow \quad \left[\left[A(f_1), A(f_2) \right] \ , \ A(f) \right] = 0 \ , \qquad \forall f \in \mathcal{C}_1$

Outline

The linear e.m. quantum field

2 The universal C*-algebra

Spacelike linearity, topological charges and quantum currents

イロン イロン イヨン イヨン

The universal C*-algebra of the e.m. quantum field

Let \mathcal{U} be the group generated by $U : \mathbb{R} \times \mathcal{C}_1 \ni (a, f) \rightarrow U(a, f)$ s.t.

(i)
$$U(a, f)^* = U(-a, f)$$
, $U(0, f) = 1$, $U(a, f) U(b, f) = U(a + b, f)$;

(ii)
$$f_1 \bowtie f_2 \Rightarrow U(a_1, f_1) U(a_2, f_2) = U(1, a_1 f_1 + a_2 f_2);$$

(iii)
$$f_1 \perp f_2 \Rightarrow \lfloor U(a, f), \lfloor U(a_1, f_1), U(a_2, f_2) \rfloor \rfloor = 1$$

where \lfloor, \rfloor is the group commutator. The Poincaré group acts on \mathcal{U} : P(a, f) := (a, Pf) for any $P \in \mathcal{P}_+^{\uparrow}$. The universal C*-algebra of the e.m. field \mathfrak{U} is the full group C*-algebra of \mathcal{U} .

・ロト ・ 同ト ・ ヨト ・ ヨト

The universal C*-algebra of the e.m. quantum field

Let \mathcal{U} be the group generated by $U : \mathbb{R} \times C_1 \ni (a, f) \rightarrow U(a, f)$ s.t.

(i)
$$U(a, f)^* = U(-a, f)$$
, $U(0, f) = 1$, $U(a, f) U(b, f) = U(a + b, f)$;

(ii)
$$f_1 \bowtie f_2 \Rightarrow U(a_1, f_1) U(a_2, f_2) = U(1, a_1 f_1 + a_2 f_2);$$

(iii)
$$f_1 \perp f_2 \Rightarrow \lfloor U(a, f), \lfloor U(a_1, f_1), U(a_2, f_2) \rfloor \rfloor = 1$$

where \lfloor, \rfloor is the group commutator. The Poincaré group acts on \mathcal{U} : P(a, f) := (a, Pf) for any $P \in \mathcal{P}_+^{\uparrow}$. The universal C*-algebra of the e.m. field \mathfrak{U} is the full group C*-algebra of \mathcal{U} .

Universality. For instance if W is the Weyl algebra of the free electromagnetic intrinsic e.m. potential and π_F is its Fock representation of the Fock space \mathcal{H}_F then

$$\widetilde{\pi}_F(U(a,f)) := \pi_F(W(a,f)) , \qquad (a,f) \in \mathbb{R} \times \mathcal{C}_1$$

gives a representation of $\mathfrak U$ on $\mathcal H_F$

イロト 不得下 イヨト イヨト

States and representations: recovering the intrisic vector potential

A regular vacuum state of the algebra \mathfrak{U} is a pure and Poincaré invariant state ω s.t.

strong regularity

$$a_1,\ldots,a_n\mapsto\omega(U(a_1,f_1)\cdots U(a_n,f_n))$$

are smooth with tempered derivatives at 0

- $\mathcal{P}^{\uparrow}_{+}
 i P
 ightarrow \omega(Alpha_{P}(B))$ continuous ;
- spectral condition

$$\mathbb{R}^4 \ni p \to \int e^{ipx} \omega(A \alpha_x(B)) d^4 x \in \overline{V}_+$$

Consequences:

 ω is a regular vacuum state; $(\Omega, \pi, \mathcal{H})$ be the GNS of ω .

▷ Strong regularity ⇒ exist selfadjoint operators $A_{\pi}(f)$ with common stable core $\mathcal{D} \subseteq \mathcal{H}$ such that

$$\pi(U(a,f))=e^{iaA_{\pi}(f)}$$

 $\triangleright~{\sf Spectral~condition}\Rightarrow\omega$ is determined by the generating functional

$$f\mapsto \omega(U(1,f)) \ , \ \ f\in \mathcal{C}_1 \ ,$$

(analyticity and EOW theorem)

Giuseppe Ruzzi (Roma "Tor Vergata") Topological charges of the electromagnetic quantum fie

イロト 不得下 イヨト イヨト

In general: the generators A_{π} associated with a regular vacuum state are not linear on test functions !

If a regular vacuum state ω satisfies condition L i.e.

$$rac{d}{dt}\omega(VU(t,f_1)U(t,f_2)U(-t,f_1+f_2)W)|_{t=0}=0$$

then

$$a_1 A_\pi(f_1) + a_2 A_\pi(f_2) = A_\pi(a_1 f_1 + a_2 f_2)$$
 on ${\cal D}$

i.e. $C_1 \ni f \mapsto A_{\pi}(f)$ satisfies all the Wightaman axioms.

イロン イロン イヨン イヨン

Meaningful states.

• Zero current j = 0. ω_0 reg. vacuum state with proprty L and s.t.

$$j_{\pi}(f) = A_{\pi}(\delta df) = 0$$
, $\forall f \in \mathcal{C}_1$.

then

$$\omega_0(U(1,f))=e^{-W(f,f)/2}\;,\qquad f\in\mathcal{C}_1$$

where W(f, f) is the 2-point function of the free electromagnetic field i.e. A_{π} free electromagnetic field in Fock representation

• Classical current (central current). ω reg. vacuum state with proprty L and s.t.

$$[j_\pi(g),A_\pi(f)]=0\;,\qquad g\in \mathcal{D}_1,\;f\in \mathcal{C}_1$$

then

$$\omega(U(1,f)) = e^{ij_{\pi}(G_0(f))}\omega_0(U(1,f))$$

where G_0 Green's function of \Box (we recover the results by Streater [RJMP 14])

Questions

- Does exists regular vacuum states of the universal C*-algebra L describing the intrinsic vector potential with a quantum current i.e. a non central j?
 - Possible conflict with the Swieca Theorem.

Questions

- Does exists regular vacuum states of the universal C*-algebra L describing the intrinsic vector potential with a quantum current i.e. a non central j ?
 - Possible conflict with the Swieca Theorem.
- Does there exists representations carrying non-trivial topological charges ? More precisely, we have seen that

$$f_1 \perp f_2 \ \Rightarrow \ \lfloor U(1, f_1), U(1, f_2)
floor$$
 is central

Does exists regular vacuum states of the universal C^* -algebra \mathfrak{U} s.t. the above commutator is non-trivially represented ?

Questions

- Does exists regular vacuum states of the universal *C**-algebra *L* describing the intrinsic vector potential with a quantum current i.e. a non central *j* ?
 - Possible conflict with the Swieca Theorem.
- Does there exists representations carrying non-trivial topological charges ? More precisely, we have seen that

$$f_1 \perp f_2 \Rightarrow \lfloor U(1, f_1), U(1, f_2) \rfloor$$
 is central

Does exists regular vacuum states of the universal C*-algebra \mathfrak{U} s.t. the above commutator is non-trivially represented ?

Both these question have a positive answer if the fields satisfies a weak form of linearity, i.e. spacelike linearity:

$$f_1 \bowtie f_2 \implies A(f_1) + A(f_2) = A(f_1 + f_2)$$

In particular the corresponding regular vacuum ω violate property L

Outline

The linear e.m. quantum field

2 The universal C*-algebra

Spacelike linearity, topological charges and quantum currents

Non existence of topological charges in case of linearity

- Let ω_0 be the regular vacuum state with **property L** of the algebra \mathfrak{U} .
- The corresponding intrinsic vector potential A is a Wightman fields (linear on test functions in particular)

Thm. Let γ_1, γ_2 be simple closed curves and $\mathcal{O}_1, \mathcal{O}_2$ double cones such that

$$\mathcal{O}_1 + \gamma_1 \perp \mathcal{O}_2 + \gamma_2$$

For any pair $f_1, f_2 \in C_1$ with $supp(f_1) \subset O_1 + \gamma_1$ and $supp(f_2) \subset O_2 + \gamma_2$ we have

 $[A(f_1), A(f_2)] = [A(f_2), A(f_1)] \quad \Rightarrow \quad [A(f_1), A(f_2)] = 0$

• Given a 2-form G define

$$ar{G}^{\mu
u} := \int G^{\mu
u}(x) \, d^4x \;\;,\;\; ar{G}^2 := ar{G}^{\mu
u} \,\, ar{G}_{\mu
u} \;\,.$$

 \overline{G}^2 in an invariant and we say that G is of Electric type whenever $\overline{G}^2 > 0$ and of Magnetic type if $\overline{G}^2 < 0$.

イロト 不得下 イヨト イヨト

• Given a 2-form G define

$$ar{G}^{\mu
u} := \int G^{\mu
u}(x) \, d^4x \;\;,\;\; ar{G}^2 := ar{G}^{\mu
u} \, ar{G}_{\mu
u} \;.$$

 \overline{G}^2 in an invariant and we say that G is of Electric type whenever $\overline{G}^2 > 0$ and of Magnetic type if $\overline{G}^2 < 0$.

• Let ω_0 be the regular vacuum state with property L of the algebra \mathfrak{U} with zero conserved current j. We know

$$\omega_0(U(1,g))=e^{i\mathsf{A}_0(g)}\;,\qquad g\in\mathcal{C}_1$$

where A_0 is the free e.m. intrinsic potential in the Fock space.

イロト 不得下 イヨト イヨト

• Given a 2-form G define

$$ar{G}^{\mu
u} := \int G^{\mu
u}(x) \, d^4x \;\;,\;\; ar{G}^2 := ar{G}^{\mu
u} \, ar{G}_{\mu
u} \;.$$

 \overline{G}^2 in an invariant and we say that G is of Electric type whenever $\overline{G}^2 > 0$ and of Magnetic type if $\overline{G}^2 < 0$.

• Let ω_0 be the regular vacuum state with property L of the algebra \mathfrak{U} with zero conserved current j. We know

$$\omega_0(U(1,g))=e^{iA_0(g)}\;,\qquad g\in\mathcal{C}_1$$

where A_0 is the free e.m. intrinsic potential in the Fock space.

• If $g \in \mathcal{C}_1$ has connected support, let G be any co-primitive of g and define

$$A_{\mathcal{T}}(g) := \theta_+(\bar{G}^2)A_0(\delta G) + \theta_-(\bar{G}^2)A_0(\delta \star G)$$

 θ_+ step function and $\theta_- = 1 - \theta_+$.

• Given a 2-form G define

$$ar{G}^{\mu
u} := \int G^{\mu
u}(x) \, d^4x \;\;,\;\; ar{G}^2 := ar{G}^{\mu
u} \, ar{G}_{\mu
u} \;.$$

 \overline{G}^2 in an invariant and we say that G is of Electric type whenever $\overline{G}^2 > 0$ and of Magnetic type if $\overline{G}^2 < 0$.

• Let ω_0 be the regular vacuum state with property L of the algebra \mathfrak{U} with zero conserved current j. We know

$$\omega_0(U(1,g))=e^{i\mathsf{A}_0(g)}\;,\qquad g\in\mathcal{C}_1$$

where A_0 is the free e.m. intrinsic potential in the Fock space.

• If $g \in C_1$ has connected support, let G be any co-primitive of g and define

$$A_{\mathcal{T}}(g) := \theta_{+}(\bar{G}^{2})A_{0}(\delta G) + \theta_{-}(\bar{G}^{2})A_{0}(\delta \star G)$$

 θ_+ step function and $\theta_- = 1 - \theta_+$.

As δG = g and since the conserved current is 0 A₀(δ * G) does not depend on the choice of the co-primitive, the definition is well posed.

ヘロト 不得下 不可下 不可下

$$egin{aligned} &[A_{\mathcal{T}}(g_1),A_{\mathcal{T}}(g_2)] = \left(heta_+(ar{G}_1^2) heta_+(ar{G}_2^2)+ heta_-(ar{G}_1^2) heta_-(ar{G}_2^2)
ight)\cdot [A_0(g_1),A_0(g_2)]+ \ &+ \left(heta_+(ar{G}_1^2) heta_-(ar{G}_2^2)- heta_-(ar{G}_1^2) heta_+(ar{G}_2^2)
ight) \,[A_0(g_1),A_0(\delta\star G_2)] \end{aligned}$$

イロン イロン イヨン イヨン

$$\begin{split} [A_{\mathcal{T}}(g_1), A_{\mathcal{T}}(g_2)] &= \left(\theta_+(\bar{G}_1^2)\theta_+(\bar{G}_2^2) + \theta_-(\bar{G}_1^2)\theta_-(\bar{G}_2^2)\right) \cdot [A_0(g_1), A_0(g_2)] + \\ &+ \left(\theta_+(\bar{G}_1^2)\theta_-(\bar{G}_2^2) - \theta_-(\bar{G}_1^2)\theta_+(\bar{G}_2^2)\right) \left[A_0(g_1), A_0(\delta \star G_2)\right] \end{split}$$

• $g_1 \bowtie g_2 \Rightarrow [A_T(g_1), A_T(g_2)] = 0$

• $g_1 \perp g_2$ then

$$[A_{T}(g_{1}), A_{T}(g_{2})] = \left(\theta_{+}(\bar{G}_{1}^{2})\theta_{-}(\bar{G}_{2}^{2}) - \theta_{-}(\bar{G}_{1}^{2})\theta_{+}(\bar{G}_{2}^{2})\right) [A_{0}(g_{1}), A_{0}(\delta \star G_{2})]$$

<ロ> (日) (日) (日) (日) (日)

$$\begin{split} [A_{\mathcal{T}}(g_1), A_{\mathcal{T}}(g_2)] &= \left(\theta_+(\bar{G}_1^2)\theta_+(\bar{G}_2^2) + \theta_-(\bar{G}_1^2)\theta_-(\bar{G}_2^2)\right) \cdot [A_0(g_1), A_0(g_2)] + \\ &+ \left(\theta_+(\bar{G}_1^2)\theta_-(\bar{G}_2^2) - \theta_-(\bar{G}_1^2)\theta_+(\bar{G}_2^2)\right) \left[A_0(g_1), A_0(\delta \star G_2)\right] \end{split}$$

- $g_1 \bowtie g_2 \Rightarrow [A_T(g_1), A_T(g_2)] = 0$
- $g_1 \perp g_2$ then

$$[A_{\mathcal{T}}(g_1), A_{\mathcal{T}}(g_2)] = \left(\theta_+(\bar{G}_1^2)\theta_-(\bar{G}_2^2) - \theta_-(\bar{G}_1^2)\theta_+(\bar{G}_2^2)\right) [A_0(g_1), A_0(\delta \star G_2)]$$

• Key observation: Roberts has shown that

$$[A_0(g_1), A_0(\delta \star G_2)] = c \cdot \mathbb{1} \quad , \quad c \neq 0$$

for a particular class of divergence-free 1-forms $g_1, g_2 \in C$ whose supports are spacelike separated and (nontrivially) linked together.

$$\begin{split} [A_{\mathcal{T}}(g_1), A_{\mathcal{T}}(g_2)] &= \left(\theta_+(\bar{G}_1^2)\theta_+(\bar{G}_2^2) + \theta_-(\bar{G}_1^2)\theta_-(\bar{G}_2^2)\right) \cdot [A_0(g_1), A_0(g_2)] + \\ &+ \left(\theta_+(\bar{G}_1^2)\theta_-(\bar{G}_2^2) - \theta_-(\bar{G}_1^2)\theta_+(\bar{G}_2^2)\right) \left[A_0(g_1), A_0(\delta \star G_2)\right] \end{split}$$

- $g_1 \bowtie g_2 \Rightarrow [A_T(g_1), A_T(g_2)] = 0$
- $g_1 \perp g_2$ then

$$[A_{T}(g_{1}), A_{T}(g_{2})] = \left(\theta_{+}(\bar{G}_{1}^{2})\theta_{-}(\bar{G}_{2}^{2}) - \theta_{-}(\bar{G}_{1}^{2})\theta_{+}(\bar{G}_{2}^{2})\right) [A_{0}(g_{1}), A_{0}(\delta \star G_{2})]$$

• Key observation: Roberts has shown that

$$[A_0(g_1), A_0(\delta \star G_2)] = c \cdot \mathbb{1} \quad , \quad c \neq 0$$

for a particular class of divergence-free 1-forms $g_1, g_2 \in C$ whose supports are spacelike separated and (nontrivially) linked together.

• A suitable modification g'_1 , and g'_2 leads

$$[A_T(g_1'), A_T(g_2')] = [A_0(g_1), A_0(\delta * G_2)] = c\mathbb{1}.$$

and we have central elements.

• If g has an (infinite) countable connected components $\{g_k\}$, we have

$$G^{\sharp} = \left(\sum_{k=1}^{\infty} \sharp G_k\right) \in \mathcal{D}_2 \ , \ \delta G_k = g_k \ , \ \sharp := \left\{ egin{array}{cc} id \ , & ar{G}^2 > 0 \ \star \ , & G^2 < 0 \end{array}
ight.$$

and note that

$$g_1 \bowtie g_2 \hspace{2mm} \Rightarrow \hspace{2mm} (G_1+G_2)^{\sharp} = G_1^{\sharp}+G_2^{\sharp}$$

Setting

$${\mathcal A}_{\mathcal T}(g):={\mathcal A}_0(\delta {\mathcal G}^{\sharp})\;,\qquad orall g\in {\mathcal D}_2$$

 A_T is spacelike linear but not linear.

Thm. Let

$$\omega_{\mathcal{T}}(\mathit{U}(\mathsf{a},g)) := \omega_0(e^{i \mathsf{a} A_{\mathcal{T}}(g)}) = \omega_0(e^{i \mathsf{a} A_0(\delta G^{\sharp})}) \;, \qquad \mathsf{a} \in \mathbb{R}, g \in \mathcal{C}_1$$

is a regular vacuum state for the algebra \mathfrak{U} and there are spacelike separated 1-forms g_1, g_2 whose central theoretic commutator does not vanish in the representation induced by ω_T . Thus topological charges appear in this representation.

Quantum Currents

Let J be a causal, covariant conserved current

$$\delta J(g) = J(dg) = 0 \;, \qquad g \in \mathcal{D}_0$$

which is a Wightman field of some Hilbert space H_J and vacuum vector Ω_J (for instance. the conserved current associated with the free Dirac field.)

Def. The intrinsic vector potential A_J is defined as follows: for any $f \in C_1$ with connected support we let

$$A_J(f) := \left\{ egin{array}{cc} J(f^\circ) \ , & \delta df^\circ = f \ 0 \ , & otherwise \end{array}
ight.$$

A B A B A B A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Quantum Currents

Let J be a causal, covariant conserved current

$$\delta J(g) = J(dg) = 0 \;, \qquad g \in \mathcal{D}_0$$

which is a Wightman field of some Hilbert space H_J and vacuum vector Ω_J (for instance. the conserved current associated with the free Dirac field.)

Def. The intrinsic vector potential A_J is defined as follows: for any $f \in C_1$ with connected support we let

$$A_J(f) := \left\{ egin{array}{cc} J(f^\circ) \ , & \delta df^\circ = f \ 0 \ , & otherwise \end{array}
ight.$$

Well posedness: by local Poincaré Lemma and conservation law of j if $\tilde{f} \in D_1$ with $\delta d\tilde{f} = f$ then

$$j(f^\circ)=j(\tilde{f})$$

< 口 > < 同 > < 三 > < 三

Quantum Currents

Let J be a causal, covariant conserved current

$$\delta J(g) = J(dg) = 0 \;, \qquad g \in \mathcal{D}_0$$

which is a Wightman field of some Hilbert space H_J and vacuum vector Ω_J (for instance. the conserved current associated with the free Dirac field.)

Def. The intrinsic vector potential A_J is defined as follows: for any $f \in C_1$ with connected support we let

$$A_J(f) := \left\{ egin{array}{cc} J(f^\circ) \ , & \delta df^\circ = f \ 0 \ , & otherwise \end{array}
ight.$$

Well posedness: by local Poincaré Lemma and conservation law of *j* if $\tilde{f} \in D_1$ with $\delta d\tilde{f} = f$ then

$$j(f^\circ) = j(\tilde{f})$$

Well posedness implies A_{i} is covariant and causal. Moreover

$$\delta dA_J(f) = A_J(\delta df) = J(f)$$

J is the conserved current of A_i

- For general *f* ∈ C₁, decompose into a sum *f* = ∑_k *f_k* of functions having disjoint connected supports.
- Denotes by $\{f'_m\} \subset \{f_k\}$ such that $f'_m = \delta dh_m$ for some $h_m \in \mathcal{D}_1$.
- Define $f' = \sum_m f'_m \in \mathcal{C}_1$. It turns out that

$$f' = \delta dh'$$
, $h' \in \mathcal{D}_1$

• Then the general definition the intrinsic vector potential is

$$A_J(f) := \begin{cases} J(h'), & h' \in \mathcal{D}_1, \ \delta dh' = f' \\ 0, & f' = 0 \end{cases}$$

 A_J is not linear but spacelike linear. It is covariant and causal:

$$f_1 \perp f_2 \; \Rightarrow \; [A_j(f_1), A_j(f_2)] = 0 \; \; {
m No \; topological \; charges}$$

and

```
\delta dA_J(f) = J(f), \qquad f \in \mathcal{D}_1 \;.
```

Defining

$$\omega_J(U(a,f)) := (\Omega_j, e^{iaA_J(f)}\Omega_j), \qquad f \in \mathcal{C}_1$$

we get a regular vacuum state s.t. the corresponding intrinsic vector potential A_J in t GNS representation is spacelike linear and has conserved current J.

Topologial charges with quantum currents

Take ω_T and ω_J the states with topological charges and quantum current defined before. Defining

$$\omega_{TJ}(U(a,f)) := \omega_T(U(a,f)) \cdot \omega_J(U(a,f))$$

we get a regular vacuum state of $\mathfrak U$ with nontrivial topological charges and quantum conserved current J.