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Klein-Gordon operator (with external potential)

P::DA+m2

-1 LYZ
= 1g]72 (19, - Aw)g*"Igl* (10, — Ay) + m’

Conventions:
© gisaLorentzian metric with signature (—+++)
® |g| = |det gyl
©m>0
® A=A



Propagators

An operator G is a bisolution of P if it satisfies

PoG=0 and GoP=0.

An operator G is an inverse of P if it satisfies

PoG=1 and GoP=1.

A (distinguished) bisolution or inverse will be called propagator.



Types of propagators

inverse

bisolution

G™: forward propagator

G~ : backward propagator

G*': Feynman propagator

GF=GM +G =G0V +G*

G": Pauli-Jordon propagator

GY=G" -G

G™): pos. frequency bisolution

G): neg. frequency bisolution

classical

non-classical / quantum




Types of propagators

b G": forward propagator G*: Feynman propagator

()

>

£ G™: backward propagator GF=GM® +G =GO +G*

c

2| GY:Pauli-Jordon propagator G™): pos. frequency bisolution

>

% GV =G*-G- G): neg. frequency bisolution
classical non-classical / quantum

Some recent work on Feynman propagators:

® Gell-Redman, Haber, Vasy: Commun. Math. Phys. 342, 333-384 (2016)

©® Gérard, Wrochna: arXiv:1609.00192 [math-ph]




Evolution and Propagators



Setting

© g=-pdt®dt+gzon M=RxZX
© {gz(t)}; are quasi-isometric Riemannian metrics on
® A(t) = (V(t),A(t)) with V small compared to m?

For this presentation:
©B-1
©® -A; +m? is essentially self-adjoint on C°(2) wrt. L*(Z, dgs (1))

Klein-Gordon operators:

_1 o1 /¢
P =g 2(18H—Aﬂ)g/‘ |g|2(18v—Aﬂ)+m2
_1 . 1,
= —|gs| "2 (10 - V)|gs|? (10, - V) - Az + m?




First order equation
Rewrite the Klein—-Gordon equation as a first order equation:

w(t) 1 )

Py(t) := —io; + B(t), B(t) ::(L(t) W(t)

Coefficients:
® Li=—[gliAlgl™s +m?
© W:=V+1ig"(ailgl)




First order equation
Rewrite the Klein—-Gordon equation as a first order equation:

w(t) 1 )

Pi(t) = —id; + B(t), B(t) :=(L(t) W(t)

Coefficients:
® Li= gl Aglel+ + m?
® W:=V+ilg™(algl)

Proposition

If E is a bisolution or inverse for P}, then
_1 1
G = |g| *Enlgl*

is a bisolution or inverse for P.

5



Energy space

1 1
Letu,v e C°(Z;0Q7) ® C°(Z;0Q2).  Notation: Q7 is the half-density bundle

Energy products:
(u[V)ens = (u| H(t)v), H(#) :=(VI&((?> Wf))
Charge form:
W|Qv) = (mlv) + (), Q= (]? ]é)

Energy spaces:

FHen,: := Hilbert space with energy product (- | - )en,s




Energy space
Letu,v e C°(Z; Q%) ®CX(Z; Q: ). Notation: Q7 is the half-density bundle
Energy products:

(| V)ens 2= (u] H(t)v), H(t) = (VLV((?) Wﬁt))

Charge form:

@) =Gl = @l Q:=(0 ]l)

Proposition
B(t) is self-adjoint with respect to #ep,;-
[Hermiticity is quickly checked: H(#)B(t) = H(t)QH(t) = B(t)*H(t)]




Evolution

Using known results on evolution equations, we find

Theorem

Suppose that g, A, m satisfy Lipschitz continuity conditions (in time)
and become asymptotically static.

Then there exists a unique family of operators {U(¢,s) }+scr such that

1.
2. U(t,r)U(r,s) =U(t,s)

3. BV BN e < Cr for ae[-1,1]
4,

5. 10;U(t,s)u =-U(t,s)B(s)u for u € Hen,

U(t,t)=1

i0;U(t,s)u= B(t)U(t,s)u for u € Hep,




Classical propagators

Using the evolution U(t, s), the kernels of the classical propagators for
E are given by their kernels:

EY(t,5):= U(t,s)

E*(t,s)=0(t-s)U(t,s)
E (t,s):=-0(s—t)U(t,s)




Classical propagators

Using the evolution U(t, s), the kernels of the classical propagators for
E are given by their kernels:

EY(t,5):= U(t,s)
E*(t,s)=0(t-s)U(t,s)
E (t,s):=-0(s—t)U(t,s)

Proposition

For s > 1, the propagators G*’, G* defined by

(6N = [ 8O FE (t.)lg)]Ff(s)ds

are bounded from (t)*L?(M) to (t)°L*(M). Note: (£) = (1+ £%)?




Spectral projections

Provided |W/|* is sufficiently small compared to m?, B(t) will have a
spectral gap around 0.

Proposition

For each time ¢ there exist spectral projections Ht(i) such that
1.0+ o) -1
2. IB(¢) = B(H)I™
3. o(M™)B(1)) c R,

They are positive / negative with respect to the charge form:

i(u!QHfi)u) >0




Non-classical propagators
Now, using the spectral projections Hﬁi), the non-classical
propagators can be defined:
E®) (t,5) = +U(t, 1) IH U (r, )
EF(t,s) = 0(t - )ES) (£,5) + 0(s — )E ) (1,5)
= E§+)(t,s) +E(t,5)




Non-classical propagators
Now, using the spectral projections n§*>, the non-classical
propagators can be defined:
E®) (t,5) = +U(t, 1) IH U (r, )
EF(t,s) = 0(t - )ES) (£,5) + 0(s — )E ) (1,5)
=E(t,5) + E (1,5)

Proposition

For s > 3, the propagators Gf*), G! defined by

(i) = [ gD B (t5)lg(s)] £(5)ds

are bounded from (t) °*L?(M) to (t)°’L*(M).
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In and out bisolutions

The non-classical propagators Gt(*), G! depend on the choice of the
time variable and are thus highly non-unique. Moreover, typically they
do not yield Hadamard states.




In and out bisolutions

The non-classical propagators Gt(*), G! depend on the choice of the
time variable and are thus highly non-unique. Moreover, typically they
do not yield Hadamard states.

Better choice: The ‘in" and ‘out’ bisolutions
Estc),(t,s) = sgr_noo +U(t, r)HSi)U(r,s)
Efrtc),(t,s) = Sginoo +U(t, r)HSi) U(r,s)
and the corresponding Feynman propagators
EE(t,s):=ESD(ts) + E-(1,5)

Under appropriate conditions the resulting state is Hadamard.
See also: Gérard, Wrochna: arXiv: 1609.00190 [math-ph]
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Distinguished Propagators



Self-a djointness (ultrastatic/static)

Clearly P is Hermitian with respect to the Hilbert space L*(M).

An application of Nelson’s commutator theorem shows:

Theorem
If Pis static, it is essentially self-adjoint on C°(M).




Self-a djointness (ultrastatic/static)

Clearly P is Hermitian with respect to the Hilbert space L*(M).

An application of Nelson’s commutator theorem shows:

Theorem

If Pis static, it is essentially self-adjoint on C°(M).

Easy case: Suppose that V = 0. Then
P=0;®1+1®(-A;+m?)

in the sense of L>(M) = L*(R) ® L*(Z) and self-adjointness is almost
automatic.




Resolvent limit (ultrastatic/static)

If P is static,
G" = s-lim (P —ig) ™!
eNo0

in the sense of operators from (¢) *L*(M) to (t)'L*(M) fors > 1.




Resolvent limit (ultrastatic/static)

If P is static,

GF = s-lim (P - ie) ™
EAN((]

in the sense of operators from (¢)*L*(M) to (t)°'L*(M) for s > 3.
Easy case: Suppose that V = 0. Then
1
: —-S/2 s -1 -s -
sgl\{g)(t) (9 + A xie) 7 (t) ", $>

is bounded in L?(R) for A € R \ {0}. Then use that, for m? > ¢,

(P—ie)! = f_c(aﬁ ~A-ie) @ dE(A; - miA)




Resolvent limit (ultrastatic/static)

If P is static,
G" = s-lim (P —ig) ™!
eNo0

in the sense of operators from (¢) *L*(M) to (t)'L*(M) fors > 1.

General case: Define

sV 1 o J‘
T \L-ie V) |ﬁ

B; is a so-called bisectorial operator. We can construct projections II;;
and an associated propagator

EE(t,5) = 0(t—s)e =B () _ (s - )e (=98 1),




WICk rotation (ultrastatic/static)

For 0 < 6 < wwe introduce
g9 = —e Vdredt+gs, Vo:=e ¥V
and the corresponding Wick-rotated Klein—-Gordon operator
Py = —e¥91g| 73 (i, - Vy)|g|? (id: — Vp) - Az + m?
This has a Wick-rotated Feynman propagator

ES(t,5) = 0(t — 5)e (=B [7(+) _ (s — 1) {(t=9)Bo (=)




WICk rotation (ultrastatic/static)

For 0 < 6 < wwe introduce
gy = e qredt + £s, Vy = e Wy
and the corresponding Wick-rotated Klein—-Gordon operator
Py = —e2g 7 (id; — Vo)|g|? (id; — Vi) — Az + m?
This has a Wick-rotated Feynman propagator

ES(t,5) = 0(t — 5)e (=B [7(+) _ (s — 1) {(t=9)Bo (=)

If P is static,

G = s-lim Pe_l
AN}

in the sense of operators from (£) *L*(M) to (t)°'L*(M) for s > 3.
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Non-static spacetimes

Aim: Generalize the previous results to non-static spacetimes.

Some problems:
© (Unique) self-adjoint extension of P?
® Existence of resolvent limit?
@ Which projection I1(+)?




Asymptotic complementarity

Transport the spectral projectors using U(t, s):
1) () = U(t,)I® U (s, t)
(1) = lim 118(1)

Proposition

Suppose that Ran H£+) (t) and RanH (t) are complementary. Then
R(t) =1+ (I (1) - (1))

is invertible and
1) (1) = 1 (ORI (1)

are complementary projections for each t.




‘Canonical’ propagators
The canonical non-classical propagators are defined as

E®) (t,5) := 2U(t,s)IT*) (s)
E¥(t,s) = 0(t = )EM) (t,5) + 0(s - ) EC) (¢, 5)

Denote by G¥ the corresponding Feynman proapgator for P.




‘Canonical’ propagators
The canonical non-classical propagators are defined as

E®) (t,5) := 2U(t,s)IT*) (s)
E¥(t,s) = 0(t = )EM) (t,5) + 0(s - ) EC) (¢, 5)

Denote by G¥ the corresponding Feynman proapgator for P.

Conjecture

If asymptotic complementarity holds, P is essentially self-adjoint on
C& (M) and

GF = s-lim (P - ie) ™
AN(]

in the sense of operators from (£)*L*(M) to (t)°'L*(M) for s > 2.




First results

Theorem

Suppose that P is non-static only in a finite time-interval and that
asymptotic complementarity holds.
Then there exists a pseudo-resolvent GL,, & > 0, such that

G = s-lim Gt

+i
eNO €

in the sense of operators from (¢) *L*(M) to (t)°'L*(M) for s > 2.

The pseudo-resolvent Gt defines a distinguished self-adjoint

extension of P.
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