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Feynman Propagators



Klein–Gordon operator (with external potential)

P ∶= ◻A +m2

= ∣g∣−
1
2 (i∂µ − Aµ)gµν ∣g∣

1
2 (i∂ν − Aµ) +m2

Conventions:

+ g is a Lorentzian metric with signature (−+++)
+ ∣g∣ = ∣det gµν ∣
+ m ≥ 0
+ A = A
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Propagators

An operator G is a bisolution of P if it satis�es

P ○G = 0 and G ○ P = 0.

An operator G is an inverse of P if it satis�es

P ○G = 1 and G ○ P = 1.

A (distinguished) bisolution or inverse will be called propagator.
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Types of propagators

GPJ : Pauli-Jordon propagator

GPJ = G+ −G−

G+: forward propagator

G−: backward propagator

GF : Feynman propagator

GF = G(+) +G− = G(−) +G+

G(+): pos. frequency bisolution

G(−): neg. frequency bisolution

classical non-classical / quantum
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Some recent work on Feynman propagators:

+ Gell-Redman, Haber, Vasy: Commun. Math. Phys. 342, 333–384 (2016)

+ Gérard, Wrochna: arXiv:1609.00192 [math-ph]
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I
Evolution and Propagators



Setting

+ g = −β dt ⊗ dt + gΣ on M = R × Σ
+ {gΣ(t)}t are quasi-isometric Riemannian metrics on Σ
+ A(t) = (V(t), A⃗(t))with V small compared tom2

For this presentation:

+ β = 1
+ −∆A⃗ +m2 is essentially self-adjoint on C∞c (Σ)wrt. L2(Σ, dgΣ(t))

Klein–Gordon operators:

P = ∣g∣−
1
2 (i∂µ − Aµ)gµν ∣g∣

1
2 (i∂ν − Aµ) +m2

= −∣gΣ∣−
1
2 (i∂t − V)∣gΣ∣

1
2 (i∂t − V) − ∆A⃗ +m

2
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First order equation
Rewrite the Klein–Gordon equation as a �rst order equation:

P1(t) ∶= −i∂t + B(t), B(t) ∶= (W(t) 1

L(t) W(t))

Coe�cients:
+ L ∶= −∣g∣

1
4∆A⃗∣g∣

− 1
4 +m2

+ W ∶= V + i
4 ∣g∣

−1(∂t ∣g∣)

Proposition

If E is a bisolution or inverse for P1, then

G = ∣g∣−
1
4 E12∣g∣

1
4

is a bisolution or inverse for P.
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Energy space

Let u, v ∈ C∞c (Σ;Ω 1
2 )⊕C∞c (Σ;Ω 1

2 ). Notation: Ω
1
2 is the half-density bundle

Energy products:

(u ∣ v)en,t ∶= (u ∣H(t)v), H(t) ∶= ( L(t) W(t)
W(t) 1

)

Charge form:

(u ∣Qv) ∶= (u1 ∣ v2) + (u2 ∣ v1), Q ∶= (0 1

1 0
)

Energy spaces:

Hen,t ∶= Hilbert space with energy product ( ⋅ ∣ ⋅ )en,t
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Energy space

Let u, v ∈ C∞c (Σ;Ω 1
2 )⊕C∞c (Σ;Ω 1

2 ). Notation: Ω
1
2 is the half-density bundle

Energy products:

(u ∣ v)en,t ∶= (u ∣H(t)v), H(t) ∶= ( L(t) W(t)
W(t) 1

)

Charge form:

(u ∣Qv) ∶= (u1 ∣ v2) + (u2 ∣ v1), Q ∶= (0 1

1 0
)

Proposition

B(t) is self-adjoint with respect to Hen,t .

[Hermiticity is quickly checked: H(t)B(t) = H(t)QH(t) = B(t)∗H(t)]
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Evolution

Using known results on evolution equations, we �nd

Theorem

Suppose that g, A,m satisfy Lipschitz continuity conditions (in time)
and become asymptotically static.

Then there exists a unique family of operators {U(t, s)}t,s ∈R such that

1. U(t, t) = 1
2. U(t, r)U(r, s) = U(t, s)
3. ∥∣B(t)∣αU(t, s)∣B(t)∣−α∥en,t ≤ Ct for α ∈ [− 1

2 ,
1
2]

4. i∂tU(t, s)u = B(t)U(t, s)u for u ∈ Hen,t

5. i∂sU(t, s)u = −U(t, s)B(s)u for u ∈ Hen,t
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Classical propagators

Using the evolutionU(t, s), the kernels of the classical propagators for
E are given by their kernels:

EPJ(t, s) ∶= U(t, s)
E+(t, s) ∶= θ(t − s)U(t, s)
E−(t, s) ∶= −θ(s − t)U(t, s)

Proposition

For s > 1
2 , the propagators G

PJ, G± de�ned by

(G● f )(t) = ∫
R
∣g(t)∣−

1
4 E●(t, s)12∣g(s)∣

1
4 f (s)ds

are bounded from ⟨t⟩−sL2(M) to ⟨t⟩sL2(M). Note: ⟨t⟩ = (1 + t2)
1
2
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Spectral projections

Provided ∣W ∣2 is su�ciently small compared tom2, B(t)will have a
spectral gap around 0.

Proposition

For each time t there exist spectral projections Π(±)t such that

1. Π(+)t + Π(−)t = 1
2. Π(±)t B(t) = B(t)Π(±)t

3. σ(Π(±)t B(t)) ⊂ R±

They are positive / negative with respect to the charge form:

±(u ∣QΠ(±)t u) ≥ 0
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Non-classical propagators
Now, using the spectral projections Π(±)t , the non-classical
propagators can be de�ned:

E(±)r (t, s) ∶= ±U(t, r)Π(±)r U(r, s)

EF
r (t, s) ∶= θ(t − s)E

(+)
r (t, s) + θ(s − t)E(−)r (t, s)

= E(+)r (t, s) + E−(t, s)

Proposition

For s > 1
2 , the propagators G

(±)

t , GF
t de�ned by

(G●
t f )(t) = ∫R∣g(t)∣

− 1
4 E●t (t, s)12∣g(s)∣

1
4 f (s)ds

are bounded from ⟨t⟩−sL2(M) to ⟨t⟩sL2(M).
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In and out bisolutions
The non-classical propagators G(±)t , GF

t depend on the choice of the
time variable and are thus highly non-unique. Moreover, typically they
do not yield Hadamard states.

Better choice: The ‘in’ and ‘out’ bisolutions

E(±)−∞(t, s) ∶= lim
s→−∞

±U(t, r)Π(±)r U(r, s)

E(±)+∞(t, s) ∶= lim
s→+∞

±U(t, r)Π(±)r U(r, s)

and the corresponding Feynman propagators

EF
±∞(t, s) ∶= E(+)±∞(t, s) + E−(t, s)

Under appropriate conditions the resulting state is Hadamard.

See also: Gérard, Wrochna: arXiv: 1609.00190 [math-ph]
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II
Distinguished Propagators



Self-adjointness (ultrastatic/static)

Clearly P is Hermitian with respect to the Hilbert space L2(M).

An application of Nelson’s commutator theorem shows:

Theorem

If P is static, it is essentially self-adjoint on C∞c (M).

Easy case: Suppose that V = 0. Then

P = ∂2t ⊗ 1 + 1⊗ (−∆A⃗ +m
2)

in the sense of L2(M) = L2(R) ⊗ L2(Σ) and self-adjointness is almost
automatic.
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Resolvent limit (ultrastatic/static)

Theorem

If P is static,
GF = s-lim

ε↘0
(P − iε)−1

in the sense of operators from ⟨t⟩−sL2(M) to ⟨t⟩sL2(M) for s > 1
2 .
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Resolvent limit (ultrastatic/static)

Theorem

If P is static,
GF = s-lim

ε↘0
(P − iε)−1

in the sense of operators from ⟨t⟩−sL2(M) to ⟨t⟩sL2(M) for s > 1
2 .

Easy case: Suppose that V = 0. Then

s-lim
ε↘0

⟨t⟩−s(∂2t + λ ± iε)−1⟨t⟩−s , s > 1
2
,

is bounded in L2(R) for λ ∈ R ∖ {0}. Then use that, form2 ≥ c,

(P − iε)−1 = ∫
−c

−∞
(∂2t − λ − iε)−1 ⊗ dE(∆A⃗ −m

2; λ)
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Resolvent limit (ultrastatic/static)

Theorem

If P is static,
GF = s-lim

ε↘0
(P − iε)−1

in the sense of operators from ⟨t⟩−sL2(M) to ⟨t⟩sL2(M) for s > 1
2 .

General case: De�ne

Biε ∶= ( V 1

L − iε V
).

σ

Biε is a so-called bisectorial operator. We can construct projections Π±
iε

and an associated propagator

EF
iε(t, s) = θ(t − s)e−i(t−s)BiεΠ

(+)

iε − θ(s − t)e−i(t−s)BiεΠ(−)iε .
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Wick rotation (ultrastatic/static)

For 0 ≤ θ ≤ π we introduce

gϑ ∶= −e−2iϑdt ⊗ dt + gΣ , Vϑ ∶= e−iϑV

and the corresponding Wick-rotated Klein–Gordon operator

Pϑ ∶= −e2iϑ ∣g∣−
1
2 (i∂t − Vϑ)∣g∣

1
2 (i∂t − Vϑ) − ∆A⃗ +m

2

This has a Wick-rotated Feynman propagator

EF
ϑ(t, s) = θ(t − s)e−i(t−s)BϑΠ(+) − θ(s − t)e−i(t−s)BϑΠ(−)

Theorem

If P is static,
GF = s-lim

θ↘0
P−1θ

in the sense of operators from ⟨t⟩−sL2(M) to ⟨t⟩sL2(M) for s > 1
2 .
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Non-static spacetimes

Aim: Generalize the previous results to non-static spacetimes.

Some problems:

+ (Unique) self-adjoint extension of P?
+ Existence of resolvent limit?

+ Which projection Π(±)?
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Asymptotic complementarity
Transport the spectral projectors usingU(t, s):

Π(±)s (t) ∶= U(t, s)Π(±)s U(s, t)

Π(±)±∞(t) ∶= lim
s→±∞

Π(±)s (t)

Proposition

Suppose that RanΠ(+)−∞(t) and RanΠ(−)+∞(t) are complementary. Then

R(t) ∶= 1 + (Π(+)−∞(t) − Π(+)+∞(t))2

is invertible and

Π(±)(t) ∶= Π(±)−∞(t)R(t)−1Π(±)+∞(t)

are complementary projections for each t.
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‘Canonical’ propagators

The canonical non-classical propagators are de�ned as

E(±)(t, s) ∶= ±U(t, s)Π(±)(s)
EF(t, s) ∶= θ(t − s)E(+)(t, s) + θ(s − t)E(−)(t, s)

Denote by GF the corresponding Feynman proapgator for P.

Conjecture

If asymptotic complementarity holds, P is essentially self-adjoint on
C∞c (M) and

GF = s-lim
ε↘0

(P − iε)−1

in the sense of operators from ⟨t⟩−sL2(M) to ⟨t⟩sL2(M) for s > 1
2 .
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First results

Theorem

Suppose that P is non-static only in a �nite time-interval and that
asymptotic complementarity holds.
Then there exists a pseudo-resolvent GF

±iε, ε > 0, such that

GF = s-lim
ε↘0

GF
±iε

in the sense of operators from ⟨t⟩−sL2(M) to ⟨t⟩sL2(M) for s > 1
2 .

The pseudo-resolvent GF
±iε de�nes a distinguished self-adjoint

extension of P.
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