Università degli Studi di Genova


A mock metaplectic representation

We study a unitary non irreducible representation U of a semidirect product G whose normal factor A is abelian and whose homogeneous factor H is a locally compact second countable group acting on a Riemannian manifold X. The key ingredient is a C^1 intertwining map between the actions of H on the dual group of A and X. The representation U generalizes the restriction of the metaplectic representation to triangular subgroups of Sp(d,R). For simplicity, we restrict ourselves to the case where A=R^n and X=R^d. We decompose U as a direct integral and obtain necessary and sufficient conditions for its admissible vectors. Many examples are given.

reproducing formula, metaplectic representation, shearlets,

22, 28, 43