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Abstract

Let M be a space of homogeneous type and denote by F∞
cont(M)

the space of finite linear combinations of continuous (1,∞)-atoms. In
this note we give a simple function theoretic proof of the equivalence on
F∞

cont(M) of the H1-norm and the norm defined in terms of finite linear
combinations of atoms. The result holds also for the class of nondoubling
metric measure spaces considered in previous works of A. Carbonaro and
the authors.

0 Introduction

Suppose that q is in (1,∞]. A function a in L1(Rd) is said to be a (1, q)-atom
if it is supported in a ball B in Rd, and satisfies the following conditions∫

Rd

a(x) dλ(x) = 0 ‖a‖q ≤ λ(B)−1/q′ ,

where λ denotes the Lebesgue measure on Rd and q′ is the conjugate index
to q. Denote by F q(Rd) the vector space of all finite linear combinations of
(1, q)-atoms, endowed with the norm ‖·‖F q , defined as follows

‖f‖F q = inf
{ N∑

j=1

|λj | : f =
N∑

j=1

λj aj , aj is a (1, q)-atom, N ∈ N+
}

.

In [MSV], the authors proved that if q is finite, then the F q norm and the
restriction to F q(Rd) of the atomic H1(Rd) norm (defined just below (1.1))
are equivalent. The proof hinges on the atomic decomposition and the maxi-
mal characterisation of H1(Rd), and is quite technical. A similar result holds for
F∞

cont(Rd), a space defined much as F q(Rd), but with continuous (1,∞)-atoms in
place (1, q)-atoms. In [GLY] the authors, by adapting the techniques of [MSV],
succeeded to extend these results to homogeneous spaces that satisfy an addi-
tional property, called property RD. Apparently, there are serious obstructions
in extending this approach to all spaces of homogeneous type.
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†Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146 Genova,

Italy – mauceri@dima.unige.it
‡Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via R. Cozzi
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F. Ricci and J. Verdera [RV] complemented the analysis in [MSV] by proving
that the dual of the completion of F∞(Rd) is the direct sum of BMO(Rd) and
a nontrivial Banach space. They observed also that variations of the main argu-
ment in the proof of [RV, Thm 1] provide an alternative proof of the equivalence
of the F q(Rd) and the H1(Rd) norms on F q(Rd) for q < ∞. Their argument re-
volves around the Gelfand–Naimark theory for the commutative Banach algebra
of all bounded functions on Rd that vanish at infinity.

The purpose of this paper is to show that there is an easy function the-
oretic approach to the equivalence of the F∞

cont(Rd) and H1(Rd) norms on
F∞

cont(Rd), which holds in a very general setting, including all locally compact
spaces of homogeneous type and many interesting locally doubling measured
metric spaces, like those introduced in [CMM1, CMM2]. A similar argument
works in the case where q < ∞ and gives the equivalence of the F q(M) and
H1(M) norms on F q(M) when M is as above. Our proof does not make use
of the Gelfand–Naimark theory for commutative Banach algebras, although our
main idea, which is to prove that the dual of F

∞
cont(M) is just BMO(M), was

inspired by [RV].
For the sake of simplicity, we shall restrict to spaces of infinite measure. The

case of spaces of finite measure may be treated similarly, with very few changes
due to the exceptional constant atom and the slighty different definition of
BMO.

We mention that our result is related to the extendability of linear operators
defined on finite linear combinations of atoms. Denote by Y a Banach space and
suppose that q is in (1,∞]. We say that Y has the q-extension property if every
Y -valued linear operator T , defined on finite linear combinations of (1, q)-atoms
and satisfying the condition

sup{‖Ta‖Y : a is a (1, q)-atom} < ∞, (0.1)

extends to a bounded operator from H1(M) to Y . Similarly, we say that Y
has the continuous ∞-extension property if T satisfies the condition above with
continuous (1,∞)-atoms in place of (1, q)-atoms.

On the one hand, no Banach space Y has the ∞-extension property. Indeed,
a direct consequence of a recent result of M. Bownik [Bow] is that for every
Banach space Y there exists a Y -valued operator B, defined on finite linear
combinations of (1,∞)-atoms that satisfies

sup{‖Ba‖Y : a is a (1,∞)-atom} < ∞, (0.2)

but does not admit an extension to a bounded operator from H1(Rd) to Y . On
the other hand, every Banach space Y has the q-extension property for all q in
(1,∞), and the continuous ∞-extension property. This is proved in [YZ] in the
case where q = 2, and, independently, in [MSV] for all q in (1,∞) and in the
continuous ∞ case.

Our analysis is limited to the Hardy space H1(M), because the applications
we have in mind are to the space H1 rather than to Hp with p in (0, 1). We
leave the investigation of the interesting case p in (0, 1) to further studies. An
elegant analysis of the case p ≤ 1 in the Euclidean setting may be found in [RV].
See also the papers [MSV, YZ].
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1 Notation and background information

Suppose that (M,ρ, µ) is a space of homogeneous type. In particular, ρ is a
quasi-distance on M and µ is a regular Borel measure on M . We shall assume
that µ(M) = ∞ and that µ(B) < ∞ for all balls in M . We refer the reader to
[CW] for any unexplained notation concerning spaces of homogeneous type.

Definition 1.1 Suppose that q is in (1,∞]. A (1, q)-atom a associated to a
ball B is a function in L1(M) supported in B with the following properties:

(i) ‖a‖q ≤ µ(B)−1/q′ , where q′ denotes the index conjugate to q;

(ii)
∫

B

adµ = 0.

The Hardy space H1,q(M) is the space of all functions g in L1(M) that admit
a decomposition of the form

g =
∞∑

k=1

λk ak, (1.1)

where ak is a (1, q)-atom and
∑∞

k=1 |λk| < ∞. The norm ‖g‖H1,q of g is the
infimum of

∑∞
k=1 |λk| over all decompositions (1.1) of g.

For each q in (1,∞) we denote by F q(M) the vector space of all finite linear
combination of (1, q)-atoms. A natural norm on F q(M) is defined as follows

‖f‖F q = inf
{ N∑

j=1

|λj | : f =
N∑

j=1

λj aj , aj is a (1, q)-atom, N ∈ N+
}

. (1.2)

Similarly, we denote by F∞
cont(M) the vector space of all finite linear combination

of continuous (1,∞)-atoms. The F∞
cont(M) norm is defined as the F q(M) norm

above, but with (1,∞) continuous atoms in place of (1, q)-atoms. Obviously

‖f‖H1 ≤ ‖f‖F q ∀f ∈ F q(M). (1.3)

Clearly, F q(M) is a dense subspace of H1(M) with respect to the norm of
H1(M). Similar observations apply to F∞

cont(M).
For each q in (1,∞), denote by F

q
(M) the completion of F q(M) with respect

to the norm ‖·‖F q . The completion of F∞
cont(M) with respect to the norm

‖·‖F∞
cont(M) will be denoted by F

∞
cont(M).

The dual of the Banach space A will be denoted by A∗.

2 The main result

The main result of this paper is the following.

Theorem 2.1 For each q in (1,∞) there exists a constant C such that

‖f‖H1 ≤ ‖f‖F q ≤ C ‖f‖H1 ∀f ∈ F q(M). (2.1)
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Similarly, if M is locally compact, then there exists a constant C such that

‖f‖H1 ≤ ‖f‖F∞
cont

≤ C ‖f‖H1 ∀f ∈ F∞
cont(M). (2.2)

Steps of the proof. Note that (2.1) does not require the assumption that M be
locally compact, which is used, instead, in the proof of (2.2) to identify the dual
of the space of continuous functions with support contained in a closed ball B
with the space of all complex Radon measures on the interior of B. The proof
of each of the two statements of the theorem is divided into three steps. We
illustrate those needed to prove (2.2). The proof of (2.1) is similar, perhaps
easier, and is omitted.

(I) Prove (see Lemma 2.2) that BMO(M) is isomorphic as a Banach space
to the dual of F

∞
cont(M).

(II) The identity is a continuous linear map from F∞
cont(M) to H1(M) by (1.3).

Hence it extends (uniquely) to a continuous linear map, ιcont say, from the
completion F

∞
cont(M) of F∞

cont(M) to H1(M). Prove (see Theorem 2.4)
that ιcont : F

∞
cont(M) → H1(M) is injective, and its transpose map ιtcont

is a Banach space isomorphism between H1(M)∗ and F
∞
cont(M)∗.

(III) Use Lemma 2.3 to conclude that ιcont is Banach space isomorphisms be-
tween F

∞
cont(M) and H1(M).

Since the restriction of ιcont to F∞
cont(M) is the identity, the required conclusion

follows. 2

Lemma 2.2 The following hold:

(i) if M is locally compact, then F
∞
cont(M)∗ is isomorphic to BMO(M).

(ii) F
q
(M)∗ is isomorphic to BMO(M) for every q in (1,∞);

Proof. First we prove (i). If g is in BMO(M), then the functional F , defined
on F∞

cont(M) by

F (f) =
∫

M

f g dµ ∀f ∈ F∞
cont(M)

satisfies the estimate

|F (f)| ≤ ‖f‖H1 ‖g‖BMO

≤ ‖f‖F∞
cont

‖g‖BMO ∀f ∈ F∞
cont(M),

hence it extends to a continuous linear functional on F
∞
cont(M) with norm at

most ‖g‖BMO.
Next we assume that F is in F

∞
cont(M)∗. Then

sup{|Fa| : a is a continuous (1,∞)-atom} ≤ |||F |||. (2.3)

For each closed ball B in M , we denote by CB(M) the space of all continuous
functions on M which are supported in B and by CB,0(M) the subspace of
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those that have integral 0. Since M is locally compact, the dual of CB(M)
is the space of finite Radon measures on the interior of B. Furthermore, the
annihilator of CB,0(M) in the dual of CB(M) is Cµ. Indeed, µ annihilates
CB,0(M) by definition and, if ν is a Radon measure on the interior of B that
annihilates CB,0(M), then ν = αµ for some α ∈ C, because ker(µ) ⊂ ker(ν)
(here we slightly abuse the notation and denote by µ the restriction of µ to the
interior of B). Thus the dual of CB.0(M) is the quotient C∗

B(M)/{Cµ}.
Fix a reference point o in M and for each positive integer k denote by Bk

the ball centred at o with radius k. For each ball Bk, and each f in CBk,0(M),
the function f/

(
µ(Bk) ‖f‖∞

)
is a continuous (1,∞)-atom, so that

|Ff | ≤ |||F ||| µ(Bk) ‖f‖∞ ∀f ∈ CBk,0(M) (2.4)

by (2.3). Hence the restriction of F to CBk,0(M) is a bounded linear functional
on CBk,0(M) for each k. Therefore there exists a Radon measure µk such that

Ff =
∫

Bk

f dµk ∀f ∈ CBk,0(M) (2.5)

and two such measures differ only by a complex multiple of µ on the interior of
Bk. Thus, we may choose the measures µk so that the restriction of µk to the
interior of Bk−1 coincides with µk−1.

We claim that µk is absolutely continuous with respect to the restriction of
µ to the interior of Bk. To prove this, we first show that∣∣µk(B)

∣∣ ≤ |||F ||| µ(B) (2.6)

for every open ball B contained in the interior of Bk. By inner regularity of
Radon measures∣∣µk(B)

∣∣ = sup
{∣∣∣∫

Bk

f dµk

∣∣∣ : f ∈ CBk
(M), f ≺ B

}
.

Now, (2.4) and (2.5) imply that∣∣∣∫
Bk

f dµk

∣∣∣ ≤ |||F ||| µ(B),

and (2.6) follows.
Now, (2.6) implies that there exists a constant C such that∣∣µk(U)

∣∣ ≤ C |||F ||| µ(U)

for every open set U in contained in the interior of Bk. Indeed, there exists a
positive integer N , depending on the doubling constant of the space, such that
for every ε > 0 there exists a sequence {Bj} of mutually disjoint open balls
such that ⋃

j

Bj ⊂ U ⊂
⋃
j

(NBj).
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Then ∣∣µk(U)
∣∣ ≤ ∑

j

∣∣µk(NBj)
∣∣

≤ |||F |||
∑

j

∣∣µ(NBj)
∣∣

≤ C |||F |||
∑

j

∣∣µ(Bj)
∣∣

≤ C |||F ||| µ(U),

as required.
Since µk is a finite Radon measure, it is outer regular on all Borel sets,

whence ∣∣µk(E)
∣∣ ≤ C |||F ||| µ(E)

for every Borel set E contained in the interior of Bk. This inequality implies
that µk is absolutely continuous with respect to µ. By the Radon–Nykodim
Theorem, there exists a function gk in L1(Bk, µ) such that

µk(E) =
∫

E

gk dµ

for every Borel set E contained in Bk. We may choose gk so that its restriction
to Bk−1 agrees with gk−1. Denote by gF the function on M such that its
restriction to Bk agrees with gk. Clearly

Ff =
∫

M

f gF dµ ∀f ∈ Cc,0(M). (2.7)

In particular, this holds whenever f is a continuous (1,∞)-atom.
To conclude the proof of the claim it suffices to prove that gF belongs to

BMO(M) and that
‖gF ‖BMO ≤ |||F |||. (2.8)

This is a classical argument, which works also in our setting. We give the details
for the reader’s convenience. Suppose that B is a ball and observe that∫

B

|gF − (gF )B |dµ = sup
‖ϕ‖∞=1

∣∣∣∫
B

ϕ
(
gF − (gF )B

)
dµ

∣∣∣,
where the supremum is taken with respect to all functions ϕ in CB,0(M). Since∫

B

ϕ
(
gF − (gF )B

)
dµ =

∫
B

ϕ gF dµ

and ϕ/µ(B) is a continuous (1,∞)-atom,∣∣∣∫
B

ϕ gF dµ
∣∣∣ ≤ |||F ||| µ(B).

Combining the above three formulae, we conclude that for every ball B

1
µ(B)

∫
B

|gF − (gF )B |dµ ≤ |||F |||,
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and (2.8) follows.
The proof of (ii) follows the same lines. We simply replace CB,0(M) by

the space Lq
0(M) of all functions in Lq(M) that are supported in B and have

integral 0. 2

Lemma 2.3 Suppose that A and B are Banach spaces and that ι : A → B is
an injective continuous linear map such that ιt : B∗ → A∗ is an isomorphism.
Then ι : A → B is an isomorphism. In particular, if ι : A → B is the inclusion
map, then A = B with equivalent norms.

Proof. Suppose that a is in A. By the Hahn-Banach theorem there exists λ in
A∗ such that ‖λ‖A∗ = 1 and λ(a) = ‖a‖A. Since ιt is an isomorphism between
B∗ and A∗, there exists a unique element µ in B∗ such that ιt(µ) = λ. Then,
on the one hand

‖a‖A = λ(a) = ιt(µ)(a) = µ
(
ι(a)

)
≤ ‖µ‖B∗ ‖ι(a)‖B = ‖(ιt)−1λ‖B∗ ‖ι(a)‖B

≤ |||(ιt)−1||| ‖ι(a)‖B .

On the other hand ‖ι(a)‖B ≤ |||ι|||‖a‖A, because ι is assumed to be continuous.
Therefore ‖a‖A and ‖ι(a)‖B are equivalent norms on A and ι(A) respectively.
Hence ι : A → ι(A) is an isomorfism and ι(A) is closed in B.

To conclude the proof it remains to prove that ι(A) = B. We argue by
contradiction. Suppose that ι(A) is properly included in B, and choose b in
B \ ι(A). By the Hahn-Banach theorem there exists a linear functional µ in B∗

such that µ(b) = 1 and µ(ι(a)) = 0 for every a in A. Then ιt(µ) = 0, thereby
contradicting the injectivity of ιt. 2

For each q in (1,∞), the identity is a continuous linear map from F q(M) to
H1(M). Denote by ιq its extension from F

q
(M) into H1(M). The map ιcont

from F
∞
cont(M) to H1(M) is defined similarly.

Theorem 2.4 The following hold:

(i) if M is locally compact, then ιcont is a Banach space isomorphism between
F
∞
cont(M) and H1(M).

(ii) for each q in (1,∞) the map ιq is a Banach space isomorphism between
F

q
(M) and H1(M).

Proof. We first prove (i). Clearly the transpose map ιtcont is a continuous linear
mapping from the dual of H1(M) to the dual of F

∞
cont(M).

Step I: ιtcont is injective. Indeed, suppose that F is in the dual of H1(M) and
that ιtcont(F ) = 0. Then for every f in F

∞
cont(M)

0 = ιtcont(F )(f) = F
(
ιcont(f)

)
= (F ◦ ιcont)(f).

Hence F ◦ ιcont is the null functional on F
∞
cont(M). Since the restriction of ιcont

to F∞
cont(M) is the identity map, F is a continuous linear functional on H1(M)

7



that vanishes on F∞
cont(M). Then there exists a function gF in BMO(M) such

that
0 =

∫
M

f gF dµ ∀f ∈ Cc,0(M)

for F∞
cont(M) coincides with Cc,0(M). This implies that gF is constant almost

everywhere, so that F is the null functional, as required.
Step II: ιtcont is surjective. Suppose that F is a continuous linear functional on
F
∞
cont(M). We need to prove that there exists a continuous linear functional G

on H1(M) such that ιtcont(G) = F , i.e.,

F (f) = G
(
ιcont(f)

)
∀f ∈ F

∞
cont(M). (2.9)

By Lemma 2.2 there exists a function gF in BMO(M) such that

Ff =
∫

M

f gF dµ ∀f ∈ F∞
cont(M). (2.10)

Denote by G the continuous linear functional on H1(M) associated to the
BMO(M) function gF . Since the restriction of ιcont to F∞

cont(M) is the identity,
(2.9) holds for all f in F∞

cont(M). Then F and G ◦ ιcont are continuous linear
functionals on F

∞
cont(M) that agree on F∞

cont(M). Since F∞
cont(M) is dense in

F
∞
cont(M), they agree on F

∞
cont(M), as required.

Step III: conclusion. We have proved that ιtcont is a continuous bijective
operator from the dual of H1(M) onto the dual of F

∞
cont(M). Therefore ιtcont is

an isomorphism between the dual of H1(M) and the dual of F
∞
cont(M). In view

of Lemma 2.3, to conlude that ιcont is an isomorphism between F
∞
cont(M) and

H1(M) it suffices to prove that ιcont is injective.
Suppose that f is in F

∞
cont(M) and that ιcont(f) = 0. Pick any Cauchy

sequence {fn} of functions in F∞
cont(M) such that

lim
n→∞

‖fn − f‖F
∞
cont

= 0.

Denote by F a continuous linear functional on F
∞
cont(M) such that F (f) =

‖f‖F
∞
cont

. Then
‖f‖F

∞
cont

= F (f)

= lim
n→∞

F (fn)

= lim
n→∞

〈fn, gF 〉 ,

where gF is the function in BMO(M) which, by Lemma 2.2 represents the
restriction of the functional F to F∞

cont(M). But {fn} converges to ιcont(f) in
H1(M), by the definition of ιcont. Since we assumed that ιcont(f) = 0, and

lim
n→∞

〈fn, gF 〉 =
〈
ιcont(f), gF

〉
= 0,

we may conclude that ‖f‖F
∞
cont

= 0, i.e, that f = 0, as required.

The proof of (ii) is almost verbatim the same as the proof of (i), and is
omitted. 2
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3 Measured metric spaces

As mentioned in the introduction, the main result we presented in the last
section in the case of spaces of homogenous type, may be generalised to a variety
of settings. In this section we describe the generalisation to the case of the
atomic Hardy spaces on certain measured metric spaces introduced in [CMM1,
CMM2]. We restrict to the case where the space has infinite measure. Again,
slight modifications will also cover the finite measure case.

Suppose that (M,ρ) is a locally compact metric space, and that µ is a
regular Borel measure on (M,ρ). We shall also assume that (M,ρ) possesses
that approximate midpoint property [CMM1, Section 2.1].

Denote by H1(M) the atomic Hardy space defined in [CMM1]. We recall
that the definition of a H1(M)-atom is exactly as in the case of spaces of ho-
mogeneous type, but, unlike in the classical case, H1(M) is the space of all
functions g in L1(M) that admit a decomposition of the form

g =
∞∑

k=1

λk ak, (3.1)

where ak is a H1(M)-atom supported in a ball B of radius at most 1, and∑∞
k=1 |λk| < ∞. The norm ‖g‖H1 of g is the infimum of

∑∞
k=1 |λk| over all

decompositions (3.1) of g.
As in the case of spaces of homogeneous type we may define the spaces

F q(M), F∞
cont(M) and their completions F

q
(M) and F

∞
cont(M). Clearly F q(M),

F∞
cont(M) will involve only atoms supported in balls of radius at most 1.

Straightforward adaptations of the arguments of the previous section yield
the following.

Theorem 3.1 For each q in (1,∞) there exists a constant C such that

‖f‖H1 ≤ ‖f‖F q ≤ C ‖f‖H1 ∀f ∈ F q(M).

Similarly, if M is locally compact, then there exists a constant C such that

‖f‖H1 ≤ ‖f‖F∞
cont

≤ C ‖f‖H1 ∀f ∈ F∞
cont(M).
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