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Abstract. W.A. Kirk and L.M. Saliga and then Y. Chen, Y.J. Cho and L.
Yang introduced lower semicontinuity from above, a generalization of sequen-
tial lower semicontinuity, and they showed that well-known results, such as
Ekeland’s variational principle and Caristi’s fixed point theorem, remain still
true under lower semicontinuity from above. In a previous paper we intro-
duced a new concept, that generalizes lower semicontinuity from above. In the
present one we continue such study, also introducing other two new generaliza-
tions of lower semicontinuity from above; we study such extensions, compare
each other five concepts (sequential lower semicontinuity, lower semicontinuity
from above, the one by us previously introduced and the two here defined) and,
in particular, we show that the above quoted well-known results remain still
true under one of such our generalizations.
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1. Introduction

In [6] Y. Chen, Y.J. Cho and L. Yang proposed the following generalization
([6], Definition 1.2 and Definition 1.5).

Definition 1.1. Let (X, τ) be a topological space. Let x ∈ X. A function
f : X → [−∞, +∞] is said to be sequentially lower semicontinuous from above
at x (“d-slsc at x”) if (xn)n∈N sequence of elements of X for which xn → x and
(f(xn))n∈N weakly decreasing sequence, implies f(x) ≤ lim

n→+∞
f(xn). Moreover

f is said to be sequentially lower semicontinuous from above (“d-slsc”) if it is
sequentially lower semicontinuous from above at x for every x ∈ X.

Actually the same definition was previously considered by W.A. Kirk and L.M.
Saliga in [12] (section 2, definition above Theorem 2.1). Both in [12] and in [6] this
concept is called lower semicontinuity from above; furthermore also J.M. Borwein
and Q.J. Zhu in [3] (Exercise 2.1.4) used the same concept, naming it partial
lower semicontinuity; here we are calling it sequential lower semicontinuity from
above, as it is a generalization of sequential lower semicontinuity.

Moreover the authors of [6] conjectured that, for convex functions on normed
spaces, sequential lower semicontinuity from above is equivalent to weak sequen-
tial lower semicontinuity from above (see [6], some rows below Definition 1.5). We
exhibited some examples showing that such conjecture is false: see [2] (Example
3.1 and Examples sketched in Remark 3.1).

In [2] we defined the following new concept, that generalizes sequential lower
semicontinuity from above.

Definition 1.2. ([2], Definition 4.1) Let (X, τ) be a topological space. Let f be
a function, f : X → [−∞, +∞]. Then f is said to be:
(i) inf-sequentially lower semicontinuous at x ∈ X (“i-slsc at x”) if (xn)n∈N
sequence of elements of X for which xn → x and lim

n→+∞
f(xn) = inf f , implies

f(x) = inf f(
equivalently, in the above condition the part lim

n→+∞
f(xn) = inf f can be replaced

by f(xn) ↘ inf f
)
;

(ii) inf-sequentially lower semicontinuous (“i-slsc”) if it is i-slsc at x for every
x ∈ X.

In particular we showed that for convex functions on normed spaces, such
concept is equivalent to its weak counterpart ([2], Theorem 4.1).

Here, with the purpose to continue the study already begun in [2], we define
other two new concepts (Definitions 3.1), called by us below sequential lower semi-
continuity from above (bd-slsc) and uniform below sequential lower semicontinuity
from above (ubd-slsc), that generalize sequential lower semicontinuity from above
and we show that:



SOME VARIATIONAL RESULTS 3

(a) as it already happened for i-slsc, for convex functions on normed spaces, one
of such new concepts (bd-slsc) is equivalent to its weak counterpart (Theorem
4.1 and part (e) of Remarks 3.2); also by means of such result, it can be seen
that, for convex functions on normed spaces and indifferently with respect to the
topology induced by norm or to the weak topology, i-slsc and bd-slsc are each
other equivalent (part (e) of Remarks 3.2, part (b) of Theorem 3.4 and Corollary
4.2),
(b) some results listed in [6] and in [12], such as Ekeland’s variational principle
and Caristi’s fixed point theorem, remain still true under an hypothesis of ubd-
slsc (section 5).

Moreover we study the five concepts of sequential lower semicontinuity, lower
semicontinuity from above, inf-sequential lower semicontinuity, below sequential
lower semicontinuity from above and uniform below sequential lower semiconti-
nuity from above, supplying further results and examples, with the purpose of
getting a comparison between such five concepts, both in the general case (section
3) and in the case of convex functions (section 4). In particular, in theorem 4.10
we prove that every convex ubd-slsc function on a Banach space is continuous in
the points of the interior of its effective domain.

Finally, in section 5, we also give some examples to show that, in the general-
ization of Ekeland’s variational principle by us proved, some hypotheses cannot
be weakened.

2. Notations and Preliminaries

Notations. In the sequel, unless otherwise specified, all linear spaces will be
considered on the field F, where F = R or F = C. As convention, in [−∞, +∞],
inf ∅ = +∞ and the product 0 · (+∞) is considered equal to 0. By N we denote
the set of natural numbers (0 included), while Z+ := {n ∈ Z : n > 0} and
R+ := {x ∈ R : x > 0}; δn,m is the Kronecker symbol. If Z is a linear space on
R or on C, let dim Z denote the algebraic dimension of Z, and, if A ⊆ Z, let
sp A and co A denote respectively the linear subspace of Z that is generated by
A and the convex hull of A; if x, y ∈ Z let [x, y] := {λx + (1 − λ)y : λ ∈ [0, 1]}
and, if x 6= y, let ]x, y] := {λx + (1 − λ)y : λ ∈ [0, 1[}; if 0 ∈ A, then the
Minkowski functional (or gauge) of A is the function gA : Z → [0, +∞] defined by
gA(x) := inf{α ∈ R+ : x ∈ αA} for every x ∈ Z. If Z is a topological linear space,
let Z ′ denote the continuous dual of Z; if A ⊆ Z, let co A be the closure of co A.
If Z is a normed space, then |z|Z indicates the norm in Z of an element z ∈ Z and
SZ(a, r) := {z ∈ Z : |z − a|Z < r} (a ∈ Z, r ∈ R+). Let `2 and c0 respectively
denote the real, or complex, Banach spaces of the sequences whose squares of
moduli of coordinates are summable, and of the infinitesimal sequences. If A and
B are sets, if C ⊆ A and f : A → B is a function, then #A denotes the cardinality
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of A, f∣∣∣C means the restriction of f to C; if g : A → [−∞, +∞] is a function,

then dom g := {x ∈ A : g(x) < +∞} denotes the effective domain of g. If Z is a
topological space and if A ⊆ Z, let ∂A be the boundary of A. Let E denote the
integer part function. If (τn)n∈N is a sequence of elements of [−∞, +∞] and if ` ∈
[−∞, +∞], then τn ↘ ` means that (τn)n∈N is a weakly decreasing sequence with
lim

n→+∞
τn = `. Henceforth we shall shorten both lower semicontinuous and lower

semicontinuity in “lsc”, both sequentially lower semicontinuous and sequential
lower semicontinuity in “slsc”.

Definitions 2.1. Let X be a linear space on F, A ⊆ X, y ∈ A. Then (in
accordance with [10]):
(a) the point y is said to be an internal point of A if for every x ∈ X there exists
an αx ∈ R+ such that y + λx ∈ A for all λ ∈ [0, αx];
(b) (see [10], page 8, above Exercise 1.1.20, and page 9, between the two Examples)
A is said to be absorbing if 0 is an internal point of A, that is if for every x ∈ X
there exists an αx ∈ R+ such that λx ∈ A for all λ ∈ [0, αx];
(c) the set A is said to be balanced if λx ∈ A for every x ∈ A and λ ∈ F such that
|λ| ≤ 1;
(d) the point y is said to be an extreme point of A if x, z ∈ A, λ ∈ ]0, 1[ for which
y = λx + (1− λ)z implies x = z = y.

Example 2.2. For every infinite dimensional X normed space on F there exists
C an absorbing balanced convex subset of SX(0, 1), C without interior points.

Let T : X → X be a linear bijective not continuous operator
(
for example let

en ∈ X be such that |en|X = 1 (n ∈ N), en 6= em if n, m ∈ N, n 6= m, {en : n ∈ N}
linearly independent set of vectors, B a Hamel basis of X such that {en : n ∈
N} ⊆ B, T (en) := nen for every n ∈ N, T (b) := b for every b ∈ B \ {en : n ∈ N},
T extended for linearity to all X

)
. Let C := T−1(SX(0, 1)) ∩ SX(0, 1). Then

C is a balanced convex as intersection of two balanced convex sets, is bounded
because contained in SX(0, 1), is absorbing as intersection of two absorbing sets(
T−1(SX(0, 1)) is absorbing because if x ∈ X \ {0} then T (x) ∈ X \ {0} and so

λx ∈ T−1(SX(0, 1)) for every λ ∈ F with |λ| ≤ 1
|T (x)|X

)
. Moreover, if by absurd

there existed an interior point of C, then, being C balanced and convex, 0 should
be an interior point of C and therefore T should be a continuous operator, that
is not possible.

Here we are providing also another example, which will be useful in the construc-
tion of the subsequent Example 4.8; to this purpose we describe expressly a set
C, that can be obtained using Theorem 1 of [16], provided in the proof of such
theorem a bounded Hamel basis (in case constituted by elements having norm
less or equal to 1) is considered, and with a little change in the complex case for
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showing that “0 is not an interior point of C” (and so there are no interior points
of C, as above noted).
Let en ∈ X be such that |en|X ≤ 1 (n ∈ N), en 6= em if n, m ∈ N, n 6= m,
{en : n ∈ N} linearly independent set of vectors, B a Hamel basis of X such that
{en : n ∈ N} ⊆ B, |b|X ≤ 1 for every b ∈ B, D := { 1

n+1
en : n ∈ N}∪ (B \ {en : n ∈

N}). Then it is enough to define

C := co {αd : α ∈ F, |α| = 1, d ∈ D}.
Such a C is obviously a balanced set; for obtaining the remaining properties the
same proof of Theorem 1 of [16] still works, with the unique following little change
if F = C for showing that cd /∈ C when c > 1 and d ∈ D (that is one of the points
of the demonstration of [16]): if by absurd such a cd ∈ C then, using that D is

a Hamel basis, there should exist m ∈ Z+, λ1, . . . , λm ∈ [0, 1], with
m∑

j=1

λj = 1,

α1, . . . , αm ∈ C, with |αj| = 1 for every j ∈ {1, . . . ,m} such that cd =
m∑

j=1

λj αjd,

therefore c =
m∑

j=1

λj αj, that is impossible because |
m∑

j=1

λj αj| ≤
m∑

j=1

λj |αj| = 1

while c > 1.

Theorem 2.3. Let X be a real normed space with algebraic dimension greater or
equal to 2; then ∂SX(0, 1) is an arcwise connected set.

Proof. Let x, y ∈ ∂SX(0, 1), x 6= y. We shall distinguish two cases:
(a) x 6= −y;
(b) x = −y.

In the case (a) the arc γ : t ∈ [0, 1] 7→ (1−t)x+ty
|(1−t)x+ty|X

connects x to y: in fact

γ(0) = x, γ(1) = y; moreover γ is defined and continuous, as, if by absurd there
exists t ∈ [0, 1] such that (1 − t)x = −ty, then 1 − t = (1 − t)|x|X = t|y|X = t,
consequently t = 1

2
and so 1

2
x = −1

2
y, that is in contradiction with the assumption

of (a).
In the case (b), being dim X ≥ 2, there exists z ∈ ∂SX(0, 1) linearly indepen-

dent from x and y, hence z 6= −x and z 6= −y; then an arc connecting x to y can
be found joining together two arcs, one connecting x to z and another connecting
z to y, both of them existing in consequence of (a).

Lemma 2.4. Let I ⊆ R be an interval, x ∈ [−∞, +∞] an extreme of I, ` ∈
[−∞, +∞[, f : I → [−∞, +∞] a convex function, xn ∈ I, xn 6= x (n ∈ N) such
that xn → x and f(xn) ↘ `. Then ` = inf{f(y) : y ∈ I \ {x}}.

Proof. If ` = −∞, then the conclusion is obvious; therefore we can suppose
` ∈ R. Let z ∈ I \ {x}. Then there exist nz ∈ N such that f(xnz) ∈ R,
xnz ∈ ]x, z[ and mz ∈ N, mz > nz such that xmz ∈ ]x, xnz [; therefore, being ` ≤



6 ADA BOTTARO ARUFFO AND GIANFRANCO BOTTARO

f(xmz) ≤ f(xnz), we deduce that f(xmz) ∈ R and, for the convexity of f , we get
f(xnz) ≤

xmz−xnz

xmz−z
f(z)+ xnz−z

xmz−z
f(xmz), whence, using in the second inequality that

f(xnz) ≥ f(xmz), we obtain f(z) ≥ xmz−z
xmz−xnz

f(xnz)−
xnz−z

xmz−xnz
f(xmz) ≥ f(xmz) ≥ `.

Theorem 2.5. Let X be an infinite dimensional normed space. Then there exists
A ⊆ X, A infinite, countable and linearly independent set such that, for every
M, N ⊆ A, M ∩N = ∅, it is sp M ∩ sp N = {0}.

Proof. It is enough to use, with respect to an infinite dimensional closed sep-
arable subspace Y of X, metrizability and compactness of SY ′(0, 1) with respect
to the weak ∗ topology (see for example [8], proof of Theorem V.5.1, and [15],
Theorem III.10.2) and proof of Proposition 1.f.3 of [13].

3. New weaker concepts of sequential lower semicontinuity

Definitions 3.1. Let (X, τ) be a topological space. Let f be a function, f : X →
[−∞, +∞]. Then, if f is not +∞ identically, f is said to be:
(i) below sequentially lower semicontinuous from above at x ∈ X (“bd-slsc at x”)
if there exists ax ∈ ]inf

X
f, +∞] such that: (xn)n∈N sequence of elements of X for

which xn → x and f(xn) ↘ lim
n→+∞

f(xn) ≤ ax, implies f(x) ≤ lim
n→+∞

f(xn);

(ii) below sequentially lower semicontinuous from above (“bd-slsc”) if it is bd-slsc
at x for every x ∈ X;
(iii) uniformly below sequentially lower semicontinuous from above (“ubd-slsc”) if
there exists a ∈ ]inf

X
f, +∞] such that: x ∈ X, (xn)n∈N sequence of elements of X

for which xn → x and f(xn) ↘ lim
n→+∞

f(xn) ≤ a, imply f(x) ≤ lim
n→+∞

f(xn).

When f has value +∞ constantly, all these properties are assumed to hold in a
vacuous way.

In the above definitions, equivalently we can replace, the part “f(xn) ↘
lim

n→+∞
f(xn) ≤ ax (resp. ≤ a)” with the following: “(f(xn))n∈N weakly decreasing

sequence and f(xn) ≤ ax (resp. ≤ a) for every n ∈ N”. Indeed one of the two
implications is obvious (in both cases) and the other can be proved, for exam-
ple in the case of (i) (being the other case similar), in this way: if the above
variant of definition (i) is verified relatively to a certain value of ax and if bx is
such that inf f < bx < ax, then, for every sequence (xn)n∈N of elements of X
for which xn → x and f(xn) ↘ lim

n→+∞
f(xn) ≤ bx, there exists k ∈ N such that

f(xn) ≤ ax for every n > k and so we conclude, applying such variant to the
sequence (xn)n>k.

Remarks 3.2. Here we shall note some easy comparison between Definitions 3.1
and other previously considered generalizations of sequential lower semicontinuity
(Definitions 1.1 and 1.2).
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Let (X, τ) be a topological space. Let x ∈ X. Let f be a function, f : X →
[−∞, +∞]. We note that:
(a) if f is d-slsc at x, then f is bd-slsc at x;
(b) if f is bd-slsc at x, then f is i-slsc at x, because if f is not constantly +∞, if
xn → x and f(xn) ↘ inf f , then lim

n→+∞
f(xn) ≤ ax and f(x) ≤ inf f ;

(c) if f is d-slsc, then f is ubd-slsc, because if f is not constantly +∞ it follows
that (iii) of Definitions 3.1 is true with respect to an arbitrary value of a > inf f ;
(d) if f is ubd-slsc, then f is bd-slsc;
(e) if f is bd-slsc, then f is i-slsc, for (b);
(f) “f is ubd-slsc and (iii) of Definitions 3.1 is verified with respect to a = +∞”
if and only if f is d-slsc.

Remarks 3.3. Let (X, τ) be a topological space. Let x ∈ X. Let f be a function,
f : X → [−∞, +∞]. We observe that:
(a) if lim inf

y→x
f(y) > inf

X
f , then f is bd-slsc at x, because it suffices to consider

ax ∈ ]inf
X

f, lim inf
y→x

f(y)[;

(b) for verifying that f satisfies ubd-slsc with respect to a certain a > inf
X

f (a as in

(iii) of Definitions 3.1), it is enough to prove that f∣∣∣{z∈X: lim inf
y→z

f(y)≤a}
is ubd-slsc.

Theorem 3.4. Let (X, τ) be a topological space satisfying the first axiom of count-
ability. Let x ∈ X. Let f be a function, f : X → [−∞, +∞]. The following
implications are true:
(a) if f is i-slsc at x, then f is bd-slsc at x;
(b) if f is i-slsc, then f is bd-slsc (so, under hypothesis of fulfilment of the first
axiom of countability, a vice-versa of part (e) of Remarks 3.2 is true).

Proof. It is sufficient to show the part (a) of the theorem.
By absurd, we suppose that f is not bd-slsc at x; then f is not +∞ constantly

and, choosing a sequence (ak)k∈N, with ak > inf f for every k ∈ N, such that
ak → inf f , for every k ∈ N there exists a sequence (xn,k)n∈N of elements of X for
which xn,k → x, (f(xn,k))n∈N is a weakly decreasing sequence with lim

n→+∞
f(xn,k) ≤

ak and f(x) > lim
n→+∞

f(xn,k); moreover, from the hypothesis, we deduce that

inf f < lim
n→+∞

f(xn,k) for every k ∈ N. On the other hand, since τ verifies the

first axiom of countability, there exists {Uh : h ∈ N} base for the neighbourhood
system of x, with Uh+1 ⊆ Uh for every h ∈ N.

Now we shall define a sequence (xn)n∈N by means of which we shall produce
a contradiction. Let x0 = xn0,0, where n0 = min{n ∈ N : xn,0 ∈ U0, inf f <
f(xn,0) < a0 + 1} and, for m ∈ N, chosen x0, . . . , xm with inf f < f(xh) (h ∈
{0, . . . ,m}), let xm+1 = xnm+1,k(m+1), where k(m + 1) = min{k ∈ N : k ≥
m + 1, ak < f(xm)} and nm+1 = min{n ∈ N : xn,k(m+1) ∈ Um+1, inf f <
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f(xn,k(m+1)) < ak(m+1) + 1
m+2

, f(xn,k(m+1)) ≤ f(xm)} (these choices are possible,
because f(xn,k) ≥ lim

p→+∞
f(xp,k) > inf f for every n, k ∈ N). For construction

xn → x, f(xn) ↘ inf f ; furthermore f(x) > inf f , because f(x) > lim
n→+∞

f(xn,k) >

inf f (k ∈ N); but these facts are in contradiction with the i-slsc of f at x.

Theorem 3.5. Let X be a topological linear space and let f : X → [0, +∞] be a
function such that

(3.1) f(αx) = αf(x) for every α ∈ [0, +∞[ and for every x ∈ X.

Suppose that f is ubd-slsc. Then f is slsc too. Therefore, for such a function
f , ubd-slsc, d-slsc and slsc are each other equivalent conditions (see part (c) of
Remarks 3.2).

Proof. Let a be relative to the ubd-slsc of f as in (iii) of Definitions 3.1. Then,
since inf

X
f = f(0) = 0, we get that a > 0.

Let x ∈ X and let (xn)n∈N be a sequence of elements of X such that xn → x;
let α := lim inf

n→+∞
f(xn). We shall conclude if we shall prove that f(x) ≤ α.

Now, since the desired conclusion is obvious if α = +∞, it is enough that we
distinguish two cases:
(i) α = 0,
(ii) α ∈ R+.

In the case (i), being α = 0 = inf f , then there exists a subsequence (f(xnk
))k∈N

of (f(xn))n∈N constantly 0 or strictly decreasing to 0: anyhow such subsequence
is weakly decreasing and converging to 0 < a; so, applying ubd-slsc of f , the
desired result follows.

In the second case, (ii), let (xnk
)k∈N be a subsequence of (xn)n∈N such that

lim
k→+∞

f(xnk
) = α; let k0 ∈ N be such that f(xnk

) ∈ R+ for every k > k0 and let

yk :=
axnk

f(xnk
)

for every k ∈ N, k > k0; then, being X a topological linear space,

it holds that yk → ax
α

, moreover f(yk) = a
f(xnk

)
f(xnk

) = a for every k > k0; so,

using ubd-slsc of f , we get f(ax
α

) ≤ a whence f(x) = α
a
f(ax

α
) ≤ α.

Remark 3.6. Note that, if X is a topological linear space, if A ⊆ X is an
absorbing set and if f = gA, then (3.1) is true (see [10], Theorem 1.2.4 (i) and
definition foregoing).

Examples 3.7.
(a) There exist a bounded function g : R → R and a point z ∈ R such that g is
ubd-slsc, but g is not d-slsc at z.
(b) There exists a bounded function h : R → R such that h is bd-slsc, but h is not
ubd-slsc.
(c) Let W = `2 (on the field F) endowed with its weak topology. Then there exist
a function k : W → [0, 1] and a point w ∈ W such that k is i-slsc, but k is not
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bd-slsc at w (note that an analogue example on a topological space satisfying the
first axiom of countability does not exist, in consequence of Theorem 3.4).

(a) Let g(x) =

arctg x if x ∈ ]−∞, 0]

−1 if x ∈ ]0, +∞ [
and z = 0. Then g is lsc in every point

of R\{z}; therefore g is ubd-slsc: indeed it suffices to consider a ∈ ]− π
2
,−1[ and to

use (b) of Remarks 3.3. Besides g is not d-slsc at z, because if zn := 1
n+1

= z+ 1
n+1

for every n ∈ N we get that zn → z, (g(zn))n∈N is a weakly decreasing sequence,
but g(z) = 0 > −1 = lim

n→+∞
g(zn).

(b) Let h(x) =


arctg x if −2m− 1 < x ≤ −2m (m ∈ N)

0 if −2m− 2 < x ≤ −2m− 1 (m ∈ N)

0 if x > 0

. Then h is lsc in

every point of R \ {−2m− 1: m ∈ N}; moreover it is bd-slsc, as for every m ∈ N
it is sufficient to note that lim inf

x→−2m−1
h(x) = arctg(−2m− 1) > −π

2
= inf

R
h and to

use (a) of Remarks 3.3. On the other hand h is not ubd-slsc, because for every
a > inf

R
h = −π

2
there exist ma ∈ N and a sequence (yn,a)n∈N of real numbers for

which lim
n→+∞

yn,a = −2ma − 1 and h(yn,a) ↘ `a ≤ a, but h(−2ma − 1) = 0 > `a

(in fact it is enough to consider ma such that arctg(−2ma − 1) < a and yn,a =
−2ma − 1 + 1

n+1
for every n ∈ N).

(c) Let k(x) =


1

E(|λ|)+1
if x = λem for some m ∈ N and λ ∈ F \ Z

1
|λ| if x = λem for some m ∈ N and λ ∈ Z \ {0}
1 if x ∈ {0} ∪ (W \

⋃
m∈N

sp{em})
, where

en := (δn,m)m∈N for every n ∈ N, and let w = 0. We get that k is i-slsc, as
there does not exist a converging sequence (wn)n∈N of elements of W which sat-
isfies

(3.2) lim
n→+∞

k(wn) = 0 = inf
W

k :

in fact, if a sequence (wn)n∈N verifies (3.2), then it follows that there exists n0 ∈ N
such that for every n > n0 there are λn ∈ F and mn ∈ N for which wn = λnemn

and |λn| → +∞, hence |wn|`2 → +∞, from here the sequence is unbounded and
therefore cannot converge. On the other hand k is not bd-slsc at w, because for
every a > inf

W
k = 0 there exists a sequence (zn,a)n∈N of elements of W for which

lim
n→+∞

zn,a = 0 = w and k(zn,a) ↘ `a ≤ a, but k(0) = 1 > `a (indeed it is sufficient

to consider sa ∈ N such that sa > 1, 1
sa

< a and zn,a = saen for every n ∈ N).

Example 3.8. It is possible to find an example of a Hilbert space Y and of a
function that is lsc with respect to the topology induced on Y by its norm, but
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that, with respect to the weak topology on Y , is not bd-slsc (and so it is neither
ubd-slsc nor d-slsc; indeed neither i-slsc): see [2] (Example 4.1) and Remarks 3.2.

4. Behaviour of some weak concepts of sequential lower
semicontinuity with respect to the convexity

With respect to [2] (Theorem 4.1), a slightly more laborious demonstration allows
to get a stronger result:

Theorem 4.1. Let X be a normed space, let f : X → [−∞, +∞] be a convex,
i-slsc function with respect to the topology induced on X by its norm. Then f is
bd-slsc with respect to the weak topology on X.

Proof. By absurd, we suppose that f is not bd-slsc with respect to the weak
topology on X. Then f is not +∞ constantly and there exists at least a point
x ∈ X such that for every a > inf f there exists a sequence (yn,a)n∈N of elements
of X for which yn,a ⇀ x, (f(yn,a))n∈N is a weakly decreasing sequence, f(yn,a) ≤ a
for every n ∈ N and f(x) > lim

n→+∞
f(yn,a). Hence f(x) > inf f and we shall reach

an absurd if we shall show that

(4.1) there exists a sequence (xn)n∈N of elements of X

for which xn → x and f(xn) ↘ inf f,

because, using the i-slsc of f at x with respect to the topology induced on X by
its norm, relatively to such a sequence, it should be f(x) = inf f . At first, in
order to prove (4.1), we shall define a sequence (bk)k∈N of real numbers and by
induction we shall define other four sequences, (ah)h∈N of real numbers, (kh)h∈N
of natural numbers, (jh)h∈N of integer numbers and (zh)h∈N of elements of X such
that jh ∈ {0, . . . , h} and f(zjh

) > inf f if f(zm) > inf f for some m ∈ {0, . . . , h}
(h ∈ N), by means of the followings:

bk :=

inf f + 1
k+1

if inf f ∈ R
−k if inf f = −∞

for every k ∈ N,

k0 := 0, a0 := bk0 , z0 ∈ co {yn,a0 : n ∈ N} such that |z0 − x|X < 1,

j0 :=

−1 if f(z0) = inf f

0 if f(z0) > inf f

and, if h ∈ N, defined kp, ap, zp and jp for every p ∈ {0, . . . , h}, we define
kh+1, ah+1, zh+1 and jh+1 in the following way:

kh+1 :=

=

kh + 1 if f(z0) = · · · = f(zh) = inf f

min{k ∈ N : k > kh, bk ≤ f(zjh
)} if f(zm) > inf f for some m ∈ {0, . . . , h}

,
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ah+1 := bkh+1
, zh+1 ∈ co {yn,ah+1

: n ∈ N} such that |zh+1 − x|X <
1

h + 2
,

jh+1 :=

=


−1 if f(z0) = · · · = f(zh+1) = inf f

max{j ∈ {0, . . . , h + 1} : f(zj) > inf f} if f(zm) > inf f
for some m ∈ {0, . . . , h + 1}

(such definitions are possible, being x ∈ co {yn,a : n ∈ N} for every a > inf f (as
a convex closed subset of X is weakly closed too) and thanks to choice’s axiom).
By definition, (bk)k∈N is strictly decreasing, with lim

k→+∞
bk = inf f , (kh)h∈N is

strictly increasing and so (ah)h∈N is a subsequence of (bk)k∈N and therefore is
itself strictly decreasing, with lim

h→+∞
ah = inf f , lim

h→+∞
zh = x with respect to

the topology induced on X by its norm; moreover (jh)h∈N is weakly increasing,
j(N) \ {−1} = {n ∈ N : f(zn) > inf f} and hence, if j(N) is a finite set, there
exists a subsequence of (zh)h∈N such that the values of f in the elements of such
subsequence are costantly inf f .
Now we shall distinguish two cases:
(i) there exists a subsequence of (zh)h∈N such that the values of f in the elements
of such subsequence are costantly inf f ,
(ii) there does not exist a subsequence as in (i).

In the case (i) we at once conclude, because, if (xn)n∈N is a subsequence of
(zh)h∈N as in (i), then it verifies (4.1).

If we are in the case (ii), then j(N) is an infinite set; therefore by induction we
can define a new sequence (mn)n∈N in this way: let m0 := min(j(N) \ {−1}) and,

if n ∈ N, defined mp for every p ∈ {0, . . . , n}, let mn+1 := min
(
j(N) \ ({−1} ∪

{m0, . . . ,mn})
)
; from here, defining xn := zmn for every n ∈ N and taking into

account the definition of j, it follows that (xn)n∈N is the subsequence of (zh)h∈N
whose elements are exactly all the “zh” such that f(zh) > inf f .
It will be enough to prove that f(xn) ↘ inf f , because in such way we shall have
proved (4.1).
For every n ∈ N it holds:

f(xn+1) = f(zmn+1) ≤ amn+1 = bkmn+1
≤ f(zjmn+1−1) = f(zmn) = f(xn)

(where for obtaining the inequality between second and third terms we used that
zmn+1 ∈ co{yp,amn+1

: p ∈ N} by definition and for deducing the equality between
fifth and sixth terms we used that

jmn+1−1 = max{j ∈ {0, . . . ,mn+1 − 1} : f(zj) > inf f} = mn
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by definition).
At last and analogously as seen above, it is verified

f(xn) = f(zmn) ≤ amn for every n ∈ N;

besides lim
n→+∞

amn = inf f , as (amn)n∈N is a subsequence of (bk)k∈N and so we

conclude.

Corollary 4.2. Let X be a normed space, let f : X → [−∞, +∞] be a convex
function, i-slsc with respect to the weak topology on X; then f is bd-slsc with
respect to the same topology (so, in the present case, by the help of hypothesis
of convexity, the conclusion of Theorem 3.4 is true, although the first axiom of
countability may be not fulfilled).

Proof. From the easy observation that if τ and σ are two topologies on a set
Y , with σ ⊆ τ , and if a function verifies Definition 1.2 with respect to σ then
it verifies the same condition with respect to τ too, we get that f is i-slsc with
respect to the topology induced on X by its norm and so it is sufficient to use
Theorem 4.1.

Examples 4.3. As it will be seen below, in examples (a) and (b), there exist
examples of convex functions, satisfying “the same semicontinuity conditions” of
Examples 3.7 (a) and (b), but that are not upperly bounded and whose values
are in ]−∞, +∞] instead of in R; on the contrary, owing to Corollary 4.2, if W
is as in (c) of Examples 3.7, an example of convex function k : W → [−∞, +∞]
i-slsc but not bd-slsc cannot exist.
(a) For every X normed space having, as real space, algebraic dimension greater
or equal to 2 and such that

(4.2) the closed unitary sphere of X admits at least one extreme point

there exist a convex function g : X → [0, +∞] and a point z ∈ X such that g is
ubd-slsc, but g is not d-slsc at z.
(b) For every X normed space having, as real space, algebraic dimension greater
or equal to 2 there exists a convex function h : X → [0, +∞] such that h is bd-slsc,
but h is not ubd-slsc.

(a) Let z ∈ ∂SX(0, 1) be an extreme point of SX(0, 1) (such a point exists for

(4.2)) and let g(x) =

|x|X if x ∈ SX(0, 1) \ {z}
+∞ if x ∈ {z} ∪ (X \ SX(0, 1))

. Then g is convex,

because SX(0, 1) \ {z} is a convex set (being z an extreme point of SX(0, 1));
moreover g is lsc in every point of X \ {z}; therefore g is ubd-slsc: indeed it
suffices to consider a ∈ ]0, 1[ and to use (b) of Remarks 3.3. Besides g is not
d-slsc at z, because if zn ∈ ∂SX(0, 1) \ {z} (n ∈ N) is chosen in such a way
as to converge to z (this choice is possible for hypothesis, using Theorem 2.3)
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we get that (g(zn))n∈N is a weakly decreasing sequence (it is constantly 1), but
g(z) = +∞ > 1 = lim

n→+∞
g(zn).

(b) Let y ∈ ∂SX(0, 1) and let h(x) =

|x|X if x ∈ {0} ∪ SX(y, 1)

+∞ if x ∈ X \ ({0} ∪ SX(y, 1))
. Then

h is convex, because {0} ∪ SX(y, 1) is a convex set; furthermore h is lsc in every
point of {0} ∪ (X \ ∂SX(y, 1)); moreover it is bd-slsc, because for every x ∈
∂SX(y, 1) \ {0} it is enough to note that lim inf

z→x
h(z) = |x|X > 0 = inf

X
h and to

use (a) of Remarks 3.3. On the other hand h is not ubd-slsc, because for every
a > inf

X
h = 0 there exist xa ∈ X and a sequence (yn,a)n∈N of elements of X for

which lim
n→+∞

yn,a = xa, h(yn,a) ↘ `a ≤ a, but h(xa) > `a: in fact, being ∂SX(y, 1)

a connected set owing to Theorem 2.3 and, chosen 0 < ba < min{a, 2}, being

∂SX(y, 1) ∩
(
X \ SX(0, ba)

)
a nonempty open of ∂SX(y, 1) (it contains 2y), the

nonempty subset ∂SX(y, 1) ∩ SX(0, ba) of ∂SX(y, 1) (it contains 0) must have
at least a not interior point xa (with respect to ∂SX(y, 1)); so there exists a
sequence (zn,a)n∈N of elements of ∂SX(y, 1) with lim

n→+∞
zn,a = xa, |zn,a|X > ba ≥

|xa|X for every n ∈ N, and it is enough to consider y0,a ∈ SX(y, 1) such that
|y0,a − z0,a|X < 1, |y0,a|X > |xa|X and, if n ∈ N, given yn,a (with |yn,a|X > |xa|X)
to select hn > n such that |zhn,a|X < |yn,a|X and yn+1,a ∈ SX(y, 1) such that
|yn+1,a − zhn,a|X < 1

n+2
, |xa|X < |yn+1,a|X < |yn,a|X ; with these choices, it results

that lim
n→+∞

yn,a = xa, (h(yn,a))n∈N = (|yn,a|X)n∈N is a strictly decreasing sequence

with lim
n→+∞

h(yn,a) = |xa|X ≤ ba < a, but h(xa) = +∞ > |xa|X = lim
n→+∞

h(yn,a).

Remark 4.4. Note that hypothesis (4.2) done in (a) of Examples 4.3 is verified
for example by every reflexive Banach space (see Theorem 2.4.5 of [10] and use
the weak topology), but there exist Banach spaces (for example c0 and L1([a, b])
(a, b ∈ R, a 6= b)) which do not satisfy it (see Examples II.8 of [11]).

Remark 4.5. For X = R and also if functions with values in [−∞, +∞] are
considered, examples verifying conditions of (a) or (b) of Examples 4.3 do not
exist, because the following fact is true.
If f : R → [−∞, +∞] is a convex, i-slsc function, then f is d-slsc (and so, in this
case, taking into account parts (c), (d) and (e) of Remarks 3.2, under hypothesis
of convexity, the four conditions of d-slsc, ubd-slsc, bd-slsc and i-slsc are each
other equivalent).

Let x, xn ∈ R (n ∈ N), xn → x, f(xn) ↘ `; then we shall conclude, if we
shall prove that f(x) ≤ `. It is not restrictive to suppose ` < +∞, xn 6= x,
xn ∈ dom f (n ∈ N) and x an extreme of dom f (otherwise, if x ∈ (dom f)◦, the
function f should be continuous in x); applying Lemma 2.4 to f∣∣∣dom f

it follows
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that ` = inf{f(y) : y ∈ dom f \ {x}}; then, if by absurd f(x) > `, it should be
` = inf f , that contradicts i-slsc of f .

Example 4.6. For every infinite dimensional X normed space there exists a
convex bd-slsc function g : X → R that is discontinuous in every point of X (and
therefore, if X is complete, is neither a lsc function on X (see for example [10],
Theorem 3.1.9)).
Indeed, we shall show that such a function g can be chosen as whatever a
Minkowski functional of

(4.3) an absorbing balanced convex subset C of X such that

0 is not an interior point for C, C ⊆ SX(0, 1)

(for the existence of such a set, see Example 2.2). Consequently, if X is a Banach
space, using Theorem 3.5, Remark 3.6 and part (c) of Remark 3.2, such a function
g neither is ubd-slsc nor is d-slsc.

Let C be as in (4.3) and let g := gC . Then g is a real valued convex not continuous
function (see for example [15], Theorems II.12.1, II.12.3 and foregoing Definition);
hence, using a classical result of convex analysis (see for example [10], Theorem
3.1.8) g is discontinuous in every point of X.
Owing to part (b) of Theorem 3.4, for showing the remaining condition on g,
namely the bd-slsc of g, it suffices to prove that g is i-slsc.
At first note that

(4.4) |x|X ≤ g(x) for every x ∈ X.

In fact, being C ⊆ SX(0, 1), for every x ∈ X it holds

|x|X = inf{α ∈ R+ :
∣∣∣x
α

∣∣∣
X
≤ 1} ≤ inf{α ∈ R+ :

x

α
∈ C} = g(x).

Now let x ∈ X, let (xn)n∈N be a sequence of elements of X for which xn → x
and lim

n→+∞
g(xn) = 0 (= g(0) = inf g); therefore, using (4.4), we get that x = 0,

whence g(x) = g(0) = 0.

Remarks 4.7.
(a) Example 4.6 shows that the classical result “every f convex lsc function
defined on a Banach space with values in [−∞, +∞] is continuous on the interior
of dom f” (see for example [19], Theorem 2.2.20 (b) and sentences afterward
Proposition 1.1.11) fails if lsc is replaced by bd-slsc (or equivalently (see 3.2 and
3.4) by i-slsc).
(b) On the contrary, the above-mentioned classical result is still true if lsc is
replaced by d-slsc (it is enough to use [2], Theorem 3.2 and a classical result of
convex analysis (see for example [10], Theorem 3.1.9) applied to f∣∣∣(dom f)◦

, also

considering that, if there exists a point x0 ∈ X such that f(x0) = −∞, then
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f(x) = −∞ for every x ∈ (dom f)◦ (see for example [19], Proposition 2.1.4)), or
by ubd-slsc (as we shall show in the part (c) of Theorem 4.10).

Among other things, by means of such facts there is a different way to prove
that, if X is a Banach space, the function g of Example 4.6 cannot be either
ubd-slsc or d-slsc (that is what already claimed in the last rows of the statement
of number 4.6).
(c) The above (a) and (b) show a big difference between convex, bd-slsc (or con-
vex, i-slsc) functions on Banach spaces on the one hand and convex, d-slsc (or
convex, ubd-slsc) functions on Banach spaces on the other hand; such situation
in a certain way renders, in the case in which convex functions on Banach spaces
are considered, more meaningful those results, as for example [2] (Theorems 5.1,
5.3 and Corollary 5.1), in which the classic hypothesis of “lower semicontinuity”
can be replaced by an hypothesis of “bd-slsc” (or of “i-slsc”).

Working with some properties of infinite dimensional Banach spaces and with the
choice of the convex set C, we shall able to exhibit an example as the following one
(that may be regarded in a certain way as a refinement of Example 4.6, because,
also if it does not give a stronger conclusion than the one of Example 4.6, it lets
to define in a constructive way a sequence of points, by means of which ubd-slsc
is showed not to be true).
Moreover, with respect to Example 4.3 (b), observe that in Example 4.8 we get
an example of a function defined in a less general space, but having real values;
hence the points by means of which we could prove that such a function is not
ubd-slsc, unlike that in part (b) of Examples 4.3, necessarily are all at the interior
of its effective domain.

Example 4.8. For every infinite dimensional X Banach space on F, there exists
a convex bd-slsc function g : X → R that is not ubd-slsc (and therefore, for part
(c) of Remarks 3.2, is not even a d-slsc function).
Indeed, we shall show that such a function g can be chosen as the Minkowski
functional of a suitable set C satisfying (4.3); then inf

X
g = 0 and we shall prove

that g is not ubd-slsc, exhibiting a sequence (cq)q∈Z+ of elements of X such that for
every q ∈ Z+ there exists a sequence (cq,k)k∈N of points of X for which lim

k→+∞
cq,k =

cq, (g(cq,k))k∈N is a weakly decreasing sequence and g(cq) > 1
q

= lim
k→+∞

g(cq,k) for

every q ∈ Z+.

We shall define the set C by means of the construction of E.O. Thorp ([16],
Theorem 1), already cited in the final part of Example 2.2, but choosing a suitable
Hamel basis, formed by elements having norm less or equal to 1 and verifying
other suitable conditions that we are going to introduce.
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For Theorem 2.5 there exists A ⊆ X, A infinite, countable and linearly inde-
pendent set such that

M, N ⊆ A, M ∩N = ∅ ⇒ sp M ∩ sp N = {0};

moreover let |a|X = 1 for every a ∈ A (this is not a restriction).
Consequently

if
∑
n∈N

αnan = 0 with αn ∈ F and an ∈ A (n ∈ N), then αn = 0 for every n ∈ N.

Let Nq ⊆ A (q ∈ Z+) be such that A =
⋃

q∈Z+

Nq, each Nq is an infinite set and

Nq ∩Np = ∅ (q, p ∈ Z+, q 6= p). Further on, let λn ∈ R+ (n ∈ N) be such that∑
n∈N

λn = 1.

Let bq :=
∑
n∈N

λneq,n for every q ∈ Z+, where Nq = {eq,n : n ∈ N} with eq,n 6= eq,m

if n, m ∈ N, n 6= m (q ∈ Z+) (such elements bq (q ∈ Z+) are existing as X is a
Banach space). Then |bq|X ≤ 1 for every q ∈ Z+.

Hence bq ∈ sp Nq \ sp Nq, sp Nq ∩ sp Nt = {0} if q, t ∈ Z+, q 6= t and therefore
bq 6= bt if q, t ∈ Z+, q 6= t, A ∩ {bq : q ∈ Z+} = ∅ and A ∪ {bq : q ∈ Z+} is a
linearly independent set of vectors.

Therefore we can consider B a Hamel basis of X such that B ⊇ A ∪D, where
D := { bq

q
: q ∈ Z+}, with |b|X = 1 for every b ∈ B \ D, and C := co {αb : α ∈

F, |α| = 1, b ∈ B}.
Then C satisfies (4.3), because C is a particular case of the convex set defined,

following Theorem 1 of [16], in the final part of Example 2.2.
Let g := gC . Since C verifies (4.3) and g is its Minkowski functional, for the

proof already seen in Example 4.6 we get that g is a real valued convex bd-slsc
function.

At last we shall prove that g is not ubd-slsc, exhibiting a sequence as described
in the statement.
Let

cq :=
bq

q
, p(q, k) ∈ Nq \ {0, . . . , k},

bq,k :=
k∑

n=0

λneq,n +
∑
n>k

λneq,p(q,k),

cq,k :=
bq,k

q
(q ∈ Z+, k ∈ N);

then for each q ∈ Z+, k ∈ N it is bq,k ∈ co {eq,n : n ∈ N} ⊆ C, but there does not
exist an α > 1 such that αbq,k ∈ C because, being B a linearly independent set of
vectors, if α > 1 the following one is the only way in which αbq,k can be written as
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a linear combination of elements of B: αbq,k =
k∑

n=0

αλneq,n +
∑
n>k

αλneq,p(q,k) and,

on the other hand,
k∑

n=0

αλn +
∑
n>k

αλn = α > 1; therefore g(bq,k) = 1 and, being

g positively homogeneous, g(cq,k) = 1
q
; whence, for each q ∈ Z+, the sequence

(g(cq,k))k∈N is constant and therefore weakly decreasing; furthermore g(cq) = 1
(for a demonstration quite similar to the above proof that g(bq,k) = 1) and so
g(cq) = 1 > 1

q
= lim

k→+∞
g(cq,k), besides lim

k→+∞
cq,k = cq and we conclude.

Lemma 4.9. Let Y be a topological space and let X be a topological linear space.
The following facts hold:
(a) if A is a subset of Y , F is a closed subset of Y and G is an open subset of Y
such that A ∩G = F ∩G, then A ∩G ⊆ F (and therefore A ∩G = F ∩G);
(b) if U is an open subset of X and C is a convex subset of X such that U∩C 6= ∅
and

◦
C 6= ∅, then U ∩

◦
C 6= ∅;

(c) if A is a subset of X, C is a convex subset of X and F is a closed subset of

X such that
◦
A ∩ C 6= ∅, A ∩

◦
C = F ∩

◦
C and

◦
C 6= ∅, then

◦
A 6= ∅.

Proof. (a) If by absurd A∩G∩ (Y \F ) 6= ∅, then, being G∩ (Y \F ) an open,
it is ∅ 6= A ∩G ∩ (Y \ F ) = F ∩G ∩ (Y \ F ) = ∅, that is a contradiction.

(b) Let x ∈
◦
C and y ∈ U ∩ C. If x = y we have the desired result; otherwise, if

x 6= y, from [8] (demonstration inside of the proof of Theorem V.2.1) it follows

that [x, y] \ {y} ⊆
◦
C, besides from the topological linear structure of X it is

([x, y] \ {y}) ∩ U 6= ∅ and so we can conclude.

(c) Applying (b) to U :=
◦
A, we get

◦
A ∩

◦
C 6= ∅. Besides, from (a) applied with

G :=
◦
C, we deduce

◦
A ∩

◦
C ⊆ A ∩

◦
C ⊆ F and so

◦
A ∩

◦
C ⊆ F ∩

◦
C ⊆ A, namely

◦
A ∩

◦
C is a not empty open set contained in A and we conclude.

Theorem 4.10. Let X be a topological linear space and let f : X → [−∞, +∞]
be a convex, ubd-slsc function. Suppose that f is not +∞ identically, let a ∈ R
be such that a > inf

X
f is relative to f as in condition (iii) of Definitions 3.1 and

let A := {x ∈ X : f(x) ≤ a}. Then:
(a) the set A∩ (dom f)◦ is sequentially closed with respect to the relative topology
of (dom f)◦.
Henceforth suppose that (dom f)◦ 6= ∅. Then also the following facts hold:
(b) there exists a point x0 ∈ {x ∈ X : f(x) < a} ∩ (dom f)◦ and therefore A− x0

is absorbing;

(c) if X is a Banach space, it results that
◦
A 6= ∅ and f is continuous in the points

of (dom f)◦.
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Proof. If there exists a point z0 ∈ X such that f(z0) = −∞, then f(x) = −∞
for every x ∈ (dom f)◦ (see for example [19], Proposition 2.1.4) and all the parts
of the desired result follow also if X is simply a topological linear space (in fact
in such case (dom f)◦ ⊆ {x ∈ X : f(x) < a}).

Henceforward we can suppose that f(z) > −∞ for every z ∈ X; with such a
further hypothesis, we shall prove all the three parts of the desired result.

(a) Let (xn)n∈N be a sequence of elements of A∩ (dom f)◦ and let x ∈ (dom f)◦

be such that xn → x; let α = lim inf
n→+∞

f(xn). Then α ≤ a; moreover there exists a

subsequence (xnk
)k∈N of (xn)n∈N such that f(xnk

) → α and there exists a further
subsequence (xnkh

)h∈N of (xnk
)k∈N such that (f(xnkh

))h∈N is a weakly monotone

sequence. Now, if by absurd a < f(x), we get α < f(x) and hence, using Lemma
3.1 of [2], it is not restrictive to suppose that (f(xnkh

))h∈N is a weakly decreasing
sequence; so it is enough to use the ubd-slsc of f to obtain a contradiction.

(b) Let y0 ∈ (dom f)◦ and let z ∈ X be such that f(z) < a; then z ∈ dom f
and hence, being dom f a convex set, it is [y0, z] ⊆ dom f ; therefore f∣∣∣[y0,z]

is an

upper semicontinuous function (see [14], Theorem 10.2) and so there exist a point
x0 ∈ [y0, z] \ {z} such that f(x0) < a; besides, from [8] (demonstration inside of
the proof of Theorem V.2.1) it follows that [y0, z] \ {z} ⊆ (dom f)◦; consequently
x0 ∈ {x ∈ X : f(x) < a} ∩ (dom f)◦.

Now, if w ∈ {x ∈ X : f(x) < a} ∩ (dom f)◦, then w is an internal point of A,
because, being an interior point of dom f , for every x ∈ X there exists a βx ∈ R+

such that [w, w + βxx] ⊆ (dom f)◦; therefore f∣∣∣[w,w+βxx]
is a continuous function

and so, being f(w) < a, there exists an αx ∈ R+ such that f(w + λx) < a for all
λ ∈ [0, αx]. Then A− w is absorbing.

(c) Now let X be a Banach space. First of all we shall prove that
◦
A 6= ∅.

From (b) the set A − x0 is absorbing; therefore X =
⋃

n∈Z+

n(A− x0) and from

Baire’s lemma there exists a n ∈ Z+ such that (n(A−x0))
◦ 6= ∅, hence (A−x0)

◦ 6=

∅, wherefore
◦
A 6= ∅.

Now we shall prove that part (c) of Lemma 4.9 can be applied with C := dom f .

Since A ⊆ dom f and
◦
A 6= ∅, we get ∅ 6=

◦
A ⊆

◦
A ∩ dom f . On the other hand,

from (a), the set A∩ (dom f)◦ is sequentially closed (and hence closed, satisfying
the topology of X the first axiom of countability) with respect to the relative
topology of (dom f)◦ and therefore there exists F closed subset of X such that
A ∩ (dom f)◦ = F ∩ (dom f)◦. Consequently, from part (c) of Lemma 4.9, we

have that
◦
A 6= ∅.
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Then
◦
A is a not empty open subset of dom f on which f is bounded above

(from the real element a) and so we can conclude, applying Theorem 3.1.8 of
[10].

Remark 4.11. The Example 3.1 of [2] and those cited in Remarks 3.1 of [2] give
also examples of Banach spaces Y and of convex, ubd-slsc, with respect to the
weak topology, functions defined on Y with values in [0, +∞], that are not d-slsc
with respect to the weak topology.
In fact it suffices to use (b) of Remarks 3.3 and, using the notations of the above
cited examples, to note that inf f = 0 and that, relatively to whatever value of
a ∈ ]0, 1[, it is true that:
D ∩ {y ∈ Y : g(y) ≤ a} = C ∩ {y ∈ Y : g(y) ≤ a} is convex and closed,
f∣∣∣D∩{y∈Y : g(y)≤a}

= g∣∣∣D∩{y∈Y : g(y)≤a}
and g is continuous (for Example 3.1 of [2]),

D∩SY (0, a) = C ∩SY (0, a) is convex and closed, f∣∣∣D∩SY (0,a)
= | |Y ∣∣∣D∩SY (0,a)

(for

Example cited in (a) of Remarks 3.1 of [2]),
f∣∣∣SY (0,a)

= | |Y ∣∣∣SY (0,a)
(for Example cited in (b) of Remarks 3.1 of [2]).

5. Ekeland’s and Caristi’s theorems

Remark 5.1. In the following theorem we shall show an extension of Ekeland’s
variational principle (see [9], Theorem 1.1) to the case in which the hypothesis of
lsc is replaced by ubd-slsc. The proof is inspired by the demonstration of Theorem
2.1 of [6]: since we shall add the result (b) (that was considered already in [9],
Theorem 1.1) and for reading convenience, here we are writing the whole proof,
removing some trivial mistakes of [6].

The authors thanks the referee for having pointed out to them that Theorem 2.1
of [6] can be deduced also from [4], Corollary 4 of Theorem 1, that subsequently
was generalized by [1], [17] and [7]: in fact it is easy to prove that the hypotheses
of such corollary are verified if we assume d-slsc (but the same we cannot do if
we assume ubd-slsc).

Moreover we wish here to point out another recent paper ([18]) in which other
generalizations of Caristi-Kirk’s Fixed Point Theorem and Ekeland’s Variational
Principle are given, in a different environment with respect to the one of the
present paper.

Theorem 5.2. Let (X, d) be a complete metric space and let f : X → ]−∞, +∞]
be a bounded from below and not +∞ identically function. Let ε > 0, λ > 0 and
u ∈ X be such that f(u) ≤ inf

x∈X
f(x) + ε. Moreover

(5.1) suppose that f is ubd-slsc and that f(u) ≤ a,

where a is relative to f as in (iii) of Definition 3.1.
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Then there exists v ∈ X such that:
(a) f(v) ≤ f(u);
(b) d(u, v) ≤ λ;
(c) f(w) > f(v)− ε

λ
d(w, v) for every w ∈ X \ {v}.

Proof. Let

ε0 := a− inf
X

f.

Since f(u) ≤ a = inf
X

f + ε0 and observing that, if ε > ε0, then a point v ∈ X

verifying (a), (b) and (c) with respect to ε0, λ and u also satisfies (a), (b) and (c)
with respect to ε, λ and u, it is not restrictive to suppose ε ≤ ε0.

For every z ∈ X let Tz = {x ∈ X : f(x) ≤ f(z)− ε
λ
d(x, z)}; then Tz 6= ∅ and

Tz = {z} if and only if f(x) > f(z)− ε
λ
d(x, z) for every x ∈ X \ {z}.

If z ∈ X and s ∈ Tz, then Ts ⊆ Tz, because if x ∈ Ts we have f(x) ≤ f(s) −
ε
λ
d(x, s); besides f(s) ≤ f(z) − ε

λ
d(s, z) as s ∈ Tz; so f(x) ≤ f(s) − ε

λ
d(x, s) ≤

f(z)− ε
λ
d(s, z)− ε

λ
d(x, s) ≤ f(z)− ε

λ
d(x, z) and hence x ∈ Tz.

Let now U := {X} ∪ {Tz : z ∈ X}. Then as a consequence of what was above
noted:

(5.2) Ts ⊆ U for every U ∈ U and s ∈ U.

There exists a function h : {(U, s) : U ∈ U , s ∈ U} → X such that h(U, s) ∈ Ts

and f(h(U, s))− inf
x∈Ts

f(x) ≤ 1

2

(
f(s)− inf

x∈U
f(x)

)
for every U ∈ U and s ∈ U : for

showing such a fact, if U ∈ U , s ∈ U and if f(s) = inf
x∈U

f(x) we choose h(U, s) = s(
in such a case we must choose h(U, s) = s, because f(s) ≤ f(x) ≤ f(s)− ε

λ
d(x, s)

for every x ∈ Ts, being Ts ⊆ U on account of (5.2), and so Ts = {s}
)
, otherwise

we use the characterization of greatest lower bound and the choice’s axiom.
Then, for definition of Ts, we have that

(5.3) f(h(U, s)) ≤ f(s) for every U ∈ U and s ∈ U.

Now we consider two recursive sequences (xn)n∈N and (Sn)n∈N defined by x0 =
u, S0 = X, xn+1 = h(Sn, xn), Sn+1 = Txn for every n ∈ N; then, using (5.3), (5.2)
and definition of h, we get

(5.4) f(xn+1) ≤ f(xn) ≤ f(u) < +∞, Sn+1 ⊆ Sn for every n ∈ N

and

(5.5) f(xn+1)− inf
x∈Sn+1

f(x) ≤ 1

2

(
f(xn)− inf

x∈Sn

f(x)
)

for every n ∈ N;

moreover, being xn+1 ∈ Sn+1 = Txn , it holds

(5.6)
ε

λ
d(xn, xn+1) ≤ f(xn)− f(xn+1) for every n ∈ N,
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whence (xn)n∈N is a Cauchy sequence, since there exists lim
n→∞

f(xn) ∈ R because

of (5.4) and being f lower bounded for hypothesis.
Let v = lim

n→∞
xn; since f is a ubd-slsc function, f(u) ≤ inf

X
f + ε0 = a and using

(5.4), we obtain that

(5.7) f(v) ≤ lim
n→∞

f(xn) ≤ f(u)

and so (a) is verified.
From (5.6), using triangular inequality of distance, we deduce

ε

λ
d(x0, xn) ≤

n∑
k=1

ε

λ
d(xk−1, xk) ≤

n∑
k=1

(f(xk−1)− f(xk)) = f(x0)− f(xn)

for every n ∈ Z+; hence, considering that x0 = u, v = lim
n→∞

xn, f(xn) ≥ inf
x∈X

f(x)

for every n ∈ N and by means of a limit passage for n → ∞ in the first and the
last terms, we get

ε

λ
d(u, v) ≤ f(u)− lim

n→∞
f(xn) ≤ inf

x∈X
f(x) + ε− lim

n→∞
f(xn) ≤ ε,

from whence (b) follows.
As an alternative, for showing (b), we can observe that Tz ⊆ {x ∈ X : d(x, z) ≤

λ} for every z ∈ X such that f(z) ≤ inf
x∈X

f(x) + ε: indeed, in such hypothesis on

z, if y ∈ Tz and if by absurd d(y, z) > λ then f(y) ≤ f(z)− ε
λ
d(y, z) < f(z)− ε ≤

inf
x∈X

f(x), that gives a contradiction. Besides, using (5.4), we have that xn ∈ Tu ⊆
{x ∈ X : d(x, u) ≤ λ} for every n ∈ N. Consequently d(v, u) = lim

n→∞
d(xn, u) ≤ λ,

that is (b).
If, by absurd, (c) is not true, then

(5.8) there exists x ∈ X \ {v} such that f(x) ≤ f(v)− ε

λ
d(x, v);

owing to (5.4) and (5.7), it is

f(v) ≤ lim
k→∞

f(xk) ≤ f(xm) ≤ f(xn)− ε

λ
d(xm, xn) for every n, m ∈ N, m ≥ n

and hence, passing to the limit for m →∞ in the first and the fourth terms, we
get f(v) ≤ f(xn)− ε

λ
d(v, xn) for every n ∈ N; therefore, using (5.8), it holds

f(x) ≤ f(xn)− ε

λ
d(v, xn)− ε

λ
d(x, v) ≤ f(xn)− ε

λ
d(xn, x) for every n ∈ N;

hence x ∈ Sn+1 for every n ∈ N, from whence

(5.9) f(x) ≥ inf
Sn

f for every n ∈ N;

besides, since from (5.4) it follows that (inf
Sn

f)n∈N is a weakly increasing se-

quence, we can do a limit passage for n → ∞ in (5.5), obtaining that 0 ≤
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α := lim
n→∞

(
f(xn) − inf

y∈Sn

f(y)
)
≤ 1

2
α, from whence α = 0; then, using (5.8) and

(5.7), we get that f(x) < f(v) ≤ lim
n→∞

f(xn) = lim
n→∞

inf
Sn

f , that is in contradiction

with (5.9).

Example 5.3. In the hypotheses of theorem 5.2, but without the additional
hypothesis f(u) ≤ a, it is easy to verify that conclusions (a) and (c) are still true
(in fact, if ε0 = a − inf

X
f and if f(u) > inf

X
f + ε0, then it is enough to consider

t ∈ X such that f(t) ≤ inf
X

f + ε0 and in such case a point v relative to ε0, λ and

t as in theorem 5.2 solves the question) but it can happen that there exist ε, λ
and u satisfying the remaining hypotheses, for which there is not a point v that
verifies conclusions (b) and (c).

On R we consider the equivalence relation ∼ defined by x ∼ y if x − y ∈ Q
(x, y ∈ R) and let R := {A ∩ [0, 2] : A equivalence class with respect to ∼};
then #B = ℵ0 for every B ∈ R and ∪R = [0, 2], hence #R = 2ℵ0 , so there exists
a bijective function ϕ : R→ ]0, 1]; moreover B = [0, 2] for every B ∈ R. Let now

f : R → R be defined by f(x) =

arctg x if x ∈ ]−∞, 0[∪ ]2, +∞[

ϕ(B) if x ∈ B (B ∈ R)
.

Because f is real-valued and continuous in the points y where f(y) < 0, then f
is ubd-slsc, considering a = 0 > inf

R
f ; moreover f is bounded from below. Let

ε = π
2
+1, λ = 1 and u = 1; then f(u) ∈ ϕ(R) ≤ 1 = inf

R
f +ε. If by absurd there

exists v ∈ R verifying conclusions (b) and (c), then using (b) we get that |v−1| ≤ 1
and therefore v ∈ [0, 2]; let B ∈ R such that v ∈ B. Consequently 1 ≥ f(v) > 0
and, if α ∈ ]0, f(v)[, we obtain that ϕ−1(α) ∈ R, whence ϕ−1(α) = [0, 2] and so
there exists a sequence (xn)n∈N of elements of ϕ−1(α) converging to v; from this,
using (c), we obtain that α = ϕ(ϕ−1(α)) = f(xn) > f(v) − ε|xn − v| for every
n ∈ N and, by means of a limit passage for n →∞, we have α ≥ f(v), that is a
contradiction.

Example 5.4. If in theorem 5.2 the hypothesis (5.1) is replaced by a hypothesis
of bd-slsc on f , then, in spite of what we noted at the beginning of example
5.3, conclusion (c) can be not true. Indeed here we shall show an example of a
bd-slsc function f : [1

2
, +∞[→ ]0, 1] for which there does not exist v ∈ [1

2
, +∞[

verifying conclusion (c) of theorem 5.2 with respect to ε = λ = 1 (with such a
choice the hypothesis f(u) ≤ inf

x∈[ 1
2
,+∞[

f(x)+ ε of theorem 5.2 is satisfied by every

u ∈ [1
2
, +∞[ ), that is for every v ∈ [1

2
, +∞[ there exists w ∈ [1

2
, +∞[ \{v} such

that f(w) ≤ f(v)− |w − v|.
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Let B :=
⋃

n∈Z+

( ]
3n2 + 5n− 1

3(n + 2)
, n

[ ⋃ ]
n,

3n2 + 7n + 1

3(n + 2)

[ )
and let f(x) =

1
n+2

+ 3(n− x) if x ∈ ]3n2+5n−1
3(n+2)

, n[ (n ∈ Z+)
1

n+2
+ 3(x− n) if x ∈ ]n, 3n2+7n+1

3(n+2)
[ (n ∈ Z+)

1 if x ∈ [1
2
, +∞[ \B

(that is, if g : [1
2
, +∞[→ ]0, 1] is

the continuous piecewise affine function, with slope alternatively equal to −3 and
3 in the connected components of B and with value 1 in [1

2
, +∞[ \(B ∪ Z+), f

coincides with g on [1
2
, +∞[ \Z+ and has value 1 in the points of Z+).

Then f is a bd-slsc function, by the help of (a) of Remarks 3.3.
On the other hand, now we shall show that for every v ∈ [1

2
, +∞[ there exists

w ∈ [1
2
, +∞[ \{v} such that f(w) ≤ f(v)− |w − v|:

(i) if v ∈ B, it is enough to choose w ∈ B in the same connected component of v
and such that f(w) < f(v), because with such a choice it holds

f(w) = f(v)− 3|w − v| < f(v)− |w − v|;
(ii) if v ∈ Z+, then a point w sufficiently close to v solves what is requested,
because

lim
t→v

f(t) < 1 = lim
t→v

(f(v)− |t− v|);

(iii) if v ∈ [1
2
, +∞[ \(B ∪Z+), then it is sufficient to consider an element n ∈ Z+

such that |n − v| ≤ 1
2

and to choose w in the interval with extremes n and v, w
sufficiently close to n, because

lim
t→n

f(t) =
1

n + 2
≤ 1

3
<

1

2
= 1− 1

2
≤ lim

t→n
(f(v)− |t− v|).

Remark 5.5. In the following results we note that Caristi’s fixed point theorem
(see [5], Theorem (2.1)’) and Caristi’s infinite fixed points theorem can be ex-
tended to the case in which the hypothesis of lsc is replaced by ubd-slsc (see also
the extensions given in the case d-slsc by [12] (Theorem 2.1) and by [6]).

Theorem 5.6. (Caristi’s fixed point theorem; see [5], Theorem (2.1)’) Let (X, d)
be a complete metric space and let ϕ : X → R be a ubd-slsc and bounded from below
function. Let T : X → X be a function such that d(x, T (x)) ≤ ϕ(x) − ϕ(T (x))
for every x ∈ X. Then there exists x0 ∈ X such that T (x0) = x0.

Proof. Is is enough to repeat the same demonstration of Theorem 2.2 of [6],
where theorem 5.2 has to be used instead of Theorem 2.1 of [6].

Theorem 5.7. (Caristi’s infinite fixed points theorem) Let (X, d) be a complete
metric space and let ϕ : X → R be a ubd-slsc and bounded from below function,
that does not obtain its infimum on X. Let T : X → X be a function such that
d(x, T (x)) ≤ ϕ(x)−ϕ(T (x)) for every x ∈ X. Then T admits infinite fixed points
in X.
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Proof. Is is enough to repeat the same demonstration of Theorem 2.3 of [6],
where theorems 5.2 and 5.6 have to be used instead of Theorems 2.1 and 2.2 of
[6].
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[1] M. Altman, A Generalization of the Brézis-Browder Principle on Ordered Sets, Nonlinear
Anal. 6 (1982), no. 2, 157–165.

[2] A. Aruffo and G.F. Bottaro, Generalizations of Sequential Lower Semicontinuity, Boll.
Unione Mat. Ital. (9) 1 (2008), no. 2, 293–318.

[3] J.M. Borwein and Q.J. Zhu, Techniques of Variational Analysis, CMS Books in Mathe-
matics, 20, Springer (2005).
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