
A MOCK METAPLECTIC REPRESENTATION

FILIPPO DE MARI AND ERNESTO DE VITO

Abstract. We study a unitary non irreducible representation U of a semidirect
product G whose normal factor A is abelian and whose homogeneous factor H is a
locally compact second countable group acting on a Riemannian manifold X . The
key ingredient is a C1 intertwining map between the actions of H on the dual group
Â and X . The representation U generalizes the restriction of the metaplectic rep-
resentation to triangular subgroups of Sp(d,R). For simplicity, we restrict ourselves
to the case where A = Rn and X = Rd . We decompose U as a direct integral and
obtain necessary and sufficient conditions for its admissible vectors. Many examples
are given.
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1. Introduction

Unitary representations of semidirect products have been thoroughly studied by
many authors and are useful in a wide variety of applications. In particular, they
play a central rôle in the harmonic analysis of the continuous wavelet transform, as
discussed in [14]. From the point of view of applications, a unitary representation U
of a locally compact group G (with Haar measure dg ) is particularly useful if it yields
a reproducing formula, that is, a weak reconstruction of the form

(1) f =
∫
G
〈f, Ugη〉 Ugη dg,

valid for every f in the representation space H , for some admissible vector η ∈ H . In
this case (G,U, η) is called a reproducing system. Alternatively, we simply say that G is
a reproducing group. If U is irreducible, this is nothing else but the classical concept of
square integrable representation. Typically, H = L2(Rd), and in this case an admissible
vector η is sometimes called a wavelet. Apart from direct use, formula (1) is important
also because it is the starting point for its discrete counterparts, an aspect that we shall
not develop in the present paper. It is actually rather interesting to observe that most
formulae of the above type that appear in applications, either in their continuous or
discrete versions, turn out to be expressible by taking the restriction of the metaplectic
representation to some triangular subgroup G of the symplectic group Sp(d,R). This
is the main theme in the papers [6], [7], and the present contribution is an outgrowth
thereof.

We will be concerned with groups G that are semidirect products, where the normal
factor is an abelian group A and the homogeneous factor is a locally compact second
countable group H . Our main object of study is a unitary representation U of G
whose construction is based on the following ingredients: a Riemannian manifold X
on which H acts by C1 diffeomorphisms and a C1 map Φ : X → Â (the dual group

of A) that intertwines the actions of H on X and on Â . The representation g 7→ Ug
acts on L2(X) as pointwise multiplication by the character Φ(x) if g ∈ A and quasi
regularly if g ∈ H , as clarified below in (9). For simplicity, we take A = Rn and
X = Rd and we also suppose that the Jacobian of the action on Rd is independent of
x . We call U the “mock” metaplectic representation because its definition is inspired
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by the case where Rn is a vector space of d× d symmetric matrices on which a closed
subgroup H of GL(d,R) acts by σ 7→ th−1σh−1 . Under these circumstances, G can
be identified with a triangular subgroup of Sp(d,R) and U is the restriction to G of
the metaplectic representation (see Example 1).

General admissibility criteria for type-I groups have been given in [14]. Fuhr’s ap-
proach, however, assumes information that is not so easily available in many circum-
stances. Indeed, given the representation U on H , his theory stems from knowledge
of a direct integral decomposition H =

∫
Ĝ
mσHσ dν(σ) and a corresponding diagonal-

ization U =
∫
Ĝ
mσσ dν(σ). Knowing such decompositions is not a trivial task: the

measure ν is known to exist, but one has to find it, together with the measurable
field {Hσ} and the multiplicity function σ 7→ mσ . With these data at hand, Fuhr
proves that if G is non-unimodular, then (1) holds true for some η if and only if ν
has density with respect to µ

Ĝ
, the Plancherel measure of G ; if G is unimodular,

then one has to add the extra conditions that mσ ≤ dimHσ for ν -almost every σ and∫
Ĝ
mσ dν(σ) < +∞ . The explicit knowledge of µ

Ĝ
is also non trivial, in general.

Without using the remarkable machinery of [14], we explicitly decompose U and
thereby obtain, as a byproduct, computable admissibility criteria in terms of the in-
tertwining map Φ.

Our finer results are Theorem 20 and Theorem 21, which deal with the cases where
G is unimodular or non-unimodular, respectively. They both hold under the standard
technical assumption that the H -orbits are locally closed in Φ(X) and assuming also
that the H -stabilizers in Φ(X) are compact. The latter assumption may be removed
and yields the weaker conclusion given in Theorem 14. Theorem 21 can actually be
formulated in a very simple way by saying that U is reproducing if and only if the set
of critical points of Φ has Lebesgue measure zero. This is of course very easy to check
in the examples in which Φ is explicitely known.

Here is a brief ouline of the other results contained in the paper.

• Theorem 3, which establishes an important necessary condition for a reproduc-
ing formula (1) to hold true: Φ must map sets of positive measure into sets
of positive measure, hence n ≤ d . Thus we introduce an open H -invariant
subset X of Rd with negligible Lebesgue complement whose image is denoted
by Y = Φ(X) ⊆ Rn . The fibers Φ−1(y) are Riemannian submanifolds of X
and play a crucial rôle in what follows.
• Theorem 5, based on the classical coarea formula, shows how the Lebesgue

measure of X disintegrates into measures νy concentrated on the fibers Φ−1(y),
whose covariance with respect to the H -action is explicitely calculated (18).
• Theorem 7, where a first reduction criterium for admissible vectors is given. One

looks at the H -orbits in Y and takes their preimages under Φ in X . Upon
selecting an origin y in each H -orbit in Y , one gets fibers Φ−1(y) together with
their H -translates in X . The theorem states that it is necessary and sufficient
to test that, for almost every H -orbit in Y , the L2 -norm with respect to νy
of any u ∈ L2(X, νy) can be reproduced by the (weighted) H -integral of the
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square modulus |〈u, ηhy 〉νy |2 of the components of u along the H -translates of

the restriction to Φ−1(y) of the admissible vector η . This is formula (21).
• Theorem 13, which exhibits a direct integral decomposition of U in terms of

induced representations of isotropy subgroups of H , and is independent of any
admissibility issue. This is achieved as follows.

– First of all, we make a topological assumption, namely that the H -orbits
are locally closed in Y . This is a standard assumption, without which
none of the results in the current literature on these themes holds true.

– Secondly, we derive a disintegration of the Lebesgue measure on Y à la
Mackey, that is, dy =

∫
Y τȳ dλ(ȳ), where λ is a measure on the orbit space

Y = Y/H and τȳ is concentrated on the orbit corresponding to ȳ ∈ Y .
This preliminary disintegration is carried out in Theorem 8, where the
covariance of {τȳ} with respect to the H -action is also calculated (23).

– In Proposition 10 we use the measures {τȳ} in order to “glue” together the
measures νy for all y in the same orbit, thereby producing new measures
µȳ =

∫
Y νy dτȳ(y) on X which, in turn, allow to disintegrate the Lebesgue

measure on X as dx =
∫
Y µȳ dλ(ȳ). As before, the covariance of {µȳ}

with respect to the H -action is calculated. The reason for introducing
these measures are formulae (25) and (26): the representation space of U ,
namely L2(X), is formally the double direct integral

L2(X) =
∫
Y

(∫
Y
L2(X, νy) dτȳ(y)

)
dλ(ȳ),

where the inner integral is L2(X,µȳ).
– Next we show in Lemma 12 that L2(X,µȳ) is unitarily equivalent to the

representation space Hȳ of the representation Wȳ which is unitarily in-
duced to G by the quasi regular representation of the stabilizer Hȳ (nat-
urally extended to the semidirect product Rn oHȳ ).

The conclusion of Theorem 13 is that U is equivalent to
∫
Y Wȳ dλ(ȳ), with an

explicit intertwining isometry.

2. Notation and assumptions

In this section we fix the notation and describe the setup. We start by recalling
the notions of reproducing group and admissible vector. For a thorough discussion on
admissible vectors, the reader is referred to [14].

Let G be a locally compact group with (left) Haar measure dg and U be a strongly
continuous unitary representation of G acting on the complex Hilbert space H . A
vector η ∈ H is called admissible if

‖f‖2 =
∫
G
|〈f, Ugη〉|2 dg for all f ∈ H.

If such a vector exists, we say that G is a reproducing group and that U is a reproducing
representation. Clearly, if U is reproducing, then it is a cyclic representation, but in
general it is not irreducible. When U is irreducible, the representation is reproducing
if and only if it is square integrable.
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2.1. The semidirect product. Let H be a locally compact second countable group
acting on Rn by means of the continuous representation

(2) y 7→ h[y], h ∈ H.
Let G be the semidirect product G = Rn oH with group law

(a1, h1)(a2, h2) = (a1 + h†1[a2], h1h2) a1, a2 ∈ Rn, h1, h2 ∈ H,
where h†[·] is the action given by the contragradient representation of H on Rn defined
via the usual inner product 〈·, ·〉 in Rn by

(3) 〈h†[a], y〉 = 〈a, h−1[y]〉, a, y ∈ Rn.

Since h[·] is linear, the semidirect product is well defined and G is a locally compact
second countable group. Conversely, any locally compact second countable group G
that is the semidirect product of a closed subgroup H and a normal subgroup V , which
is a real vector space of dimension n , is of the above form.

The (left) Haar measures of G and H are written dg and dh , and, similarly, da is
the Lebesgue measure on Rn . The modular functions of G and H are denoted by ∆G

and ∆H , respectively. The following relations are easily established

dg =
1

α(h)
da dh(4)

∆G(a, h) =
∆H(h)

α(h)
(5)

where α : H → (0,+∞) is the character of H defined by

(6) α(h) = | det(a 7→ h†[a])| = | det(y 7→ h−1[y])|.
The Fourier transform F : L2(Rn)→ L2(Rn) is defined by

(Ff)(y) =
∫

Rn
e−2πi〈y,a〉f(a) da, f ∈ L2(Rn) ∩ L1(Rn).

In general, if G is any locally compact second countable group, L2(G) will denote the
Hilbert space of square integrable functions with respect to left Haar measure. Finally,
if X is a locally compact and second countable topological space, the Borel σ -algebra
on X is denoted B(X) and Cc(X) denotes the space of complex continuous functions
on X with compact support. By measure we mean a σ -additive positive function µ
on B(X) which is finite on compact sets. The hypothesis on X implies that any such
measure is automatically inner and outer regular [20]. A function f : X → X ′ between
two such spaces will be called Borel measurable if f−1(B) ∈ B(X) for every B ∈ B(X ′)
and µ-measurable if f−1(B) ∈ Bµ(X), where Bµ(X) denotes the completion of B(X)
with respect to µ .

2.2. The mock metaplectic representation. Suppose we are given:

(H1) a continuous action of H on Rd by smooth maps denoted x 7→ h.x , whose
Jacobian is constant; for h ∈ H and E ∈ B(Rd) we write

(7) |h.E| = β(h)|E|;
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(H2) a C1 -map Φ : Rd → Rn intertwining the two actions of H , i.e.

(8) Φ(h.x) = h[Φ(x)] x ∈ Rd, h ∈ H.

For g = (a, h) ∈ G we define Ug : L2(Rd)→ L2(Rd) by

(9) (Ugf)(x) = β(h)−
1
2 e−2πi〈Φ(x),a〉f(h−1.x)

for almost every x ∈ Rd .

Remarks. (a) The representation (2) of H on Rn plays no direct rôle in the
definition of U ; its purpose is to construct the semidirect product G .

(b) Occasionally, we shall write fh(x) for f(h−1.x).

(c) At this stage there are no limitations on the relative sizes of n and d , but we
shall see later (Theorem 3) that in the situations that are of interest to us n ≤ d .

The next Proposition records that (9) is a good definition.

Proposition 1. The map g 7→ Ug is a strongly continuous unitary representation of
G acting on L2(Rd).

Proof. Clearly, Ug is a unitary operator and U is a representation of Rn and H sep-
arately. In order to prove that it is a representation of G , it is enough to show that
UhUaUh−1 = Uh†[a] for a ∈ Rn and h ∈ H . For f ∈ L2(Rd), and almost every x ∈ Rd

(UhUaUh−1f) (x) = β(h)−
1
2 e−2πi〈Φ(h−1.x),a〉 (Uh−1f)(h−1.x)

= e−2πi〈Φ(h−1.x),a〉 f(x) = e−2πi〈h−1[Φ(x)],a〉 f(x)

= e−2πi〈Φ(x),h†[a]〉 f(x) = (Uh†[a]f)(x)

To show strong continuity, it is enough to prove that g 7→ 〈Ugf1, f2〉 is continuous at
the identity whenever f1, f2 are continuous functions with compact support, and this
is an easy consequence of the dominated convergence theorem.

2.3. Examples. There are many interesting examples of the setup we are considering.
We will focus on some situations in which most relevant features occur.

Example 1. Let H be a closed subgroup of GL(d,R) and assume n = d . Since the
group H acts naturally on Rd , define

h.x = h[x] = hx x ∈ Rd, h ∈ H.

Choosing Φ(x) = x , the representation U is equivalent to the quasi regular represen-
tation of G via the Fourier transform. Necessary and sufficient conditions for U to be
reproducing are given in [14]. It is worth observing that if G is the “ax + b” group,
then U is

U(b,a)f(x) =
√
ae−2πibxf(ax)

which, after conjugation with the Fourier transform, is the usual wavelet representation.
It may be generalized to higher dimension (see[21]).
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Example 2. The Schrödinger representation of the Heisenberg group H1 may be
included in this setup, by regarding H1 as a closed subgroup of GL(3,R):

H1 =
{1 q t

0 1 p
0 0 1

 : q, p, t ∈ R
}
.

It is easy to see that H1 is the semidirect product H1 = AoH , where A =
{

[ pt ] : p, t ∈
R
}

and H =
{[

1 0
q 1

]
: q ∈ R

}
. The group H acts on R via translations: q.x = x + q

and has the natural representation on R2 :

q 7→ t

[
1 0
q 1

]−1

=

[
1 −q
0 1

]
.

The smooth map Φ : R → R2 defined by Φ(x) = [ −x1 ] satisfies the intertwining
property (8). The mock metaplectic representation takes the form

U(q,p,t) f(x) = e−2πi〈Φ(x),[ pt ]〉 f(q−1. x) = e−2πi(t−px) f(x− q)

and it thus coincides with the Schrödinger representation, which is irreducible but
notoriously not square integrable (i.e. not reproducing). Observe that 2 = n > d = 1.

Example 3. Let G = Σ oH ⊂ Sp(d,R) be a triangular subgroup of the form

(10) G =
{[

h 0
σh th−1

]
: h ∈ H, σ ∈ Σ

}
,

where H is a closed subgroup of GL(d,R) and Σ is an n-dimensional subspace of
Sym(d,R), the space of symmetric d× d matrices.

Inner conjugation within G yields the H -action on Σ

(11) h†[σ] := th
−1
σh−1 σ ∈ Σ, h ∈ H,

under which Σ must be invariant. As the notation suggests, (11) can be seen as a
contragredient action. Indeed, endowing Sym(d,R) with the natural inner product
〈σ1, σ2〉 = tr(σ1σ2), and hence Σ with its restriction denoted 〈·, ·〉Σ , and denoting by
σ 7→ h[σ] the representation whose contragredient version is (11), then for σ, τ ∈ Σ we
have

〈τ, h[σ]〉Σ = 〈thτh, σ〉Σ = tr(τhσth) = 〈τ, PΣ(hσth)〉Σ,
where PΣ is the orthogonal projection from Sym(d,R) onto Σ. Thus

(12) h[σ] = PΣ(hσ th) σ ∈ Σ, h ∈ H,

and if tH = H there is no need of the projection.

The group H acts naturally on Rd , that is, h.x = hx . Given x ∈ Rd , let Φ(x) ∈ Σ
be defined by

tr(Φ(x)σ) = −1

2
〈σx, x〉 x ∈ Rd.
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Identifying Rn ' Σ̂ ' Σ, we can interpret Φ(x) either as the linear functional on Σ
whose action on σ is −1

2
〈σx, x〉 or as the symmetric matrix associated to it via the

usual inner product on symmetric matrices. Condition (8) is satisfied, since

tr(Φ(h.x)σ) = −1

2
〈thσhx, x〉 = tr(Φ(x)thσh) = tr(hΦ(x)thσ) = tr(h[Φ(x)]σ).

The representation (9) is

(13) U(σ,h)f(x) = | deth|−1/2 eπi〈σx,x〉f(h−1x).

and hence it coincides with the restriction of the metaplectic representation to the
group G . Various properties of U are analyzed in [6, 7].

An important explicit example in this class is connected to the theory of shearlets
[16]. Here the group G parametrizes the (two-dimensional) phase-space operations
of translation, isotropic dilation and shear and is thus sometimes denoted TDS(2).
Precisely, G = R2 o (R+ × R) in the following way. The abelian normal subgroup
Σ ' R2 consists of the 2 × 2 symmetric matrices [ 0 a1

a1 a2
] . The homogeneous group

H ' R+ × R contains all the 2 × 2 matrices of the form δ−1/2S`/2 , where δ > 0 and
S` is the shearing matrix

S` =

[
1 `
0 1

]
,

so that for any h = (δ, `) the linear action on the abelian normal factor R2 is

h[·] = δ−1

[
1 `
0 1

]
,

and the group law of G is

(a, δ, `)(a′, δ′, `′) = (a+ [ δ 0
−δ` δ ]a′, δδ′, `+ `′).

It is easy to see that Φ(x1, x2) = −(x1x2, x
2
2/2). The mock metaplectic representation

U restricted to Σ is equivalent to translations and restricted to δ it amounts to dila-
tions, as shown in [6], where necessary and sufficient conditions for admissible vectors
are given. Observe that d = n .

Example 4. This is a case where n < d . Let H = R+ × T . Here T is the one-
dimensional torus, parametrized by θ ∈ [0, 2π), with Haar measure dθ/2π , and R+ is
the multiplicative group with Haar measure t−1dt where dt is the restriction to R+

of the Lebesgue measure on the real line. Hence H has Haar measure dt dθ/2πt and
modular function ∆H(h) = 1. The representation of H on R is

h[y] = t2y y ∈ R,

where h = (t, θ). Hence in particular α(h) = t−2 . The group law in G = R oH is

(a1, t1, θ1)(a2, t2, θ2) = (a1 + t−2
1 a2, t1t2, θ1 + θ2).

The resulting Haar measure is tdt dθ/2π and the modular function ∆G(a, t, θ) = t2 .
The action of h = (t, θ) ∈ H on R2 is given by

h.(x1, x2) = t(cos θ x1 − sin θ x2, sin θ x1 + cos θ x2) (x1, x2) ∈ R2
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so that β(h) = t2 . Finally, Φ : R2 → R is given by Φ(x1, x2) = x2
1 + x2

2 . The mock
metaplectic representation U of G on L2(R2) is

U(a,t,θ)f(x1, x2) = t−1e−2πi(x2
1+x2

2)af
(
t−1(cos θ x1 + sin θ x2), t−1(− sin θ x1 + cos θ x2)

)
.

Example 5. Let H = R∗ × R where R∗ is the (non-connected) multiplicative group
of non-zero real numbers and R is the additive group with Haar measuress |t|−1dt
and db respectively. The Haar measure of H is |t|−1dtdb and ∆H = 1. An element
h = (t, b) ∈ H acts on R and R2 by means of

h[y] = ty y ∈ R
h.(x1, x2) = (x1 + b, tx2) (x1, x2) ∈ R2

so that α(h) = |t|−1 and β(h) = |t| . Finally Φ : R2 → R is defined by Φ(x1, x2) = x2 ,
which clearly satisfies (8).

3. Main results

3.1. Dimensional constraints. Our first result, Theorem 3, states that if G is re-
producing, then n ≤ d . The interpretation of this statement in the case of wavelets
is that the dimension of the space of translations cannot exceed that of the “ground”
space. In order to prove the theorem we need a technical lemma, in the proof of
which we use a standard result in harmonic analysis on locally compact abelian groups
(see Theorem (31.33) in [18]). This is the fact that if a bounded measure ν on the lo-
cally compact abelian group G has Fourier transform that coincides almost everywhere
(on the character group Ĝ ) with the Fourier transform of an Lp(G)-function F , with
1 ≤ p ≤ 2, then F ∈ L1(G), ν is absolutely continuous with respect to Haar measure
and its Radon-Nikodym derivative is F . We apply this to a bounded measure on Rn .

Lemma 2. For any f, η ∈ L2(Rd) the following facts are equivalent:

(i)
∫
G |〈f, Ugη〉|2 dg < +∞;

(ii) for almost every h ∈ H the bounded measure on Rn

(14) Ωh(E) =
∫

Φ−1(E)
f(x)η(h−1.x) dx, E ∈ B(Rn),

has a density ωh ∈ L2(Rn).

Under the above circumstances

(15)
∫
G
|〈f, Ugη〉|2 dg =

∫
H

(∫
Rn
|ωh(y)|2 dy

)
dh

α(h)β(h)
.

Proof. Observe that Ωh is the image measure, induced by Φ, of the bounded measure
with density fηh ∈ L1(Rd) with respect to dx (see e.g. Sec. 39 in [17]). Since Ωh is
bounded, the basic integration formula for image measures, (see Theorem C, p.161 in
[17]) and (9) imply that

〈f, U(a,h)η〉 = β−
1
2 (h)

∫
Rd
e2πi〈Φ(x),a〉f(x)ηh(x) dx = β−

1
2 (h)

∫
Rn
e2πi〈y,a〉 dΩh(y).
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Assume that
∫
G |〈f, Ugη〉|2 dg < ∞ . Since dg = da dh

α(h)
, Fubini’s theorem implies that,

for almost every h ∈ H ,∫
Rn
|〈f, U(a,h)η〉|2 da = β(h)−1

∫
Rn
|
∫

Rn
e2πi〈y,a〉 dΩh(y)|2 da < +∞.

This says that the Fourier transform of Ωh is in L2(Rn), and the aforementioned
Theorem (31.33) in [18] ensures that the latter condition is equivalent to saying that
Ωh has an L2(Rn)-density ωh with respect to dy . Furthermore, by Plancherel∫

Rn
|
∫

Rn
e2πi〈y,a〉 dΩh(y)|2 da =

∫
Rn
|ωh(y)|2 dy.

Applying again Fubini’s theorem, (15) is proved. Therefore (i) implies (ii). The con-
verse statement is shown by applying the same argument backwards.

We are now in a position to state our first result.

Theorem 3. If U is a reproducing representation, then the image under Φ of any
Borel subset of Rd with positive measure has positive measure. In particular,

(i) n ≤ d;
(ii) the set of critical points1 of Φ is an H -invariant subset of Rd of measure zero.

Proof. By contradiction, suppose that there exists a Borel subset A of Rd with positive
measure such that Φ(A) is negligible. Since |A|d > 0 and the Lebesgue measure is
regular, there exists a compact subset K ⊂ A with |K|d > 0. Clearly, Φ(K) is also
compact, but |Φ(K)|n = 0. Take an admissible vector η for U . The reproducing
formula for f = χK and (15) imply that

0 < |K|d =
∫
H

(∫
Rn
|ωh(y)|2 dy

)
dh

α(h)β(h)
,

so that, on a subset of H of positive Haar measure we have ωh 6= 0. Take then h ∈ H
such that Ωh = ωhdy 6= 0. Now, if E is a Borel subset of Rn , the definition of Ωh

gives

Ωh(E) = Ωh(E ∩ Φ(K)) =
∫
E∩Φ(K)

ωh(y)dy = 0

because |Φ(K)|n = 0. Hence Ωh = 0, a contradiction.

To show (i), assume that n > d and apply the above result to A = Rd . Since Φ is
of class C1 we have |Φ(A)|n = 0, so that U cannot be reproducing.

To show (ii), denote by C the set of critical points of Φ. Sard’s theorem implies
that Φ(C) has measure zero. But then, by (i), also C has measure zero. Finally,
H -invariance of C will follow from

(16) Φ∗h.x(h∗.v) = h[Φ∗xv], x, v ∈ Rd,

where h∗ denotes the differential of the action x 7→ h.x and is therefore linear. Indeed,
(16), together with the linearity of u 7→ h[u] , shows that v ∈ ker Φ∗x if and only
h∗.v ∈ ker Φ∗h∗.x , so that dim ker Φ∗x = dim ker Φ∗h.x . Since x ∈ C if and only if
dim ker Φ∗x > d − n , the claim follows. To prove (16), fix x ∈ Rd , a tangent vector

1A point x ∈ Rd is critical for Φ : Rd → Rn if the rank of the differential map Φ∗x is less than n .
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v ∈ Tx(Rd) ' Rd and a smooth curve v(t) passing through x at time zero with tangent
vector v . Evidently, h.v(t) is smooth and has tangent h∗.v at time zero. By (8) and
again by the linearity of u 7→ h[u]

Φ∗h.x(h∗.v) =
d

dt
Φ(h.v(t))

∣∣∣∣
t=0

=
d

dt
h[Φ(v(t))]

∣∣∣∣
t=0

= h[
d

dt
Φ(v(t))

∣∣∣∣
t=0

] = h[Φ∗xv],

as desired.

3.2. Measures concentrated on the preimages under Φ. Given any x ∈ Rd , let

J(Φ)(x) =
√

det(Φ∗x · tΦ∗x) be the Jacobian of Φ at x and denote by R the set of
regular points of Φ, namely

R =
{
x ∈ Rd : J(Φ)(x) > 0

}
.

Lemma 4. The set R satisfies the following properties:

(i) it is open;
(ii) it is H -invariant and has H -invariant image;
(iii) the restriction of Φ to it is an open mapping;
(iv) for every y in its image, the fiber Φ−1(y) is a Riemannian submanifold of Rd .

Proof. (i) Since Φ has continuous derivatives, R is an open set. (ii) The H -invariance
follows from the fact that R = Rd \ C and (ii) of Theorem 3. The H -invariance of
the image follows from (8). Finally, (iii) and (iv) are standard consequences of the fact
that, by definition of J(Φ), the differential Φ∗x is surjective whenever x ∈ R .

Assumption 1. Motivated by Theorem 3, in the following we assume that C (the
complement of R) has Lebesgue measure zero. In particular, we assume that n ≤ d .
Furthermore, we fix an open H -invariant subset X of R whose complement also has
measure zero and we denote by Y its image under Φ, namely Y = Φ(X). Clearly, X
satisfies the properties (i)–(iv) described in Lemma 4 and has full measure.

The next results are based on several kinds of disintegration formulae and their
covariance properties with respect to the H -action. In Section 5.1 we review the
general theory of disintegration of measures and introduce the pertinent notation. As
for the induced H -action on measures, and the resulting covariance properties, we recall
that, if ν is a measure on X and h ∈ H , νh is the measure given by νh(E) = ν(h.E)
whenever E ∈ B(X). Equivalently,

(17)
∫
X
f(x) dνh(x) =

∫
X
f(h−1.x) dν(x)

for every f ∈ Cc(X). The first disintegration we discuss arises from the Coarea Formula
for submersions.

Theorem 5. There exists a unique family {νy} of measures on X , labeled by the
points of Y , with the following properties:

(i) νy is concentrated on Φ−1(y) for all y ∈ Y ;
(ii) dx =

∫
Y νydy ;
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(iii) for any ϕ ∈ Cc(X) the map y 7→
∫
X ϕ(x) dνy(x) ∈ C is continuous.

Furthermore,

(18) νhh[y] = α(h)β(h) νy

for all h ∈ H and all y ∈ Y .

Proof. The proof is based on the classical Coarea Formula. In Section 5.3 we give a
short proof adapted to the situation at hand and we introduce the notation used also
in this proof. The reader is thus referred to Theorem 27 below.

Define νy by (58). Property (i) is then obvious and (ii) is the content of Theorem 27.

To prove (iii), fix ϕ ∈ Cc(X) and y0 ∈ Y . If y0 6∈ Φ(suppϕ), there is an open
neighborhood V of y0 such that V ∩ Φ(suppϕ) = ∅ . Thus

∫
X ϕ(x) dνy(x) = 0 for all

y ∈ V . If y0 ∈ Φ(suppϕ), taking a finite covering if necessary, we can always assume
that there exists a diffeomorphism Ψ : U × V 7→ W such that (60) holds, where U is
an open subset of Rd−n , V is an open neighborhood of y0 and W is an open subset
of X containing suppϕ . The definition of νy gives∫

X
ϕ(x) dνy(x) =

∫
U
ϕ(Ψ(z, y))(JΨ)(z, y) dz

and the map y 7→
∫
U ϕ(Ψ(z, y))(JΨ)(z, y) dz is continuous on V by the dominated

convergence theorem.

In order to show (18), fix h ∈ H . Given ϕ ∈ Cc(X) and ξ ∈ Cc(Y ), apply both
sides of the equality in (ii) to the function x 7→ ξ(Φ(x))ϕ(x)∫

X
ξ(Φ(x))ϕ(x) dx =

∫
Y
ξ(y)

(∫
X
ϕ(x) dνy(x)

)
dy

(x 7→ h.x) =
∫
Y
ξ(y)

(∫
X
ϕ(h.x) dνhy (x)

)
dy

(y 7→ h[y]) = | deth[·]|
∫
Y
ξ(h[y])

(∫
X
ϕ(h.x) dνhh[y](x)

)
dy.

Since | deth[·]| = α(h)−1 , we get∫
X
ξ(Φ(x))ϕ(x) dx = α(h)−1

∫
Y
ξ(h[y])

(∫
X
ϕ(h.x) dνhh[y](x)

)
dy.

Applying first the change of variable x 7→ h.x and then again (ii), we also have∫
X
ξ(Φ(x))ϕ(x) dx = β(h)

∫
X
ξ(Φ(h.x))ϕ(h.x) dx

= β(h)
∫
Y
ξ(h[y])

(∫
X
ϕ(h.x) dνy(x)

)
dy.

Hence, since these equalities hold for every ξ ∈ Cc(Y ) and ϕ ∈ Cc(X), it follows that∫
X
ϕ(h.x) dνhh[y](x) = α(h)β(h)

∫
X
ϕ(h.x) dνy(x), a.e. y ∈ Y.

Replacing ϕ with ϕh yields∫
X
ϕ(x) dνhh[y](x) = α(h)β(h)

∫
X
ϕ(x) dνy(x) y 6∈ Y0,
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where Y0 ⊂ Y is a set of Lebesgue measure zero, possibly depending on ϕ . We claim
that the above equality actually holds true for all y ∈ Y , independently of ϕ . Indeed,
take a sequence (yn)n∈N in Y \ Y0 converging to y . By (iii)∫

X
ϕ(x) dνhh[y](x) = lim

n→∞

∫
X
ϕ(x) dνhh[yn](x)

= lim
n→∞

α(h)β(h)
∫
X
ϕ(x) dνyn(x)

= α(h)β(h)
∫
X
ϕ(x) dνy(x).

Since νy is a measure, (18) follows.

In view of the previous result, we may apply the theory developed in Section 5.2. In
particular we obtain (56) in the case in which ω and ρ are the Lebesgue measures:

(19) L2(X) =
∫
Y
L2(X, νy)dy, f =

∫
Y
fydy.

Here the equalities must be interpreted in M(X) and the second integral is a scalar
integral relative to the duality of M(X) and Cc(X). For a discussion of the details
see the Appendix, where it is also explained that in particular

(20) ‖f‖2 =
∫
Y
‖fy‖2

νy dy.

One of the reasons for introducing the measures {νy} is because, via the coarea
formula, they provide a very useful description of the density ωh discussed in Lemma 2.

Corollary 6. Given f, η ∈ L2(X), the function y 7→ 〈fy, ηhy 〉νy coincides almost
everywhere with the density ωh of the measure Ωh defined by (14).

Proof. Item (iii) of Theorem 25, together with Theorem 5, applied to fη̄ ∈ L1(X) and
any ξ ∈ Cc(Y ) gives∫

X
ξ (Φ(x)) f(x)η̄(h−1.x) dx =

∫
Y
ξ(y)

∫
X
f(x)η̄(h−1.x) dνy(x) dy.

The left hand side is nothing else but the integral
∫
Y ξ(y) dΩh(y) because Ωh is the

image measure, induced by Φ, of fηh dx . The corollary follows.

3.3. Reduction to fibers. Much of our analysis stems from decomposing the rep-
resentation space L2(Rd) in terms of the measures {νy} , and from a rather detailed
understanding of the H -action on Y . We thus introduce the usual notation for group
actions: if y ∈ Y , then Hy is the stabilizer of y , H[y] = {h[y] : h ∈ H} is the corre-
sponding orbit and Y/H the orbit space. At this stage we therefore need a hypothesis
ensuring that the Y/H is not a pathological measurable space. It is worth mentioning
that this hypothesis is satisfied in all the significant examples that we are aware of.
Below we further comment on this.

Assumption 2. We assume that for every y ∈ Y the H -orbit H[y] is locally closed
in Y , i.e., that it is open in its closure or, equivalently, that H[y] is the intersection of
an open and a closed set.
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The above assumption is not enough to ensure that the orbit space Y/H is a Haus-
dorff space, hence locally compact, with respect to the quotient topology. However, it
is possible to bypass this topological obstruction by choosing a different parametriza-
tion of the H -orbits of Y . Indeed, a result of Effros (Theorem 2.9 in [11]) shows that
Assumption 2 is equivalent to the fact that the orbit space Y/H is a standard Borel
space. Hence there is a locally compact second countable space Z and a Borel mea-
surable (hence Lebesgue measurable) map π : Y → Z such that π(y) = π(y′) if and
only if y and y′ belong to the same orbit. In the following, we fix the space Z , whose
points will label the orbits of Y , and we choose on Z a pseudo-image measure2 λ of
the Lebesgue measure under the map π . We note that λ is concentrated on π(Y ) and
a subset E is λ-negligible if and only if π−1(E) is a negligible subset of Y , which is
equivalent to the fact that (π ◦ Φ)−1(E) is negligible subset of Rd .

Theorem 7. Under Assumption 1, the following conditions are equivalent:

(i) the vector η ∈ L2(Rd) is admissible for U ;
(ii) for λ-almost every ȳ ∈ Z , there exists a point y ∈ π−1(ȳ) such that

(21) ‖u‖2
νy =

∫
H
|〈u, ηhy 〉νy |2

dh

α(h)β(h)
, u ∈ L2(X, νy).

If (21) holds true for y , then it holds true for every point in H[y].

Proof. On the one hand, U is reproducing if and only if there exists a square integrable
η such that for every ϕ ∈ Cc(X)∫

G
|〈ϕ,Ugη〉|2 dg =

∫
X
|ϕ(x)|2 dx =

∫
Y

∫
X
|ϕ(x)|2 dνy(x) dy,

the latter being a consequence of the coarea formula (20). On the other hand, by
Lemma 2, U is reproducing if and only if the measure Ωh defined by (14) has an
L2 -density ωh for almost every h ∈ H and formula (15) holds true, and Corollary 6
tells us that ωh can be expressed in terms of the measures {νy} . Therefore∫

Y

∫
X
|ϕ(x)|2 dνy(x) dy =

∫
G
|〈ϕ,Ugη〉|2 dg

=
∫
H

(∫
Y
|ωh(y)|2 dy

)
dh

α(h)β(h)

=
∫
H

∫
Y
|〈ϕ, ηhy 〉νy |2 dy

dh

α(h)β(h)

=
∫
Y

∫
H
|〈ϕ, ηhy 〉νy |2

dh

α(h)β(h)
dy,

where in the last line we have applied Fubini’s theorem. Reasononing as in the proof
of Corollary 6, the equality of the first and last terms of the above string is equivalent
to saying that (21) holds for almost every y ∈ Y . Next, we show that if (21) holds

2It is a measure on Z whose sets of measure zero are exactly the sets whose preimage with respect
to π have measure zero in Y . It always exists since Y is σ -compact: it is enough to take first a finite
measure on Y equivalent to the Lebesgue measure (just choose a positive L1 density ), and then to
consider the image measure on Z induced by π (see e.g. Chap. VI, Sect. 3.2 in [3]).
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for a given y ∈ Y , then it holds for every point in its orbit H[y] . Take any h ∈ H .
Using (17) and (18), and assuming (21) for y , we obtain∫

X
|ϕ(x)|2 dνh[y](x) =

∫
X
|ϕ(h.x)|2 dνhh[y](x)

=
∫
X
|ϕ(h.x)|2 α(h)β(h)dνy(x)

= α(h)β(h)
∫
H

∣∣∣∣∫
X
ϕ(h.x)η̄(k−1.x) dνy(x)

∣∣∣∣2 dk

α(k)β(k)

(h.x = z) = α(h)β(h)
∫
H

∣∣∣∣∫
X
ϕ(z)η̄((hk)−1.z) dνh

−1

y (z)
∣∣∣∣2 dk

α(k)β(k)

(hk = `) = α2(h)β2(h)
∫
H

∣∣∣∣∫
X
ϕ(z)η̄(`−1.z) dνh

−1

y (z)
∣∣∣∣2 d`

α(`)β(`)

=
∫
H

∣∣∣∣∫
X
ϕ(z)η̄(`−1.z)α(h)β(h) dνh

−1

h−1(h[y])(z)
∣∣∣∣2 d`

α(`)β(`)

=
∫
H

∣∣∣∣∫
X
ϕ(z)η̄(`−1.z) dνh[y](z)

∣∣∣∣2 d`

α(`)β(`)

=
∫
H
|〈ϕ, η`〉νh[y]

|2 d`

α(`)β(`)
,

that is (21) for h[y] , as desired. Hence (21) holds on a union of orbits that fills out a
subset Z of Y whose complement Z ′ has measure zero. Now, Z ′ is also H -invariant
and it projects onto π(Z ′), whose measure is zero because such is the measure of
π−1(π(Z ′)) = Z ′ . In principle, Z could depend on ϕ . We show next that this is not
the case.

As explained in the Appendix (see Footnote 4), there exists a sequence of functions
(ϕn)n∈N in Cc(X) with the following property: given an arbitrary ϕ ∈ Cc(X), there
exists a compact set K ⊂ X and a subsequence (ϕnk)k∈N such that

(22) supp(ϕ) ⊂ K, supp(ϕnk) ⊂ K, lim
k→∞

sup
x∈X
|ϕnk(x)− ϕ(x)| = 0.

Let Zn denote the (H -invariant and conull) subset of Y on which (21) holds for ϕn .
By dominated convergence and (22), we find that (21) holds for any ϕ ∈ Cc(X) and
any y in the intersection Z∞ := ∩nZn , which is obviously H -invariant and whose
complement Y \ Z∞ = ∪n(X \ Zn) has measure zero.

Note. Since π induces a Borel isomorphism between the orbit space Y/H and Φ(Y ), in
the above statement and in the theorems of the following section, it would be possible
to avoid the space Z by considering on Y/H a σ -finite measure defined on the quotient
σ -algebra, which, by Assumption 2 (Theorem 2.9 in [11]) coincides with the Borel σ -
algebra induced by the quotient topology. However, this measure could fail to be finite
on compact subsets.

3.4. Disintegration formulae. Our next result, Theorem 14, is based on some clas-
sical formulae that allow both a geometric interpretation of the integral (21) and a
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computational reduction that in the known examples is indeed significant. This is in-
spired by the irreducible case, where it is known that U is reproducing (i.e. square
integrable) if and only if the H -orbit, unique by irreducibility, has full measure and
the inducing representation of the stabilizer Hy is square integrable as well [1].

We allude to formulae that express an integral over Y as a double integral, first along
the single H -orbits and then with respect to the measure λ on the space Z . Although
these kinds of formulae can be traced back to Bourbaki [4] and Mackey [22], perhaps
one of the most famous occurences of such a disintegration procedure appears in the
celebrated paper of Kleppner and Lipsman [19]; for a recent review see [15]. Much in
the same spirit, we shall also need to decompose integrals over H by integrating along
a closed subgroup H0 first, and then over the homogeneous space H/H0 , which we
identify with a suitable orbit of Y . The topological hypothesis A2 is needed in order
that these decomposition formulae can be safely applied.

Recall that in the beginning of Section 3.3 we fixed a space Z labelling the orbits
of Y and a measure λ on Z whose null sets are in one-to-one correspondence with the
H -invariant null sets of Y .

Theorem 8. There exists a λ-full subset Y of Z and a family {τȳ} of measures on
Y , labeled by the points of Y , with the following properties:

(i) τȳ is concentrated on π−1(ȳ) for all ȳ ∈ Y ;
(ii) dy =

∫
Y τȳ dλ(ȳ).

Furthermore, for all h ∈ H and all ȳ ∈ Y

(23) τhȳ = α(h)−1τȳ.

The family {τȳ} is unique in the sense that if {τ ′ȳ} is another family satisfying (i) and

(ii), then τ ′ȳ = τȳ for almost every ȳ ∈ Y .

Proof. The content of the theorem can be found in many different papers, see Lem-
mas 11.1 and 11.5 of [22] and Theorem 2.1 of [19], in slightly different contexts. The
cited results are both based on Bourbaki’s treatment of disintegration of measures.
Here we simply adapt this theory to our setting.
Theorem 2 Ch.VI § 3.3 of [3] yields a family {τz} of measures on X labeled by the
points z ∈ Z , and unique in the sense of the statement, such that

• τz 6= 0 if and only if z ∈ π(Y )
• τz is concentrated on π−1(z)
• dy =

∫
Z τzdz .

We now show that for almost every z ∈ π(Y ) the measure τz is relatively invariant
with respect to the action of H (see also Lemmas 11.3 and 11.5 of [22]). Fix h ∈ H .
By definition (dy)h = α(h−1)dy . For all ϕ ∈ Cc(Y ),∫

Y
ϕ(y)α(h−1)dy =

∫
Z

(∫
Y
ϕ(y)α(h−1)dτz(y)

)
dz.
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The left hand side is also equal to∫
Y
ϕ(h−1[y]) dy =

∫
Z

(∫
Y
ϕ(h−1[y])dτz(y)

)
dz =

∫
Z

(∫
Y
ϕ(y)dτhz (y)

)
dz,

so that
∫
Z α(h−1)τzdz =

∫
Z τ

h
z dz , and both τhz and α(h−1)τz are concentrated on

π−1(z). Hence, by iv) of Theorem 25, τhz = α(h−1)τz for almost every z ∈ Z . The
set of z such that the above equality holds is actually independent of h . Indeed, since
H is second countable, there is a dense countable subset D ⊂ H and, by the above
equality, a negligible set N such that τhz = α(h−1)τz for all h ∈ D , whenever z 6∈ N .
Take h 6∈ D . By density there is a sequence (hn) in D such that hn converges to h .
For every z 6∈ N and every ϕ ∈ Cc(X)∫

Y
ϕ(y) dτhz (y) = lim

n

∫
Y
ϕ(y)dτhnz (y)

= lim
n

∫
Y
ϕ(y)α(h−1

n )(x)dτz(y) =
∫
Y
ϕ(y)α(h−1)dτz(y),

so that τhz = α(h−1)τz . Since τz 6= 0 if z ∈ π(Y ), the measure τz is relatively invariant.

Assumption 2 is needed in order to apply the cited theorem from [3]. The same
theorem actually holds under the (weaker) conditions that are described in the lemma
below. Their equivalence does not seem to be a known fact. In [15], Theorem 12, it is
shown that (i) is a necessary condition for the disintegration formula (ii) of Theorem 8
to hold true. In the statement below π̂ denotes the canonical projection from Y onto
Y/H .

Lemma 9. The following two conditions are equivalent:

(i) there exists an increasing sequence of compact subset {Kn} of Y such that the
complement of ∪Kn is Lebesgue negligible and π̂(Kn) is an Hausdorff space,
endowed with the relative topology3;

(ii) there exists an H -invariant null set N ⊂ Y such that (Y \N)/H is a standard
Borel space.

Proof. First we show that (i) implies (ii). Denote by R the equivalence relation induced
by the action of H on Y , that is, y ∼R y′ if and only if π̂(y) = π̂(y′). Taking
into account that X is σ -compact and footnote 3, (i) states that R is a Lebesgue
measurable equivalence relation according to the definition in Ch. VI § 3.4 of [3].
Hence Proposition 2 Ch. VI § 3.4 of [3] implies there exists a locally compact second
countable space Z and a Lebesgue measurable map p : Y → Z such that p(y) = p(y′) if
and only if π̂(y) = π̂(y′). Egoroff theorem implies there exists an increasing sequence
of compact subsets, denoted again by {Kn} such that the complement of ∪Kn is
Lebesgue negligible and the restriction of p to Kn is continuous. Without loss of
generality we can suppose that p(Y ) 6= Z and we fix z0 6∈ p(Y ). For any n define
pn : Y → Z as pn(y) = p(y′) if y = h[y′] for some h ∈ H and y′ ∈ Kn , and

3Due to Prop. 3 Ch.1 § 5.3 of [2], π̂(Kn) is a Hausdorff space if and only if the quotient space Kn/Rn

is Hausdorff with respect to the quotient topology where Rn is the equivalence relation induced by
H on Kn .
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pn(y) = z0 , otherwise (observe that if y = h′[y′′] for some h′ ∈ H and y′′ ∈ Kn ,
then π̂(y′) = π̂(y′′) so that p(y′) = p(p′′)). We claim that pn is Borel measurable.
First we show that for any closed subset C ⊂ Z with z0 6∈ C , p−1

n (C) is a Borel set.
By construction p−1

n (C) = H[p−1
Kn(C)] where p−1

Kn(C) is a closed subset of Kn since
pKn is continuous, hence it is a compact subset of Kn since Kn is compact and, a
fortiori, a compact subset of Y . Since H is σ -compact and the action of H on Y
is continuous, H[p−1

Kn(C)] is a countable union of compact subsets, hence it is Borel
set. As a special case, H[Kn] is also a Borel set as well as its complement p−1

n (z0). It
follows that p−1

n (C) is a Borel set for any closed subset C ⊂ Z , so that pn is Borel
measurable. The complement N of ∪nH[Kn] is an H -invariant Borel subset of Y with
zero Lebesgue measure. By construction, for any n < m clearly pm(y) = pn(y) for all
y ∈ Kn ⊂ Km , so that limn pn(y) = p(y) exists for all y 6∈ N and the restriction of p
to the H -invariant Borel set Y \ N is Borel measurable. Hence there is an injective
Borel map j : (Y \N)/H → Z , that is, (Y \N)/H is a standard Borel subset.

To show the converse result, let N as in (ii). Since (Y \N)/H is a standard Borel
space, there exists a Borel injective map i : (Y \ N)/H → R . Furthermore, fix any
section s : N/H → N and define p : Y → Y × R

p(y) =

(y0, i(π̂(y))) y 6∈ N
(s(π̂(y)), 0) y ∈ N

,

where y0 ∈ Y \N . Clearly the map p is Lebesgue measurable and p(y′) = p(y) if and
only if π̂(y) = π̂(y′). Egoroff theorem implies there exists an increasing sequence of
compact subsets {Kn} such that the complement of ∪Kn is Lebesgue negligible and
the restriction of p to Kn is continuous. A standard result of topology ensures that
π̂(Kn) is homeomorphic to p(Kn) which is a compact subset of an Hausdorff space, so
it is Hausdorff too.

3.5. An integral decomposition of U . In this section Assumptions 1 and 2 are
taken for granted. The main result of this section is that Theorems 5 and 8, which hold
both true, provide an integral decomposition of the mock metaplectic representation
in terms of induced representations of isotropy subgroups of H . This result, which is
of some independent interest, is at the root of Theorem 14, which characterizes the
admissible vectors for U .

Proposition 10. Possibly redefining Y by subtracting a negligible set if necessary, for
every ȳ ∈ Y the family of measures {νy} is scalarly integrable with respect to τȳ , the
measure on X

µȳ =
∫
Y
νy dτȳ(y)

is concentrated on the H -invariant closed subset Φ−1(π−1(ȳ)) and for all h ∈ H
µhȳ = β(h)µȳ.

Furthermore, the family of measures {µȳ} is scalarly integrable with respect to λ and

dx =
∫
Y
µȳ dλ(ȳ).
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Proof. The coarea formula, that is (ii) of Theorem 5, says that if f is an integrable
function with respect to the Lebesgue measure, then also y 7→ 〈νy, f〉 =

∫
X f(x)dνy(x),

is Lebesgue integrable, and ∫
Y
〈νy, f〉 dy =

∫
X
f(x) dx.

Theorem 8 allows us to apply (iii) of Theorem 25 to 〈νy, f〉 and we thus have a negligible
set N ⊂ Y such that, 〈νy, f〉 is integrable with respect to τȳ for all ȳ 6∈ N , the
map ȳ 7→

∫
Y 〈νy, f〉 dτȳ(y) is integrable with respect to λ and, by what we have just

established

(24)
∫
Y

(∫
Y
〈νy, f〉 dτȳ(y)

)
dλ(ȳ) =

∫
Y
〈νy, f〉 dy =

∫
X
f(x) dx.

Fix an increasing sequence (Uk) of relatively compact subsets covering X with Uk ⊂
Uk+1 . For each k , the above argument applied to the characteristic function of Uk
implies the existence of a negligible set Nk ⊂ Y such that, for all ȳ 6∈ Nk , the map
y 7→ νy(Uk) is integrable with respect to τȳ . Fix a countable subset S of Cc(X) such
that, for any ϕ ∈ Cc(X), there is a sequence (ϕi) in S converging to ϕ uniformly and
|ϕi| ≤ |ϕ| for all i . For each i , the above result applied to ϕ ∈ S implies the existence
of a negligible set Nϕ ⊂ Y such that, for all ȳ 6∈ Nϕ , the map y 7→

∫
X ϕ, dνy(x) is

integrable with respect to τȳ .
Put N = (∪k∈NNk)∪ (∪ϕ∈SNϕ) ⊂ Y , a λ-negligible set. We now claim that the family
νy is scalarly integrable with respect to τȳ for all ȳ 6∈ N . Indeed, given ϕ ∈ Cc(X),
there is a sequence (ϕi) in S converging to ϕ uniformly and |ϕi| ≤ |ϕ| for all i , and
an index k such that suppϕ ⊂ Uk . The dominated convergence theorem implies that
the sequence 〈νy, ϕi〉 converges pointwise to 〈νy, ϕ〉 . Furthermore,

|〈νy, ϕi〉| ≤
∫
X
|ϕ(x)| dνy ≤ ‖ϕ‖∞νy(Uk) for all y ∈ Y.

By construction, if ȳ 6∈ N , y 7→ νy(Uk) and all the function y 7→ 〈νy, ϕi〉 are integrable
with respect to τy , so that also y 7→ 〈νy, ϕ〉 is τȳ -integrable by dominated convergence.
The claim is proved and, by definition of µȳ ,∫

X
ϕ(x) dµȳ(x) =

∫
Y
〈νy, ϕ〉(y) dτȳ(y).

Equality (24) applied to ϕ implies that the function ȳ 7→
∫
Y 〈νy, ϕ〉 dτȳ(y), which

is almost everywhere defined, is λ-integrable, so that the family {µȳ} is scalarly-
integrable, and dx =

∫
Y µȳ dλ(ȳ), that is∫

X
ϕ(x) dx =

∫
Y

(∫
X
ϕ(x) dµȳ

)
dλ(ȳ).

By the intertwining property of Φ, the closed set Φ−1(π−1(ȳ)) is H -invariant. Put
now Ak = Uk \ Φ−1(π−1(ȳ)). If ȳ 6∈ N , then since νy is concentrated on Φ−1(y), and
Φ−1(y) ∩ Ak = ∅ , and since τȳ is concentrated on π−1(ȳ), for τȳ -almost every y ∈ Y

µȳ(Ak) =
∫
Y
νy(Ak) dτȳ(y) = 0.
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Hence, given h ∈ H and ϕ ∈ Cc(X)∫
X
ϕ(h−1.x)dµȳ =

∫
Y

(∫
X
ϕ(h−1.x) dνy(x)

)
dτȳ(y)

= α(h)β(h)
∫
Y

(∫
X
ϕ(x) dνh−1[y](x)

)
dτȳ(y)

= β(h)
∫
Y

(∫
X
ϕ(x) dνy(x)

)
dτȳ(y) = β(h)

∫
X
ϕ(x)dµȳ

where the second line is due to the change of variables x 7→ h.x and (18), and the third
line is due to the change of variables y 7→ h.y and (23).

From now on we regard the measure λ as restricted to the set Y defined in the
above proposition. Furthermore, Theorem 26, or equation (56), yields the following
identifications as Hilbert spaces

L2(X) =
∫
Y
L2(X,µȳ) dλ(ȳ) f =

∫
Y
fȳ dλ(ȳ)(25)

L2(X,µȳ) =
∫
Y
L2(X, νy) dτȳ(y) fȳ =

∫
Y
fȳ,y dτȳ(y),(26)

where f ∈ L2(X), fȳ ∈ L2(X,µȳ) for all ȳ ∈ Y and, fixed ȳ , fȳ,y ∈ L2(X, νy) for all
y ∈ Y . The integrals of Hilbert spaces are direct integrals with respect to the mea-
surable field associated with Cc(X), and the integral of functions are scalar integrals
of vector valued functions taking value in M(X) by regarding L2(X), L2(X,µȳ) and
L2(X, νy) as a subspace of M(X) in a natural way. In particular, if f ∈ Cc(X), fȳ is
the restriction of f to Φ−1(π−1(ȳ)) and fȳ,y is the restriction to Φ−1(y). Furthermore,
for any f ∈ L2(X)

(27) ‖f‖2 =
∫
Y

∫
Y
‖fȳ,y‖2

νy dτȳ(y) dλ(ȳ).

Lemma 11. Given y ∈ Y and h ∈ H , the operator Ty,h : L2(X, νy)→ L2(X, νh[y])

(Ty,hf)(x) =
√
α(h−1)β(h−1)f(h−1.x) νh[y]-almost every x ∈ X

is unitary. Furthermore, for every h, h′ ∈ H and every y ∈ Y
Th[y],h′Ty,h = Ty,h′h(28)

T−1
y,h = Th[y],h−1 .(29)

Proof. Given a Borel measurable function f which is square-integrable with respect to
νy , the map x 7→ (Ty,hf)(x) is also Borel measurable and it is square-integrable with
respect to νh[y] since

α(h−1)β(h−1)
∫
X
|f(h−1.x)|2 dνh[y](x) =

∫
X
|f(x)|2 dνy(x),

by the change of variables x 7→ h.x and (18). The above equation implies that Ty,h
is a well-defined isometry from L2(X, νy) to L2(X, νh[y]). Equality (28) is clear and,
as a consequence, Th[y],h−1Ty,h = Ty,e is the identity on L2(X, νh[y]) so that Ty,h is
surjective, thereby showing (29).
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For any ȳ ∈ Y , we fix an origin y0 in the orbit π−1(ȳ) = H[y0] and we denote by
Hȳ the stabilizer at y0 . We denote by Kȳ = L2(X, νy0) and by Λȳ the quasi-regular
representation of Hȳ acting on Kȳ whose value at s ∈ Hȳ is Λȳ,s = Ty0,s . As usual,
we extend Λȳ to a representation of Rn o Hȳ by setting Λȳ,a = e−2πi〈y0,a〉 id for all
a ∈ Rn . Finally, we denote by Wȳ the representation of G unitarily induced by Λȳ

from Rn o Hȳ to G . We realize Wȳ as a representation acting on the space Hȳ of
those functions F : G→ Kȳ that satisfy

(K1) F is dg -measurable;
(K2) For all g ∈ G and (a, s) ∈ Rn oHȳ

F (gas) =
√
α(s−1) Λ−1

ȳ,as F (g);

(K3) ‖F‖2
Hȳ :=

∫
Y
‖F (h(y))‖2

Kȳ α(h(y))dτȳ(y) < +∞ .

Here h(y) ∈ H is any element in H that satisfies h(y)[y0] = y . Since τȳ is concentrated
on H[y0] it is enough to define h(y) for y ∈ H[y0] and, due to the covariance property
in (K2), the integral does not depend on the choice of h(y) in the coset hHȳ . Two
functions F and F ′ are identified if ‖F − F ′‖2

Hȳ = 0. The induced representation on
Hȳ is defined by the equality

(Wȳ,gF )(g′) = F (g−1g′)

valid for dg -almost every g′ ∈ G .

Lemma 12. Fix ȳ ∈ Y . The map Sȳ whose value at fȳ =
∫
Y fȳ,y dτȳ(y) is given by

(Sȳfȳ)(a, h) =
√
α(h−1) e2πi〈h[y0],a〉 T−1

y0,h
(fȳ,h[y0])

is a unitary operator from L2(X,µȳ) onto Hȳ .

Proof. For any (a, h) ∈ G , fȳ,h[y0] ∈ L2(X, νh[y0]). Hence T−1
y0,h

(fȳ,h[y0]) ∈ Kȳ . In order
to prove that Sȳfȳ is dg -measurable it is enough to show that

h 7→ 〈T−1
y0,h

(fȳ,h[y0]), ϕ〉Kȳ =
∫
X
fȳ,h[y0](h

−1.x)ϕ(x)dνy0(x)

is dh-measurable for every ϕ ∈ Cc(X) because Cc(X) is a dense subspace of the
separable Hilbert space Kȳ . Without loss of generality we assume that fȳ is a positive
function and, as a consequence, also fȳ,y ≥ 0 for all y ∈ Y . Hence ωy = fȳ,y · νy is a
measure in X . By assumption, the map y 7→ ωy is scalarly integrable with respect to
τȳ . Since X is second countable, Prop. 2 of Ch.5 § 3.1 in [3] and Lusin’s theorem ensure
that there exists an increasing sequence of compact subsets Kn such that Y \ (∪Kn)
is τȳ -negligible and for all n and ϕ ∈ Cc(X) the map y 7→

∫
X ϕ(x)dωy(x) restricted

to Kn is continuous. Put

Cn = {h ∈ H | h[y0] ∈ Kn}.
Then H \ (∪Cn) is dh-negligible since the measure τȳ is concentrated on the orbit
π−1(ȳ) = H[y0] and τȳ is a non-zero measure which is relatively invariant with respect
to the action of H . Clearly, for all n and ϕ ∈ Cc(X) the map h 7→

∫
X ϕ(x)dωh[y0](x)

restricted to Cn is continuous.
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Now, h 7→ ϕh is continuous from H into Cc(X). We claim that for all n the map h 7→∫
X ϕ(h−1.x)dωh[y0](x) restricted to Cn is continuous. Indeed, since H is metrizable, it

is enough to consider a sequence (hk) in Cn converging to h ∈ Cn . Setting yk = hk[y0] ,
y = h[y0] , ϕk = ϕhk and ωk = ωyk , ω = ωy , we get

|
∫
X
ϕk(x)dωn(x)−

∫
X
ϕh(x)dω(x)| ≤ |

∫
X

(ϕk(x)− ϕh(x))dωn(x)|

+ |
∫
X
ϕh(x)dωn(x)−

∫
X
ϕh(x)dω(x)|

≤ sup
x∈K
|ϕk(x)− ϕh(x)| sup

n∈N
ωn(K)

+ |
∫
X
ϕh(x)dωn(x)−

∫
X
ϕh(x)dω(x)|,

where supn∈N ωn(K) is finite by the Banach-Steinhaus theorem, and the last two sum-
mands go to zero by construction. Hence, the map h 7→

∫
X ϕ(h−1.x)dωh[y0](x) is

the limit almost everywhere of a sequence of measurable functions, and so it is dh-
measurable.
Next we prove the covariance property (K2). For g = (a, h) = ah and (b, s) = bs ∈ Gȳ ,

(Sȳfȳ)(ahbs) = (Sȳfȳ)(a+ h†[b], hs) =
√
α(h−1)α(s−1) e2πi〈hs[y0],a+h†[b]〉 T−1

y0,hs
(fȳ,hs[y0])

=
√
α(s−1) e2πi〈h[y0],h†[b]〉 T−1

y0,s
(Sȳfȳ)(a, h)

=
√
α(s−1) e2πi〈y0,b〉 Λ−1

y0,s
(Sȳfȳ)(a, h)

by definition of h† and Λȳ . Further,∫
Y
‖(Sȳfȳ)(h(y))‖2

Kȳ α(h(y))dτȳ(y) =
∫
Y
‖T−1

y0,h(y)(fȳ,h(y)[y0])‖2
Kȳdτȳ(y)

=
∫
Y
‖fȳ,y‖2

νydτȳ(y) =
∫
X
|f(x)|2dµȳ(x),

whence (K3). This also shows that Sȳ is an isometry from L2(X,µȳ) into Hȳ .
Finally we prove that Sȳ is surjective. Given F ∈ Hȳ , for all h ∈ H define

fȳ,h =
√
α(h) Ty0,h(F (h)) ∈ L2(X, νh[y0]).

Since F satisfies (K2), it follows that fȳ,hs = fȳ,h . For ϕ ∈ Cc(X) the map

h 7→
√
α(h)〈Ty0,h(F (h)), ϕ〉νh[y0]

=
√
α(h)〈F (h), ϕh〉Kȳ

is dh-measurable since h 7→ F (h) is dh-measurable from H into Kȳ and h 7→
√
α(h)ϕh

is continuous from H into Kȳ . Therefore∫
Y
‖fȳ,h(y)‖2

νy dτȳ(y) =
∫
Y
‖F (h(y))‖2

Kȳ α(h(y))dτȳ(y) < +∞.

It follows that fȳ =
∫
Y fȳ,h(y) dτȳ(y) is in

∫
Y L

2(X, νy) dτȳ(y) = L2(X,µȳ) and, by
construction Sȳfȳ = F .

Recall that L2(X) =
∫
Y L

2(X,µȳ) dλ(ȳ), where the direct integral is defined by the
measurable structure associated with any fixed dense countable family {ϕk} in Cc(X).
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Clearly, ȳ 7→ {Sȳϕk} is a measurable structure for the family {Hȳ} , and we define the
direct integral H =

∫
Y Hȳ dλ(ȳ).

Theorem 13. The map S : L2(X)→ H

Sf =
∫
Y
Sȳfȳ dλ(y) f =

∫
Y
fȳ dλ(y)

is a unitary map intertwining the mock metaplectic representation U with the unitary
representation W of G acting on H given by

W =
∫
Y
Wȳ dλ(ȳ).

Proof. The only fact we need to prove is the intertwining property, which we can verify
on the dense subset Cc(X) ⊂ L2(X). We observe that

ϕ =
∫
Y
ϕȳdλ(ȳ) ϕȳ =

∫
Y
ϕȳ,ydτȳ(y)

where ϕȳ = ϕ ∈ L2(X,µȳ) and ϕȳ,y = ϕ ∈ L2(X, νy). For any g ∈ G , Ug leaves Cc(X)
invariant so that it is enough to prove that for every ȳ ∈ Y

(Sȳ(Ugϕ))(h) = (Sȳϕ)(g−1h).

for almost every h ∈ G ; but since two functions in Hȳ that are equal for almost all
h ∈ H , they are equal almost everywhere in G due to the covariance property (K2),
the above equality needs only been proved for almost every h ∈ H . If g = a ∈ Rn

(Sȳ(Uaϕ))(h) =
√
α(h−1)T−1

y0,h

(
e−2πi〈Φ(·),a〉ϕ

)
=
√
α(h−1) e−2πi〈h[y0],a〉T−1

y0,h
ϕ

= (Sȳϕ)(−a, h) = (Sȳϕ)(a−1h)

where in the second line, Φ(x) = h[y0] for νh[y0] -almost all x ∈ X . If g = k ∈ H ,

(Sȳ(Ukϕ))(h) =
√
α(h−1)T−1

y0,h

(√
β(k−1)ϕk

)
=
√
α(h−1)

√
α(k)T−1

y0,h
(Tk−1h[y0],kϕ)

=
√
α((k−1h)−1)

(
T−1
k−1h[y0],kTy0,h

)−1
ϕ

=
√
α((k−1h)−1)

(
Th[y0],k−1Ty0,h

)−1
ϕ

=
√
α((k−1h)−1) (Ty0,k−1h)

−1 ϕ = (Sȳϕ)(k−1h).
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3.6. Admissible vectors. We are at last in a position to state our main result. We
need, however, a last disintegration formula, sometimes referred to as the Mackey-
Bruhat formula (see e.g. [13]), a rather straightforward consequence of the theory of
quasi-invariant measures on homogeneous spaces. The easiest way of formulating it is
perhaps that for any ϕ ∈ Cc(H) the following integral formula holds

(30)
∫
H
ϕ(h)α(h−1)dh =

∫
Y

(∫
Hȳ
ϕ(h(y)s)ds

)
dτȳ(y),

where ds is a fixed Haar measure on the stabilizer Hȳ and where as before h(y) ∈ H
is any element that satisfies h(y)[y0] = y for τȳ -almost every y ∈ Y . We interpret (30)
along the same lines of thought that we have followed for the other formulae by writing

(31) α−1 · dh =
∫
Y

(ds)h(y)−1

dτȳ(y)

as an equality of measures on H . This time ds is regarded as a measure on H con-
centrated on Hȳ , so that the translated measure (ds)h(y)−1

is concentrated on h(y)Hȳ .
As usual, we shall extend (30) to L1 -functions by means of Theorem 25.

Theorem 13 establishes that U and W are equivalent. Therefore, we formulate our
necessary and sufficient condition for the existence of admissible vectors of U for those
of W . Thus, any admissible vector F ∈ H for W is to be thought of as the image
under S : L2(X)→ H of an analyzing wavelet η .

Theorem 14. Under Assumptions 1 and 2, F =
∫
Fȳ dλ(ȳ) is an admissible vector

for W if and only if for almost every ȳ ∈ Y and for every u ∈ Kȳ

(32) ‖u‖2
Kȳ =

∫
Y

(∫
Hȳ
|〈u,Λȳ,s

(
Fȳ∆

−1/2
G

)
(h(y))〉Kȳ |2 ds

)
α(h(y)) dτȳ(y).

Proof. By the definition of T given in Lemma 11, the equality

Ty0,h−1(ηh)ȳ,y0(x) =
√
α(h)β(h)(ηh)ȳ,h−1[y0](h.x) =

√
α(h)β(h)ηȳ,h−1[y0](x)

holds for any η ∈ L2(X) and hence

(ηh)ȳ,y0 =
√
α(h)β(h) (Ty0,h−1)−1 ηȳ,h−1[y0].

Suppose now that η is an admissible vector for U or, equivalently, that F = Sη is such
for W . By Theorem 7, what we have just established and the definition of S given in
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Lemma 12, we obtain

‖u‖2
Kȳ =

∫
H
|〈u, (ηh)ȳ,y0〉|2

dh

α(h)β(h)
(33)

=
∫
H
|〈u,

√
α(h)β(h) (Ty0,h−1)−1 ηȳ,h−1[y0]〉|2

dh

α(h)β(h)

=
∫
H
|〈u, Sȳηȳ(h−1)〉|2 dh

α(h)

=
∫
H
|〈u, Fȳ(h−1)〉|2 dh

α(h)

(h 7→ h−1) =
∫
H
|〈u, Fȳ(h)〉|2∆H(h−1)α(h) dh.

Now, by Theorem 2 (and the comments below) in Ch. VII § 3.5 of [4], for all s ∈ Hȳ

the modular functions of H and Hȳ are related by the formula

(34) α−1(s) =
∆Hȳ(s)

∆H(s)
.

Hence, applying (30), the covariance property (K2), (34) and (5) we obtain

‖u‖2
Kȳ =

∫
Y

(∫
Hȳ
|〈u, F (h(y)s)〉|2 α2(h(y)s)

∆H(h(y)s))
ds

)
dτȳ(y)

=
∫
Y

(∫
Hȳ
|〈u,

√
α(s−1)Λȳ,s−1F (h(y))〉|2 α2(h(y)s)

∆H(h(y)s))
ds

)
dτȳ(y)

=
∫
Y

(∫
Hȳ
|〈u,Λȳ,s−1F (h(y))〉|2 α

2(h(y))

∆H(h(y))
∆Hȳ(s

−1) ds

)
dτȳ(y)

(s 7→ s−1) =
∫
Y

(∫
Hȳ
|〈u,Λȳ,sF (h(y))〉|2 1

∆G(h(y))
ds

)
α(h(y))dτȳ(y),

which is (32). Conversely, if (32) holds for some F ∈ H , then reading the above
strings of equalities backwards yields the first line in (33). Therefore, by Theorem 7,
η is admissible for U , hence F is such for W .

Corollary 15. Assume that U is a reproducing representation and suppose that y is
a point in an orbit ȳ for which (32) holds true.

(i) If Φ−1(y) is a finite set, then the stabilizer Hy is compact;
(ii) If G is unimodular and the stabilizer Hy is compact, then Φ−1(y) is a finite

set, hence n = d.
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Proof. Clearly, it is enough to prove (i) and (ii) for the origin y0 . Take a (countable)
Hilbert basis {ui} of Kȳ . Apply (32) to each element of the basis and sum

dimKȳ =
∫
Y

(∫
Hȳ

∑
i

|〈ui,Λȳ,s

(
Fȳ∆

−1/2
G

)
(h(y))〉Kȳ |2 ds

)
α(h(y)) dτȳ(y)(35)

=
∫
Y

(∫
Hȳ
‖Λȳ,s

(
Fȳ∆

−1/2
G

)
(h(y))‖2

Kȳ ds
)
α(h(y)) dτȳ(y)

=
∫
Hȳ
ds ·

∫
Y
‖Fȳ∆−1/2

G (h(y))‖2
Kȳα(h(y)) dτȳ(y).

Now, if Φ−1(y) is a finite set, then the left hand side is finite and strictly positive,
hence so is the right hand side, so Hȳ has finite volume. This proves (i). If ∆G = 1
and Hȳ has finite volume, then the right hand side is finite and strictly positive by
(K3). Hence Φ−1(y) is a finite set and since it is a regular submanifold of dimension
d− n , necessarily n = d . Thus (ii) holds.

Let us look at the “true” metaplectic representation, where Φ is a quadratic map,
and assume that n = d . By Assumption 1, X is asubset of regular points for Φ
and Y is its image. Then, by Bezout’s theorem, the number of points in Φ−1(y0)
is at most 2d . Thus, if U is reproducing, then by (i) in Corollary 15 the stabilizers
are almost all compact. This is one of the reasons for studying the case of compact
stabilizers in some detail.

3.7. Compact stabilizers. As a preliminary step, we assume that for a given ȳ ∈ Y
the stabilizer Hȳ is compact. Clearly, the compactness of the stabilizer is independent
of the choice of the origin y0 ∈ π−1(ȳ).
The compactness of the stabilizer makes available Schur’s orthogonality relations for
computing the inner integral over Hȳ in (32). Indeed, since Hȳ is compact, the repre-
sentation Λȳ is completely reducible. Hence, for each equivalence class ŝ in the dual

group Ĥȳ , we can choose a closed subspace Kȳ,ŝ ⊂ Kȳ such that the restriction Λȳ,ŝ

of Λȳ to Kȳ,ŝ belongs to ŝ , and we denote by mŝ the multiplicity of ŝ in Λȳ (with the
convention that Kȳ,ŝ = 0 if mŝ = 0). The following direct decomposition in primary
inequivalent representations holds true

(36) Kȳ '
⊕
ŝ∈Ĥȳ

Kȳ,ŝ ⊗ Cmŝ Λȳ '
⊕
ŝ∈Ĥȳ

Λȳ,ŝ ⊗ id,

where we interpret Cmŝ = `2 whenever mŝ = ∞ . Mackey’s theorem on induced rep-
resentations of semi-direct products [22] guarantees that each induced representation
IndGRdoHȳ(e

−2πi〈y0,·〉 Λȳ,ŝ) is irreducible on Hȳ,ŝ and gives the following direct decompo-
sition in primary inequivalent representations for Wȳ :

(37) Hȳ '
⊕
ŝ∈Ĥȳ

Hȳ,ŝ ⊗ Cmŝ Wȳ '
⊕
ŝ∈Ĥȳ

IndGRdoHȳ(e
−2πi〈y0,·〉 Λȳ,ŝ)⊗ id .
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Choose a basis {ei} of Cmŝ and, according to (36) and (37) respectively, write

Fȳ =
∑
ŝ∈Ĥȳ

mŝ∑
i=1

Fȳ,ŝ,i ⊗ ei, Fȳ ∈ Hȳ

u =
∑
ŝ∈Ĥȳ

mŝ∑
i=1

uŝ,i ⊗ ei, u ∈ Kȳ.

Also, we write volHȳ for the mass of the compact group Hȳ relative to the unique
Haar measure ds that makes formula (30) work. Note that volHȳ is not necessarily
one.

Proposition 16. Let ȳ ∈ Y be such that the stabilizer Hȳ is compact. Given Fȳ ∈ Hȳ

the following facts are equivalent:

(i) equality (32) holds true for all u ∈ Kȳ ;

(ii) for all ŝ ∈ Ĥȳ such that mŝ 6= 0, and for all i, j = 1, . . . ,mŝ∫
Y
〈Fȳ,ŝ,i(h(y)), Fȳ,ŝ,j(h(y))〉Kȳ,ŝ

α(h(y))

∆G(h(y))
dτȳ(y) =

dimKȳ,ŝ
volHȳ

δij.(38)

Proof. Take u ∈ Kȳ . We compute the inner integral in (32) using Schur’s orthogonality
relations. For τȳ -almost every y ∈ Y∫
Hȳ
|〈u,Λȳ,sFȳ(h(y))〉Kȳ |2 ds =

∑
ŝ∈Ĥȳ

mŝ∑
i,j=1

〈uŝ,i, uŝ,j〉Kȳ,ŝ〈Fȳ,ŝ,j(h(y)), Fȳ,ŝ,i(h(y))〉Kȳ,ŝ
volHȳ

dimKȳ,ŝ
.

Choosing u = uŝ,i , (32) is equivalent to

(39)
∫
Y
‖Fȳ,ŝ,i(h(y))‖2

Kȳ,ŝ
α(h(y))

∆G(h(y))
dτȳ(y) =

dimKȳ,ŝ
volHȳ

.

Choose next j 6= i and u = uŝ,i ⊕ uŝ,j . Taking (39) into account, (32) is equivalent to∫
Y
〈Fȳ,ŝ,i(h(y)), Fȳ,ŝ,j(h(y))〉Kȳ,ŝ

α(h(y))

∆G(h(y))
dτȳ(y) = 0.

Hence (i) is equivalent to (ii).

Equation (38) has the following easy interpretation in terms of the abstract theory
developed by Fuhr [14]. Indeed, for each irreducible representation in the decomposi-
tion (37), we can define the (possibly unbounded) operator dȳ,ŝ on Hȳ,ŝ

dȳ,ŝFȳ,ŝ(h) =
dimKȳ,ŝ
volHȳ

∆G(h)Fȳ,ŝ(h),

which satisfies (K2) precisely because the stabilizer is compact. The operator dȳ,ŝ is a
positive self-adjoint injective operator semi-invariant with weight ∆−1

G [10]. Now, (38)

says that Fȳ,ŝ,i is in the domain of d
−1/2
ȳ,ŝ and

(40) 〈d−1/2
ȳ,ŝ Fȳ,ŝ,i, d

−1/2
ȳ,ŝ Fȳ,ŝ,j〉Hȳ,ŝ = δij, i, j = 1, . . . ,mŝ.

One should compare this with Theorem 4.20 and equations (4.15) and (4.16) of [14].
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As a consequence of the above discussion, we have the following easy characterization
of existence.

Corollary 17. Let ȳ ∈ Y be such that the stabilizer Hȳ is compact. There exists Fȳ
such that equality (32) holds true for all u ∈ Kȳ if and only if mŝ ≤ dim(Hȳ,ŝ) for all

ŝ ∈ Ĥȳ . If G is non-unimodular, this last condition is always satisfied.

Proof. Fix ŝ ∈ Ĥȳ such that mŝ 6= 0. If G is unimodular, dȳ,ŝ is the identity up to a
multiplicative constant, so that {Fȳ,ŝ,i}mŝi=1 satisfying (40) are precisely the orthogonal
families in Hȳ,ŝ with square norm equal to dimKȳ,ŝ/ volHȳ , whose existence is equiv-
alent to mŝ ≤ dim(Hȳ,ŝ).
If G is non-unimodular, since dȳ,ŝ is a semi-invariant operator with weight ∆G , then
its spectrum is unbounded (see (2) of [10]), so that dimHȳ,ŝ = +∞ , provided that
mŝ 6= 0. Hence the families {Fȳ,ŝ,i}mŝi=1 satisfying (40) are the families in the domain

of d
−1/2
ȳ,ŝ that are orthonormal with respect to the inner product induced by d

−1/2
ȳ,ŝ .

If G is unimodular, (ii) of Corollary 15 implies that Kȳ is finite-dimensional, so that

mŝ = 0 for all but finitely many ŝ ∈ Ĥȳ for which mŝ is finite. Furthermore, often the
orbit π−1(ȳ) is not finite, so that dimHȳ,ŝ = +∞ and the requirement mŝ ≤ dimHȳ,ŝ

is trivially satisfied for every ŝ ∈ Ĥȳ .

From now on we assume that almost every stabilizer Hȳ is compact. For each
ȳ we can apply Proposition 16. The only non-trivial point is measurability. The
following theorem addresses this problem by providing an explicit decomposition of
the representation W , hence of U , as a direct integral of its irreducible components,
each of which is realized as induced representation of the restriction of Λȳ to a suitable
(irreducible) subspace. The result does not depend on the fact that U is reproducing.
To state the theorem, we fix a Borel section o : Y → Y whose existence is ensured
by Assumption 2 [11], thereby choosing o(ȳ) as the origin of the orbit π−1(ȳ). For all
ȳ ∈ Y , we set Kȳ = L2(X, νo(ȳ)) and we regard ȳ 7→ Kȳ as a λ-measurable field of
Hilbert spaces with respect to the measurable structure induced by Cc(X) ⊂ Kȳ .

Theorem 18. Assume that the stabilizers Hȳ are compact for λ-almost every ȳ ∈ Y .
There exist a countable family {ȳ 7→ Knȳ}n∈N of measurable fields of Hilbert subspaces,
Knȳ ⊂ Kȳ , and a family of cardinals {mn}n∈N ⊂ {1, . . . ,ℵ0} such that, for almost every

ȳ ∈ Y ,

Kȳ '
⊕
n∈N
Knȳ ⊗ Cmn ,(41)

Λȳ '
⊕
n∈N

Λn
ȳ ⊗ id,(42)

where (42) is the decomposition of Λȳ into irreducibles.

Before the proof, we add some remarks.

Remark 1. For each n ∈ N and for almost every ȳ ∈ Y we denote by Hn
ȳ the Hilbert

space carrying the induced representation IndRdoHȳ(e
−2πi〈o(ȳ),·〉 Λn

ȳ ). Theorem 10.1 of
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[22] ensures that, for each n ∈ N , ȳ 7→ Hn
ȳ is a measurable field of Hilbert subspaces,

Hn
ȳ ⊂ Hȳ}and

H '
⊕
n∈N

∫
Y
Hn
ȳ dλ(ȳ)⊗ Cmn(43)

W '
⊕
n∈N

∫
Y

IndRdoHȳ(e
−2πi〈o(ȳ),·〉 Λn

ȳ ) dλ(ȳ)⊗ id(44)

where, by Theorem 14.1 of [22] each component IndRdoHȳ(e
−2πi〈o(ȳ),·〉 Λn

ȳ ) is irreducible
and two of them are inequivalent.

Remark 2. In the statement of the above theorem, given n ∈ N , it is possible that
for some ȳ ∈ Y the Hilbert space Knȳ reduces to zero as well as Hn

ȳ . If it is the case,

then clearly Λn
ȳ and IndRdoHȳ(e

−2πi〈o(ȳ),·〉 Λn
ȳ ) can be removed from the corresponding

integral decompositions of Λȳ and W .

Remark 3. Fix ȳ and compare (36) with (42). The set N is a parametrization of the

relevant elements in the dual group Ĥȳ defined by the direct decomposition of Λȳ into
its irreducible components Λn

ȳ . In other words, for each n ∈ N for which Knȳ 6= 0

there exists ŝn ∈ Ĥȳ such that Λn
ȳ = Λȳ,ŝn and mn = mŝ is its multiplicity, which is

independent of ȳ by its very construction.

Remark 4. As a consequence of the above theorem and general results about direct
integrals, for each n ∈ N there exists a measurable field {ȳ 7→ εnȳ,`}`≥1 of Hilbert bases
for each field ȳ 7→ Hn

ȳ . Denoting by {ej}mnj=1 the canonical basis of Cmn , for any F ∈ H

F =
∑
n∈N

mn∑
j=1

∫
Y

F n
ȳ,j dλ(ȳ)⊗ ej(45)

F n
ȳ,j =

∑
`≥1

fnj,`(ȳ) εnȳ,`

where ȳ 7→ fnj,`(ȳ) is a measurable complex function and

‖F‖2 =
∑
n∈N

mn∑
j=1

∫
Y
‖F n

ȳ,j‖2
Hnȳdλ(ȳ) =

∑
n∈N

mn∑
j=1

∑
`≥1

∫
Y
|fnj,`(ȳ)|2dλ(ȳ).(46)

Conversely, if {ȳ 7→ fnj,`(ȳ)}n,j,` is a family of measurable complex functions such that

∑
n∈N

∫
Y

mn∑
j=1

∑
`≥1

|fnj,`(ȳ)|2dλ(ȳ) < +∞,

then (45) defines an element F ∈ H .

Proof of Theorem 18. The proof is divided in several steps.
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Step 1. We claim that there exists a sequence of Borel measurable functions ξk : Y →
H such that, for any y ∈ Y , the set {ξk(y)}k∈N is dense in the stability subgroup
Hy . Define the map Ξ : Y × H → Y × Y , Ξ(y, h) = (h[y], y), which is continuous
and, hence, Borel measurable. Furthermore, the diagonal D = {(y, y) | y ∈ Y } is
a Borel subset and, for any y ∈ Y , Hy = {h ∈ H | Ξ(y, h) ∈ D} . The Aumann’s
measurable selection principle, see for example Theorem III.23 of [5], ensures there
exists a sequence of measurable functions ξk : Y → H such that the set {ξk(y)}k∈N is
dense in Hy for all y ∈ Y .

Step 2. For all ȳ ∈ Y , set Mȳ equal to the von Neumann algebra on Kȳ generated by
the representation Λo(ȳ) of Ho(ȳ) . We show that ȳ 7→ Mȳ is a measurable field of von

Neumann algebras. For each ȳ ∈ Y the result of Step 1 and the fact that s 7→ Λȳ,s is
continuous implies that the sequence {Λȳ,ξk(o(ȳ))}k∈N generates Mȳ . Hence, it is enough
to prove that for any k ∈ N the fields of operators ȳ 7→ Λȳ,ξk(o(ȳ)) is λ-measurable by
observing that for all ϕ, ϕ′ ∈ Cc(X) the map

y → 〈Λy,ξk(y)ϕ, ϕ
′〉νy =

∫
X

√
α(ξk(y)−1)β(ξk(y)−1)ϕ(ξk(y)−1.x)ϕ′(x)dνy(x)

is Lebesgue measurable since ξk is Borel measurable, the map

h→
∫
X

√
α(h−1)β(h−1)ϕ(h−1.x)ϕ′(x)dνy(x)

is continuous, and the family {νy} is Lebesgue scalarly-integrable. Hence the corre-
sponding decomposable von Neumann algebra M =

∫
Y Mȳ dλ(ȳ) acts on the separable

Hilbert space K =
∫
Y Kȳ dλ(ȳ), see Prop. 1, Ch II § 3 of [8]. Since Y is second

countable, Theorem 4, Ch II § 3 of [8] ensures that

M ′ =
∫
Y
Mȳ
′ dλ(ȳ)

M ∩M ′ =
∫
Y
Mȳ ∩Mȳ

′ dλ(ȳ)

Step 3. For almost every ȳ ∈ Y , Hȳ is a group of type I, hence Λȳ is of type I
representation, that is, by definition, Mȳ is a type I von Neumann algebra. Since Y
is second countable, result (A50) of [9] implies that M is of type I, as well as, M ′ by
Theorem 1 Ch. 1 § 8 of [8]. Result (A50) of [9] applied to M ′ ensures the existence of
a countable family {P i}i∈I of non-zero projections in M ∩M ′ with sum 1 such that
each reduced algebra M ′

P i is of type Ini where ni 6= nj if i 6= j . Hence, by definition,
for each i ∈ I , there exists a family {P ij}nij=1 of equivalent abelian pairwise orthogonal
projections in M ′ with sum P i . Since M ′ is decompasable

P i =
∫
Y
P i
ȳ dλ(ȳ)

P ij =
∫
Y
P ij
ȳ dλ(ȳ)

where, for almost every ȳ ∈ Y ,

i) (P i
ȳ)i∈I is a family of non-zero projections in Mȳ ∩M ′

ȳ with sum 1;



F. De Mari and E. De Vito 31

ii) for each i ∈ I , (P ij
ȳ )nij=1 is a family of equivalent abelian pairwise orthogonal

projections in ∩M ′
ȳ with sum P i

ȳ .

By definition of equivalent projections, for any i ∈ I and 1 < j ≤ ni , there exists
U ij ∈M ′ such that Pi1 = (U ij)∗U ij and P ij = U ij(U ij)∗ , hence,

U ij =
∫
Y
U ij
ȳ dλ(ȳ)

where, for almost every ȳ ∈ Y , U ij
ȳ ∈ Mȳ

′ and P i1
ȳ = (U ij

ȳ )∗U ij
ȳ and P ij

ȳ = U ij
ȳ (U ij

ȳ )∗ .
Define

Ki = P i1K =
∫
Y
Kiȳ dλ(ȳ) Kiȳ = P i1

ȳ Kȳ,

where, for each i ∈ i , ȳ 7→ Kiȳ is a measurable field of Hilbert spaces by Proposition 9
Ch. II, § 1.7 of [8]. Hence, up to a unitary equivalence,

K =
⊕
i∈I
Ki ⊗ Cni Ki =

∫
Y
Kiȳ dλ(ȳ) Kȳ =

⊕
i∈I
Kiȳ ⊗ Cni

and, for almost every ȳ ∈ Y and each i ∈ I
i) M leaves invariant Ki and, denoted by M i the reduced algebra, (M i)′ is abelian;
ii) Mȳ leaves invariant Kiȳ and, denoted by Mȳ

i the reduced algebra, (M i
ȳ)
′ is abelian

iii) ȳ 7→M i
ȳ is a measurable field of von Neumann algebras and

M i =
∫
Y
M i

ȳ dλ(ȳ)

see Proposition 6 Ch II § 3.5 of [8].
iv) by Proposition 3 Ch II § 3.4 of [8]

M = Πi∈IM
i ⊗ C idni Mȳ = Πi∈IM

i
ȳ ⊗ C idni

where C idni denotes the trivial algebra acting on an ni -dimensional Hilbert space.

Step 4. We fix i ∈ I . Result (A50) of [9] applied to M i ensures the existence of a
countable family {Qit}t∈Ti of non-zero projections in M i∩ (M i)′ with sum 1 such that
each reduced algebra MQit is of type Imit where mit 6= mit′ if t 6= t′ . Hence, reasoning
as above with self-explained notation, up to a unitary equivalence,

Ki =
⊕
t∈Ti

Cmit ⊗ T it T it =
∫
Y
T itȳ dλ(ȳ) Kiȳ =

⊕
t∈Ti

Cmit ⊗ T itȳ

where Cmit is a (fixed) Hilbert space of dimension mit and ȳ 7→ T itȳ is a measurable

filed of Hilbert spaces. For almost every ȳ ∈ Y and each t ∈ T i

i) M i leaves invariant Kit and, denoted by M it the reduced algebra,

(M it)′ = C idmit ⊗Ait (Ait)′ = Ait

where Ait acts on T it .
ii) M it

ȳ leaves invariant Kitȳ and, denoted by M it
ȳ the reduced algebra,

(M i
ȳ)
′ = Cidmit ⊗Aitȳ (Aitȳ )′ = Aitȳ

where Aitȳ acts on T itȳ .
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iii) ȳ 7→ Aitȳ is a measurable field of von Neumann algebras and

Ait =
∫
Y
Aitȳ dλ(ȳ)

Furthermore

M i = Πt∈Ti L(Cmit)⊗Ait M i
ȳ = Πt∈Ti L(Cmit)⊗Aitȳ

Step 5. Fix i ∈ I and t ∈ Ti , for almost every ȳ ∈ Y the definition of Mȳ and the
fact that Hȳ is a compact group imply that the representation Λȳ leaves invariant each
copy Cmit , the corresponding restriction is irreducible, and two different restrictions
are inequivalent. This means that Aitȳ is spatially isomorphic to the diagonal algebra

acting on `2(Ŝit) where Ŝit is the subset of Ĥȳ defined by the irreducible components

of Λȳ , restricted to Kiȳ , acting on Cmit . In particular, dim T itȳ = card Ŝit.

Step 6. Fixed i ∈ I and t ∈ Ti for any k ∈ {1, . . . ,ℵ0}

Y itk = {ȳ ∈ Y | dim T itȳ = k}

is a Borel subset of Y by Proposition 1 Ch. II, § 1 of [8]. and, for almost every ȳ ∈ Y itk ,
Mȳ it is spatially isomorphic to L(Cmit)⊗ `∞(Ik), where

Ik =

{1, . . . , k} k < +∞
N k = +∞

.

Lemma 2 Ch. 2 § 3 of [8] implies that the isomorphism can be realized by a unitary
operator W it

ȳ : `2(Ik) → T ikȳ such that ȳ 7→ W it
ȳ is a measurable field of operators. If

{f`}`∈Ik denotes the canonical base of `2(Ik), define for each ` ∈ NKnȳ := Ki,t,`ȳ = Cmit ⊗W it
ȳ f` ȳ ∈ Y itk and ` ∈ Ik

Knȳ := Ki,t,`ȳ = 0 otherwise

where we label the triple of indexes (i, t, `) simply by a unique label n , running over
a countable set N . By construction, the following properties hold true

a) for each n ∈ N , ȳ 7→ Knȳ is a measurable field of Hilbert subspaces, Knȳ ⊂ Kȳ , and

Kȳ =
⊕
n∈N
Knȳ ⊗ Cmn

where mn = ni if n = {i, t, `} .
b) for almost every ȳ ∈ Y , the representation Λȳ leaves invariant each Knȳ , the corre-

sponding restriction Λȳ,n is an irreducible representation of Hȳ , these representa-
tions are pairwise inequivalent and

Λȳ =
⊕
n∈N

Λȳ,n ⊗ id

By means of the intertwining operator S given by Theorem 13, the direct decompo-
sition (44) gives rise to a corresponding direct decomposition of the mock-metaplectic
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representation U . Hence, the abstract theory of [14] applies to characterize the admis-
sible vectors for U . However, we can direct apply Corollary 16.

We need a last technical lemma about the measurable property of the map ȳ 7→
vol(Hȳ), compare with Lemma 18 of [15].

Lemma 19. Assume that for almost every y0 ∈ Y the stabilizer Hy0 is compact and
define

vol(Hy0) =
∫
Hy0

ds

where ds is the unique Haar measure of Hy0 such that∫
H
ϕ(h)α(h−1)dh =

∫
Y

(∫
Hy0

ϕ(h(y)s)ds

)
dτπ(y0)(y) ϕ ∈ Cc(Y ).

The following facts holds true:

(i) For all y0 and h ∈ H , vol(Hh[y0]) = ∆G(h−1) vol(Hy0).
(ii) The map y0 7→ vol(Hy0) is Lebesgue measurable.

Furthermore, given a Borel measurable section o : Y → Y , the map

ȳ 7→
dimKnȳ
vol(Hȳ)

is λ-measurable. If G is unimodular, the map is independent of the choice of the
section o.

Proof. Fix a continuous function f ∈ L1(Y ) such that f(y) > 0 for all y ∈ Y . The
definition of τȳ (see Theorem 8) with (iii) of Theorem 25 gives that for λ-almost every
ȳ ∈ Y , f is τȳ -integrable. Clearly, the function (y0, h) 7→ f(h[y0])α(h−1) is continuous
on Y × H . Given y0 ∈ Y , let ȳ = π(y0) so that we can choose y0 as the origin of
π−1(ȳ) and define ds as the unique Haar measure of Hy0 = Hȳ for which (30) holds
true. By (ii) of Theorem 25 we have that, for almost all y0 ∈ Y ,

0 <
∫
H
f(h[y0])α(h−1) dh =

∫
Y

(∫
Hy0

ϕ(hys[y0]), ds

)
dτπ(y0)(y)

= vol(Hy0)
∫
Y
f(y)dτπ(y0)(y) < +∞

since hys[y0] = y , first inequality is due to the fact f > 0 and the last inequality
follows from f ∈ L1(Y ). Clearly y0 7→

∫
H f(h[y0])α(h−1) dh is Lebesgue-measurable as

well as y0 7→
∫
Y f(y)dτπ(y0)(y)0 is Lebesgue measurable and strictly positive, so that

y0 7→ vol(Hy0) is λ-measurable, too. The fact that, for all n ∈ N the map ȳ 7→ dimKnȳ
is λ-measurable is consequence of Proposition 1, Ch. 2 § 1.4 of [8].
If y1 = `[y0] for some ` ∈ H , so that π(y0) = π(y1), then as above

vol(Hy1)
∫
Y
f(y)dτπ(y0)(y) =

∫
H
f(h[y1])α(h−1) dh

( h 7→ h`−1 ) = ∆H(`−1)α(`)
∫
H
f(h[y0])α(h−1) dh

= ∆G(`−1) vol(Hy0)
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The second half of the lemma is clear.

We are ready to state our main result about the characterization of the admissible
vectors of G , we give separately according to G is unimodular or not.

We consider first the unimodular case, compare with Eq. (4.14) of Theorem 4.22 in
[14].

Theorem 20. Assume that G is unimodular and for almost every ȳ ∈ Y the stabilizers
Hȳ are compact. The representation U is reproducing if and only if the following two
conditions hold true:

a) fix any origin y0 ∈ π−1(ȳ), then

(47)
∫
Y

card Φ−1(y0)

volHȳ

dλ(ȳ) < +∞,

b) for all n ∈ N and for almost every ȳ ∈ Y such that Knȳ 6= 0

(48) mn ≤ dimKnȳ
with the notation in (41) and (42);

Under the above equivalent conditions, η is an admissible vector for U if and only if

Sη =
∑
n∈N

mn∑
j=1

∫
Y

√√√√dimKȳ,n
volHȳ

εnȳ,j dλ(ȳ)⊗ ej,

where {ȳ 7→ εnȳ,`}j≥1 is any measurable field of Hilbert bases for ȳ 7→ Hn
ȳ and (ei)

mn
i=1

is the canonical basis of Cmn .

Proof. With the notation as in Remark 4, Theorem 14 and Corollary 16 with ∆G(hy) =
1 give that η ∈ L2(X) is an admissible vector for U if and only if F = Wη ∈ K
satisfies the following condition. Given n ∈ N , for almost every ȳ ∈ Y such that Knȳ
(see Remark 2 and 3), for all i, j = 1, . . . ,mn

〈F n
ȳ,i, F

n
ȳ,j〉Hnȳ = δi,j

dimKȳ,n
volHȳ

,

that is, the family {F n
ȳ,i}mni=1 is orthogonal in Hn

ȳ and normalized with square norm
dimKȳ,n/volHȳ .
As a consequence, if η is an admissible vector, clearly (48) holds true and, with (46),
we have that

‖F‖2
H =

∫
Y

(∑
n∈N

mn∑
i=1

dimKȳ,n
volHȳ

)
dλ(ȳ) =

∫
Y

card Φ−1(y0)

volHȳ

dλ(ȳ),

and (47) follows. Conversely, define F ∈ H such that, for all j = 1, . . . ,mn and ` ≥ 1

fn,j,`(ȳ) = δj,`

√√√√dimKȳ,n
volHȳ

a.e.ȳ ∈ Y ,

which is possible due to (48). The functions fn,j,` are λ-measurable by Lemma 19.
Eq. (47) ensures that (46) is finite (see the above string of equalities).
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We now consider the non-unimodular case. For all n ∈ N and for almost every ȳ ∈ Y
we define the positive self-adjoint injective operator dȳ,n acts on Hn

ȳ by multiplication

(dȳ,nFȳ,n)(h) =
dimKȳ,n
volHȳ

∆G(h)Fȳ,n(h) h ∈ H,

see Corollary 17 and its proof.

Theorem 21. Assume that G is non-unimodular and that for almost every ȳ ∈ Y
the stabilizer Hȳ is compact. Then U is reproducing and η ∈ L2(X) is an admissible
vector for U if and only if Sη =

∑
n∈N

∑mn
j=1

∫
Y

F n
ȳ,j dλ(ȳ)⊗ ej is such that

(i) for all n ∈ N and i = 1, . . . ,mn , the map ȳ 7→ Fȳ,n,i is measurable field of vectors
for {Hn

ȳ};

(ii) for any n ∈ N and for almost all ȳ ∈ Y such that Knȳ 6= 0

〈d−1/2
ȳ,n F n

ȳ,i, d
−1/2
ȳ,n F n

ȳ,j〉Hȳ,n = δij i, j = 1, . . . ,mn

(iii)
∑
n∈N

mn∑
j=1

∫
Y
‖F n

ȳ.j‖2
Hnȳdλ(ȳ) < +∞.

Proof. The only non-trivial part is the existence of an admissible vector. This fact is
a consequence of Theorem 4.23 of [14], whose proof can be repeated to our setting to
provide a direct proof of the existence. We report only the idea.
Fix a strictly positive sequence such that

∑
n∈N

∑mn
i=1 an,i < +∞ . Since the stability

subgroups are compact

(0,+∞) = ∆G(H) = ∆G(H/Hȳ) = ∆G({h(y) | y ∈ π−1(ȳ)}).

and y 7→ ∆G(h(y)) is continuous on π−1(ȳ), for each ȳ ∈ Y , there exists an subset
Oȳ,n,i of π−1(ȳ) with strictly positive τȳ -measure such that for all y ∈ Oȳ,n,i ,

sup
y∈Yȳ,n,i

dimKȳ,n∆G(hy)

volHȳ

≤ an,i.

Select a family of measurable fields {ȳ 7→ F n
ȳ,j}mnj=1 of vectors in dom d

−1/2
ȳ,n , that are

orthonormal with respect to the scalar product induced by d
−1/2
ȳ,n with the property

that the support with respect to τȳ of the map y 7→ ‖F n
ȳ,j(hy)‖2

K(ȳ)n
is contained in

Oȳ,n,i , then the third condition is satisfied since

‖F n
ȳ,j‖2

Hnȳ ≤ sup
y∈Oȳ,n,i

dimKȳ,n∆G(hy)

volHȳ

≤ an,i.

4. Examples

We now discuss some of the examples we introduced in Section 2.
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4.1. Example 1. In this example, the map Φ is the identity so that the set of critical
points reduces to the empty set and Assumption 1 is satisfied with the choice X =
Y = Rd (recall that n = d) and α(h)β(h) = 1 for all h ∈ H . Clearly, for all y ∈ Rd ,
Φ−1(y) is a singleton, the corresponding measure νy is the trivial, so that Theorem 7
states that η ∈ L2(X) is an admissible vector for U , for λ-almost ȳ ∈ Rd/H∫

H
|η(h−1[y0])|2 dh = 1

where y0 is a fixed origin in π−1(ȳ) and λ is a pseudo-image measure of the Lebesgue
measure, we fix in the following. Since the above equation holds true for any other point
in ∈ π−1(ȳ), it follows that η is a weak admissible vector in the sense of Definition 7
of [15]. Assumption 2 is nothing else that the fact that the semi-direct product RdoH is
regular. Theorem 6 of the cited paper proves that this regularity is essentially necessary
to have weak admissible vectors, see comment at the end of Section 3.4. Under this
assumption, Corollary 15 ensures that the stabilizers Hȳ are compact for almost every
ȳ ∈ Y . Hence the results of Section 3.7 holds true. Clearly, for almost every K(ȳ) = C ,
N is a singleton and mn = dim(Knȳ ) = 1, so that U is always reproducing if G is non-

unimodular, otherwise it is equivalent to the fact that
∫
Y
dλ(ȳ)/ volHȳ is finite, which

is precisely the content of Theorem 19 of [15], see also Section 5 of [14]. The factor
volHȳ is due to a different normalization of the Haar measures on the stabilizers.

4.2. Example 2. In this example n = 2 and d = 1 so that U is not reproducing.
This fact is well known since G has a non-compact center and U is irreducible.

4.3. Example 3. The groups of the form (10) with n = d are reproducing if and only
if G is non-unimodular and the critical points of Φ are negligible.

We need to a result, which is of some interest by itself. The idea goes back to [21].

Proposition 22. Assume that Φ is a homogeneous map of degree p > 0 and the action
on Rd is linear. If U is a reproducing representation, then G is non-unimodular.

The proof is based on the following lemma.

Lemma 23. Assume that Φ is a homogeneous map of degree p and the action on Rd is
linear. If η is an admissible vector for U , for any δ ∈ R+ ,

√
δnp−dηδ is an admissible

vector, too.

Proof. Denoted by q = np−d , the assumption of Φ implies that for all x ∈ X , a ∈ Rn

and δ ∈ R+ ,

(49) 〈Φ(δx), δ−pa〉 = 〈Φ(x), a〉.
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Now clearly
√
δqηδ ∈ L2(X) and, for all f ∈ L2(X), the linearity of x 7→ h.x gives∫

G
|〈f, Ug

√
δqηδ〉|2 dg = δq

∫
H

∫
A
|
∫
X
f(x)β(h)−

1
2 e−2πi〈Φ(x),a〉η(h.(δ−1x)dx|2dadh

α(h)

( x 7→ δx, a 7→ δ−pa, (49) ) = δq+2d−np
∫
G
|〈f δ−1

, Ugη〉|2dg

( reproducing formula ) = δq+2d−np
∫
X
|f(δx)|2dx

( x 7→ δ−1x ) = δq+d−np ‖f‖2 = ‖f‖2,

so that
√
δqηδ is an admissible vector for U .

Proof of Proposition 22. By contradiction assume that G is unimodular. Fix δ ∈ R+ .
Choose an admissible vector η ∈  L2(X).∫

X
|η(x)|2dx = δ−d

∫
X
|ηδ(x)|2dx

( reproducing formula for η ) = δ−d
∫
H

∫
A
|〈ηδ, Uahη〉|2

dadh

α(h)

( a 7→ −a, h 7→ h−1 ) = δ−d
∫
H

∫
A
|〈U(h†[a],h)η

δ, η〉|2∆H(h−1)
dadh

α(h−1)

( a 7→ (h†)−1[a] ) = δ−d
∫
H

∫
A
|〈U(a,h)η

δ, η〉|2∆G(h−1)
dadh

α(h)

( q = np− d ) = δ−q−d
∫
G
|〈η, Ug)

√
δqηδ〉|2dg

( reproducing formula for
√
δqη ) = δ−np

∫
X
|η(x)|2dx = δ−np‖η‖2

Since ‖η‖ 6= 0 and np 6= 0, this is a contradiction.

Come back to our example. If G is reproducing, then the set of critical points of
Φ is negligible by (ii) of Theorem 3. The above proposition with n = d and p = 2
implies that G is non-unimodular. Conversely, assume that G is non-unimodular and
the critical points of Φ are negligible. Since Φ is a family of d-polynomial functions
in d-variables and the Jacobian is different from zero almost everywhere, a standard
result of algebra implies that Φ−1(y) is a finite set for almost every y , hence (i) of
Corollary 15 implies that the stabilizers are compact, and Theorem 21 shows that U is
reproducing, as well as a characterization of the admissible vectors. However, one can
also directly apply Theorem 7, taking into account that Φ(y) is a finite set. Explicitly
the following corollary holds true.

Corollary 24. A function η ∈ L2(X) is an admissible vector for U if and only if
for λ-almost every ȳ ∈ Φ(Rd)/H , there exists y ∈ π−1(ȳ) such that, for all points
x1, . . . xNy ∈ Φ−1(y)∫

H
η(h−1.xi)η(h−1.xj)

dh

α(h)β(h)
= (JΦ)(xi) δij i, j = 1, . . . Ny.
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If the above equation is satisfied for a pair xi, xj ∈ Φ−1(ȳ), it holds true for any pair
s.xi, s.xȳ,j ∈ Φ−1(ȳ) where s ∈ Hȳ .

Proof. We apply Theorem 7. Given ȳ ∈ Φ(X)/H and y ∈ π−1(ȳ) for which (21) holds

true, formula (58) gives that νy =
M∑
i=1

δxi
(JΦ)(xi)

.

Reasoning as in the proof of Proposition 16, (21) is equivalent to∫
H
η(h−1.xi)η(h−1.xj)

dh

α(h)β(h)
= (JΦ)(xi)δij i, j = 1, . . . Ny.

The last claim is evident since Hy0 is compact so that for all s ∈ Hȳ α(s) = β(s) = 1
and the equality

(JΦ)(h.x) = (JΦ)(x)α(h)−1β(h)−1 h ∈ H.

As an example, we apply the above corollary to the metaplectic representation re-
stricted to the group TDS(2), considered at the end of Example 3 Note that

(JΦ)(x1, x2) = x2
2 α(δ, `) = δ2 β(δ, `) = δ−1.

We set X = {(x1, x2) ∈ R2 | x2 6= 0} , which is an H -invariant open set with full
Lebesgue measure and Y = Φ(X) = R × R− , which is a transitive free H -space. We
choose as origin the point y0 = (0,−1/2) so that Φ−1(y0) = {(0,±1)} . Since for any
h = (δ, `) ∈ H

h−1.(0,±1) =
√
δ(∓`/2,±1),

a function η ∈ L2(X) is an admissible vector if and only if∫
(0,+∞)×R

|η(∓
√
δ`

2
,±
√
δ)|2 dδd`

δ2
= 1

∫
(0,+∞)×R

η(−
√
δ`

2
,
√
δ)η(

√
δ`

2
,−
√
δ)
dδd`

δ2
= 0.

With the change of variables x1 = −
√
δ`
2

and x2 =
√
δ , whose Jacobian is 1

4
the above

equations become ∫
R×R+

|η(±x1,±x2)|2 dx1dx2

x4
2

=
1

4∫
R×R+

η(x1, x2)η(−x1,−x2)
dx1dx2

x4
2

= 0,

which are precisely (5.17) and (5.18) of Theorem 5 in [7], see also [6]. Note that U is
equivalent to two copies of the irreducible representation associated with the shearlets,

which up to a Fourier conjugation is Ind
TDS(2)
R2×{(1,0)}(χ) where χ is the character of R2

(a1, a2) 7→ eπia2 , [16].
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4.4. Example 4. Assumption 1 is satisfied with the choice of X = R2 \ {0} and
Y = Φ(X) = (0,+∞) since X is a H -invariant open set whose complement has zero
Lebesgue measure. The group H acts freely on Y so that the orbit space Y/H reduces
to a singleton and Assumption 2 holds true. We choose y0 = 1 as the origin of the
orbit so that the corresponding stabilizer is the compact group T = H1 . Since G
is non-unimodular, U is reproducing by Theorem 21. To characterize its admissible
vectors, we note that the measure λ is trivial, so that in Theorem 8 the relatively
invariant measure on Y is τ1 = dy . Furthermore, the map

ξ 7→ (cos ξ, sin ξ)

is diffeomorphism of S1 onto the Riemannian submanifold Φ−1(1) = {x2
1 + x2

2 = 1} .
The Riemannian measure on S1 is dξ so that, for all f ∈ Cc(X)∫

X
ϕ(x1, x2)dν1(x1, x2) =

∫ 2π

0
ϕ(cos ξ, sin ξ)

dξ

2
.

By setting h(y) = (
√
y, 0) so that h(y)[1] = y , (30) gives the Haar measure ds on T

is dθ
4π

since ∫
H
ϕ(t, θ)tdt

dθ

2π
=
∫ +∞

0

(∫ 2π

0
ϕ(
√
y, θ)

dθ

4π

)
dy,

so that volH1 = 1
2
.

The representation Λ1 of T on L2(X, ν1) ' L2(S1, dξ/2) is the regular representation,
so that

L2(X, ν1) '
⊕
n∈Z

C {einξ}

Λ1,θ '
⊕
n∈Z

einθ

where each component is irreducible and two of them are inequivalent.

Since any g = (a, t, θ) can be written as g = (0, t, 0)(t2a, 0, θ), due to (K2) any
function F ∈ H = H1 can be identified with its restriction to R+ . On the other hand
(K3) becomes ∫ ∞

0
|F (
√
y)|2y−1dy =

∫ ∞
0
|F (t)|22t−1dt < +∞,

hence we have the following unitary identifications

H ' L2(R+, 2t
−1dt, L2(S1, dξ/2)) ' L2(R+ × S1, t−1dtdξ).

The unitary map S : L2(X)→ H is given explicitly by

(Sf)(t, ξ) = t Tt2,t−1(f1,t2)(ξ) = tf(t cos ξ, t sin ξ).

For any n ∈ Z the space Hn carrying the representation induced by e2πiaeinθ is

Hn = {F ∈ L2(R+ × T , t−1dtdξ) | F (t, ξ) = Fn(t)e2πinξ where Fn ∈ L2(R+, t
−1dt)}.



40 mock metaplectic representation

Hence given η ∈ L2(X), since Sη =
∑
n∈Z Fne

inξ with Fn ∈ L2(R+, t
−1dt), then η is

an admissible vector if and only if, for any n ∈ Z ,∫ +∞

0

(∫
S1
|Fn(
√
y)einξ|2dξ

2

)
y−2dy =

dimKn
vol T

= 2,

since dimKn = 1. By the change of variable t =
√
y , this is equivalent to∫ +∞

0
|Fn(t)|2t−3dt =

1

π
.

Since

Fn(t) =
1

2π

∫ 2π

0
tη(t cos ξ, t sin ξ)e−inξdξ = tη̂(t, n),

we have that the set of admissible vectors is the Lebesgue measurable functions η :
R2 → C such that ∑

n∈Z

∫ +∞

0
|η̂(t, n)|2tdt < +∞ ⇐⇒ η ∈ L2(R2)

∫ +∞

0
|η̂(t, n)|2t−1dt =

1

π
∀n ∈ Z.

4.5. Example 5. As in the above example, Assumption 1 is satisfied with the choice
of X = R2 \ {x2 = 0} and Y = Φ(X) = R \ {0} since X is a H -invariant open set
whose complement has zero Lebesgue measure. The group H acts freely on Y so that
the orbit space Y/H reduces to a singleton and Assumption 2 holds true. We choose
y0 = 1 as the origin of the orbit so that the corresponding stabilizer is the non-compact
group R∗ = H1 . To prove that G a reproducing group, we use Theorem 14.
The measure λ on Y/H is trivial, so that in Theorem 8 the relatively invariant measure
on Y is τ1 = dy . Furthermore, the map

ξ 7→ (ξ, 1)

is diffeomorphism of R onto the Riemannian submanifold Φ−1(1) = {x2 = 1} . The
Riemannian measure on R is dξ and (JΦ)(x) = 1, so that (58) gives that, for all
f ∈ Cc(X) ∫

X
ϕ(x1, x2)dν1(x1, x2) =

∫
R
ϕ(ξ, 1)dξ.

By setting h(y) = (y, 0) so that h(y)[1] = y , (30) gives the Haar measure ds on R is
db since ∫

H
ϕ(t, b)|t|dt

|t|
db =

∫
R∗

(∫
R
ϕ(y, b) db

)
dy.

The representation Λ1 of R on L2(X, ν1) ' L2(R, dξ) is the regular representation, so
that

L2(X, ν1) '
∫

R
C dω

Λ1,b '
∫

R
e2πωb dω
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where each component is irreducible, two of them are inequivalent and the intertwining
operator is given by the Fourier transform.

Since any g = (a, t, b) ∈ G can be written as g = (0, t, 0)(ta, 0, b), due to (K2) any
function F ∈ H = H1 can be identified with its restriction to R∗ and we have the
following unitary identifications

H ' L2(R∗, t−1dt, L2(Φ−1(1), ν1)) ' L2(R2, y−1dydξ).

The unitary map S : L2(X)→ L2(R2, y−1dydξ). is given explicitly by

(Sf)(y, ξ) = |t|
1
2f(y, ξ).

Theorem 14 ensures that η ∈ L2(X) is an admissible vector if and only if for all
u ∈ L2(R, dξ) ∫

R
|u(ξ)|2 dξ =

∫
R

(∫
R
|〈u, |y|−

1
2 Λ1,b(Sη)(y, ·)〉|2 db

)
|y|−1dy

=
∫

R

(∫
R
|û(ω)|2|η̂(y, ω)|2dω

)
|y|−1dy

where we use that ∆(h(y)) = α(h(y))−1 = |y| and ˆ denotes the Fourier transform
with respect to ξ . It follows that the set of admissible vectors is the set of Lebesgue
measurable functions η : R2 → C such that∫

R

(∫
R
|η̂(y, ω)|2dω

)
dy < +∞ ⇐⇒ η ∈ L2(R2)∫

R
|η̂(y, ω)|2|y|−1dy = 1 almost every ω ∈ R,

whose existence is clear, for example take any strictly positive continuous function
σ ∈ L1(R) and define

η̂(y, ω) =

(
1√

2πσ(ω)
|y|e−

y2

2σ(ω)2

) 1
2

.

5. Appendix: some measure theory revisited

In this Appendix we review some known facts that are somehow hard to locate in
the literature in a way that is both easily accessible and stated under the assumptions
that we are making. The spaces X and Y are as in Section 3 and are regarded as
measure spaces with respect to the Lebesgue measure, denoted dx and dy respectively.

5.1. Disintegration of measures. We start by adapting to our setting some facts
from integration theory on general locally compact spaces. The main reference for
the issues at hand is [3]. Hereafter, Cc(X) denotes the space of compactly supported
functions on X , endowed with the locally convex (metrizable and separable) topology
for which a sequence (ϕn)n∈N in Cc(X) converges to zero if there exists a compact
set K such that suppϕn ⊂ K for all n and limn→∞ supx∈K |ϕn(x)| = 0. We denote
by M(X) the topological dual of Cc(X); when equipped with the σ(M(X), Cc(X))-
topology, the topological dual of M(X) is again Cc(X) ([23], Th. IV.20). Since X
is second countable, the Riesz-Markov representation theorem uniquely identifies the
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measures with the positive elements of M(X). By the word measure on a locally
compact second countable topological space, we mean a positive measure defined on
the Borel σ -algebra, which is finite on compact subsets.

The following theorem, in some sense a version of Fubini’s theorem, summarizes the
main properties of the kind of disintegration of measures we are concerned with. The
main point here, though, is the possibility of extending the disintegration from Cc to
L1 . We state it for X and Y , but it also holds verbatim if we replace X and Y with
two arbitrary locally compact and second countable topological spaces.

Theorem 25. Suppose that ω is a measure on X and ρ a measure on Y and let
Ψ : X → Y be a ω -measurable map. Assume further that {ωy} is a family of measures
on X such that

(a) ωy is concentrated on Ψ−1(y) for all y ∈ Y ;

(b)
∫
X
ϕ(x)dω(x) =

∫
Y

(∫
X
ϕ(x)dωy(x)

)
dρ(y) for all ϕ ∈ Cc(X).

Then, for any ω -measurable function f : X → C the following facts hold true:

(i) f is ωy -measurable for almost every y ∈ Y ;

(ii) f is ω -integrable if and only if
∫
Y

(∫
X
|f(x)|dωy(x)

)
dρ(y) is finite;

(iii) if f is ω -integrable, then f is ωy -integrable for ρ-almost every y ∈ Y , the
function (defined almost everywhere) y 7→

∫
X f(x)dωy(x) is ρ-integrable, and

(50)
∫
X
f(x)dω(x) =

∫
Y

(∫
X
f(x)dωy(x)

)
dρ(y);

(iv) if {ω′y} is another family of measures on X satisfying (a) and (b), then ω′y = ωy
for ρ-almost all y ∈ Y .

Proof. The theorem is essentially contained in [3], scattered in several statements. For
the proof of (i), (ii) and (iii) we quote from Chapter 5, and for the proof of (iv) from
Chapter 6.

Statement (i) is the content of item a) Prop. 4, § 3.2, taking into account that, since
it is second countable, X is σ -compact and, a fortiori, ω -moderated (a subset is ω -
moderated if it is contained into the union of a countable sequence of compact subsets
and a ω -negligible set).

As for (ii), since X is second countable, Prop. 2, § 3.1, ensures that the family∫
X ϕ(x)dωy(x) is ρ-adequate in the sense of Def. 1, § 3.1. The equivalence of the two

conditions in (ii) is then the content of the Corollary at the end of § 3.2.

As for (iii), it is just Th. 1, § 3.3, observing that any function is ω -moderated since
X is ω -moderated (a function is ω -moderated if it is null on the complement of a
ω -moderated subset).

Finally, for (iv), by assumption
∫
Y ωydρ(y) =

∫
Y ω

′
ydρ(y), where the integral is a

scalar integral of vector valued functions taking value in M(X). Now Lemma 1, § 3.1
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ensures that Cc(X) has a countable subset which is dense4 in Cc(X) with respect to
the σ(Cc(X),M(X)) topology, so that, by Remark 2 in §1.1, it is enough to show that
for any ϕ ∈ Cc(X) and for ρ-almost every y ∈ Y∫

X
ϕ(x)dωy(x) =

∫
X
ϕ(x)dω′y(x).

This is in turn equivalent to proving that

(51)
∫
Y

(∫
X
ϕ(x)dωy(x)

)
ξ(y)dρ(y) =

∫
Y

(∫
X
ϕ(x)dω′y(x)

)
ξ(y)dρ(y)

holds for all ϕ ∈ Cc(X) and ξ ∈ Cc(Y ). Fix then ϕ ∈ Cc(X) and ξ ∈ Cc(Y ), and
put f(x) = ξ(Ψ(x))ϕ(x). This function is ω -measurable since Ψ is ω -measurable and
ξ and ϕ are continuous, it is bounded since both ξ and ϕ are bounded, and it has a
compact support since ϕ is compactly supported. Hence f is ω - integrable. Applying
twice (50) we get

(52)
∫
Y

(∫
X
ξ(Ψ(x))ϕ(x)dωy(x)

)
dρ(y) =

∫
Y

(∫
X
ξ(Ψ(x))ϕ(x)dω′y(x)

)
dρ(y).

Given y ∈ Y , (a) implies that ξ(Ψ(x)) = ξ(y) for ωy -almost all x ∈ X , so that∫
Y

(∫
X
ξ(Ψ(x))ϕ(x)dωy(x)

)
dρ(y) =

∫
Y

(∫
X
ϕ(x)dωy(x)

)
ξ(y)dρ(y),

and similarly for the right hand side of (52). Hence (51) is true and the claim is proved.

The integral formula (b) will be written for short

(53) dω =
∫
Y
ωy dρ(y).

5.2. Direct integrals. Next we recall the definition of direct integral, following [13].
Hereafter we assume that the hypotheses of Theorem 25 are satisfied. Fix a countable
family {ϕk}k∈N dense in Cc(X), and hence also in every L2(X,ωy), with y ∈ Y . The
map y 7→ 〈ϕk, ϕ`〉ωy is ρ-measurable since it is ρ-integrable by the hypothesis (a).
Under these circumstances, {ϕk}k∈N is called a measurable structure for the family of
Hilbert spaces {L2(X,ωy)} . The direct integral

∫
Y L

2(X,ωy)dy is defined as the set
consisting of all the families {fy} satisfying:

(D1) fy ∈ L2(X,ωy) for all y ∈ Y ;

(D2)
∫
Y
‖fy‖2

ωydρ(y) < +∞ ;

(D3) y 7→ 〈fy, ϕk〉ωy is ρ-measurable for all k .

Two families F = {fy} and G = {gy} are identified if for almost every y ∈ Y fy = gy
as elements in L2(X,ωy). The space

∫
Y L

2(X,ωy)dρ(y) is a Hilbert space under

〈F ,G〉 =
∫
Y
〈fy, gy〉ωydρ(y).

4 It is proved there that there exists a countable subset S ⊂ Cc(X) such that for every f ∈ Cc(X)
there is a sequence (fn)n∈N in S converging to f uniformly and |fn| ≤ |f | for all n .
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Since Cc(X) has a dense countable subset, (see footnote 4), (D3) is equivalent to

(D3’) y 7→ 〈fy, ϕ〉ωy is ρ-measurable for all ϕ ∈ Cc(X),

so that, as long as we choose the functions of {ϕk}k∈N in Cc(X), the measurable
structure is independent of the choice of the particular family.

Proposition 26. Given f ∈ L2(X,ω), there exists a unique family {fy} in the Hilbert
space direct integral

∫
Y L

2(X,ωy)dρ(y) such that, for almost every y ∈ Y , the equality
fy(x) = f(x) holds for ωy -almost every x ∈ X . Furthermore, the map f 7→ {fy} is a
unitary operator from L2(X,ω) onto

∫
Y L

2(X,ωy)dρ(y).

Proof. By hypothesis (b) of Theorem 25, for every ϕ ∈ Cc(X) we have∫
X
ϕ(x)dω(x) =

∫
Y

(∫
X
ϕ(x)dωy

)
dρ(y).

Given a function5 f : X → C which is square-integrable with respect to ω , hence
in particular ω -measurable, (i) of Theorem 25 implies that f is ωy -measurable for
almost every y ∈ Y . Further, since |f |2 is integrable with respect to ω , (iii) of
the same theorem ensures that |f |2 is ωy -integrable for almost all y ∈ Y , the map
y 7→

∫
X |f(x)|2dωy(x) is integrable, and

(54)
∫
X
|f(x)|2 dω(x) =

∫
Y

(∫
X
|f(x)|2dωy(x)

)
dρ(y).

Hence there is a ρ-full set Y ′ ⊂ Y such that, if y ∈ Y ′ , f is square-integrable with
respect to ωy . For y ∈ Y ′ define fy to be the equivalence class of f in L2(X,ωy) and,
for y 6∈ Y ′ , put fy = 0.

We claim that F = {fy} is in
∫
Y L

2(X,ωy)dρ(y). By (54), conditions (D1) and (D2)
are clearly satisfied. To prove (D3’), take ϕ ∈ Cc(X). Clearly, fϕ is ω -integrable and
hence, by (iii) of Theorem 25, it is ωy -integrable for almost every y ∈ Y and

y 7→
∫
X
f(x)ϕ(x)dωy(x) = 〈fy, ϕ〉ωy

is integrable, hence measurable. Therefore f 7→ F is a well defined map from the space
of square-integrable functions on X to

∫
Y L

2(X,ωy)dρ(y), it is linear and, by (54),

(55)
∫
X
|f(x)|2dω(x) =

∫
Y
‖fy‖2

ωydρ(y).

Hence, it defines an isometry from L2(X,ω) into
∫
Y L

2(X,ωy)dρ(y) and, by construc-
tion, for almost every y ∈ Y , the equality fy(x) = f(x) holds for ωy -almost every
x ∈ X .

We claim that the isometry f 7→ F is surjective. It is enough to prove that for
any family F whose members fy are positive, there exists a positive f ∈ L2(X,ω)
such that, for almost every y ∈ Y , the equality fy(x) = f(x) holds for ωy -almost
every x ∈ X . Take then such an F . First of all, we show that the family of measures
{fy · ωy} is scalarly integrable with respect to ρ . This is equivalent to saying that
for all ϕ ∈ Cc(X) the function y 7→ Fϕ(y) =

∫
X ϕ(x)fy(x)dωy(x), certainly well

5Here it is important that f is a function, and not an equivalence class modulo a.e. equality.
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defined because (D1) implies that ϕfy is ωy -integrable for every y ∈ Y , is ρ-integrable.
Indeed, (D3’) says that Fϕ is ρ-measurable, whereas Hölder’s inequality and Cauchy-
Schwartz give∫

Y
|Fϕ(y)|dρ(y) ≤

∫
Y
‖ϕ‖ωy‖f‖ωydρ(y) ≤

(∫
Y
‖ϕ‖2

ωydρ(y)
)1/2 (∫

Y
‖f‖2

ωydρ(y)
)1/2

so that by (D2) and (55) applied to ϕ yield∫
Y
|Fϕ(y)|dρ(y) ≤ C‖ϕ‖ < +∞.

Hence the claim is proved and µ =
∫
Y (fy · ωy)dρ(y) defines a measure. We show next

that µ is a measure with base6ω . This will produce the required f that maps to F .
The Lebesgue-Nikodym theorem (see Th. 2 ,§ 5.5, Ch. 5 of [3]) ensures that it is enough
to prove that any compact subset K ⊂ X for which ω(K) = 0 satisfies µ(K) = 0.
Take such a K . Item (iii) of Theorem 25 applied to the characteristic function χK
gives that for almost every y ∈ Y , K is ωy -negligible and, a fortiori, fy ·ωy -negligible.
Thus, (50) with ω = µ , ωy = f · ωy and f = χK yields

µ(K) =
∫
Y

(∫
K
fy(x)dωy(x)

)
dρ(y) = 0.

Hence there exists a locally integrable positive function f such that f ·ω = µ . Moreover,
if ϕ ∈ Cc(X), ϕf is integrable, so that again (iii) of Theorem 25 tells us that, for almost
every y ∈ Y , ϕf is ωy -integrable, the map y 7→

∫
X ϕ(x)f(x) dωy(x) is integrable and

by definition of µ∫
Y

(∫
X
ϕ(x)fy(x) dωy(x)

)
dρ(y) =

∫
X
ϕ(x) dµ(x) =

∫
Y

(∫
X
ϕ(x)f(x) dωy(x)

)
dρ(y).

By the above equality, (iv) of Theorem 25 may be applied to infer that for almost every
y ∈ Y the equality f = fy holds ωy -almost everywhere. Finally, (D2) gives∫

Y

(∫
X
|f(x)|2dωy(x)

)
dρ(y) =

∫
Y

(∫
X
|fy(x)|2dωy(x)

)
dρ(y) < +∞.

Hence (iii) of Theorem 25 implies that f is square integrable. The equivalence class of
f in L2(X,ω) is then the element required to prove surjectivity.

Both L2(X,ω) and each of the spaces L2(X,ωy) can be identified with subspaces
of M(X), simply by viewing their elements as continuous linear functionals on Cc(X)
via integration with respect to ω and ωy , respectively. Further, (iv) of Theorem 25
implies that saying that for almost every y ∈ Y the equality fy(x) = f(x) holds for
ωy -almost every x ∈ X is equivalent to

f · ω =
∫
Y

(fy · ωy) dρ(y),

6A measure which is the product ψ · L of a measure L by a locally L -integrable positive function
ψ is called a measure with base L (see Def. 2, § 5.2, Ch. V in [3]).
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in the sense that the map Y → M(X), y 7→ fy · ωy is ρ-scalarly-integrable.7 These
remarks together with Proposition 26 imply that

(56) L2(X,ω) =
∫
Y
L2(X,ωy)dρ(y)

by means of the equality in M(X)

(57) f =
∫
Y
fydρ(y),

where the integral is a scalar integral.

5.3. The coarea formula for submersions. Below we give a simple proof of the
Coarea Formula for submersions; the general case is due to Federer [12]. Suppose that
n ≤ d and let X ⊂ Rd be an open set. Recall that a C1 -map Φ : X → Rn is called a
submersion if its differential Φ∗x is surjective for all x ∈ X . For every y ∈ Y = Φ(X),
let dvy(x) denote the volume element of the Riemannian submanifold Φ−1(y) and by
JΦ the Jacobian. We introduce the measure νy on X by

(58) νy(E) =
∫

Φ−1(y)∩E

dvy(x)

(JΦ)(x)
, E ∈ B(X).

It is worth observing that νy is finite on compact sets and concentrated on Φ−1(y).

Theorem 27 (Coarea formula for submersions). Suppose that Φ : X → Rn is a
submersion. Then

(59) dx =
∫
Y
dνy dy,

where dx and dy are the Lebesgue measures on Rd and Rn , respectively.

Proof. We must show that∫
X
f(x) dx =

∫
Y

(∫
X
f(x)

dvy(x)

(JΦ)(x)

)
dy

holds for every f ∈ Cc(X). Fix x0 ∈ X . Since Φ∗x0 is surjective, the Inverse Mapping
Theorem implies (Corollary 5.8 in [20]) that there exists a diffeomorphism Ψ : U×V 7→
W such that

(60) Φ(Ψ(z, y)) = y z ∈ U, y ∈ V,
where U is an open subset of Rd−n , V is an open subset of Rn and W is an open
neighborhood of x0 .

Take f ∈ Cc(X). For any such f , since supp f is compact, by choosing a suitable
finite covering if necessary, we can always assume that supp f ⊂ W . The change of
variables formula and Fubini Theorem give∫

W
f(x) dx =

∫
V

(∫
U
f(Ψ(z, y))(JΨ)(z, y) dz

)
dy.(61)

7This means, by definition, that for any ϕ ∈ Cc(X) the function y 7→
∫

X
ϕ(x)fy(x) dωy(x) is

integrable with respect to ρ .
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To obtain the coarea formula we simply compute the Jacobian JΨ. Observe that for
any given y ∈ V , Ψy = Ψ(·, y) is a diffeomorphism from U onto W ∩Φ−1(y), regarded
as a submanifold. In particular, using this local chart, the volume element at the point
x = Ψ(z, y) is given by

(62) dvy(x) =
√

det [t(Ψy)∗z(Ψy)∗z] dz.

Taking the derivatives of(60) with respect to z and y separately, we obtain

(63) Φ∗Ψ(z,y) D1Ψ(z,y) = 0, Φ∗Ψ(z,y) D2Ψ(z,y) = In×n.

Fix (z, y) ∈ U×V and let P1 denote the orthogonal projection from Rd onto ker Φ∗Ψ(z,y) ,
and P2 = I − P1 the orthogonal projection onto [ker Φ∗Ψ(z,y)]

⊥ , which is a subspace of
dimension n because Φ is a submersion. From (63) it follows that

(64) P2(D1Ψ)(z,y) = 0, P2(D2Ψ)(z,y) = (Φ∗Ψ(z,y) ◦ ι)−1,

where ι : [ker Φ∗Ψ(z,y)]
⊥ → Rd is the natural injection. Let R ∈ O(d) be the rotation

that takes ker Φ∗Ψ(z,y) onto the z -hyperplane (first d−n coordinates) and its orthogonal
complement onto the y -hyperplane (last n coordinates), so that RP1(z, y) = z and
RP2(z, y) = y . Then (64) imply

RΨ∗(z,y) =

[
A B
0 C

]
where A = R(D1Ψ)(z,y) , B = RP1(D2Ψ)(z,y) and C = RP2(D2Ψ)(z,y) . Therefore

(JΨ)(z, y) = | detRΨ∗(z,y)| = | detA| | detC| =

√
det [t(Ψy)∗z(Ψy)∗z]√

det
[
Φ∗Ψ(z,y)

tΦ∗Ψ(z,y)

] ,
where we have used (64). Taking (62) into account, for x = Ψ(z, y) we have

(JΨ)(z, y) dz =
dvy(x)

(JΦ)(x)
,

which inserted in (61) yields the result.
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