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Abstract. The aim of this paper is to describe the eigenvalues of the vertex set Hecke algebra of an

affine building. We prove, by a direct approach, the invariance (with respect to the Weyl group) of

any eigenvalue associated to a character. Moreover we construct the Satake isomorphism of the Hecke
algebra and we prove, by this isomorphism, that every eigenvalue arises from a character.

1. Introduction

The aim of this paper is to discuss the eigenvalues of the vertex set Hecke algebra H(∆) of any affine
building ∆, using only its geometric properties. We avoid making use of the structure of any group acting
on ∆.

To every multiplicative function χ on the fundamental apartment A of the building we associate an
eigenvalue Λχ that can be expressed in terms of the Poisson kernel relative to the character χ. We
prove the invariance of the eigenvalue Λχ with respect to the action of the finite Weyl group W on the
characters. Moreover we prove that every eigenvalue arises from a character. Following the method used
by Macdonald in his paper [8], the basic tool we use to obtain this characterization is the definition of
the Satake isomorphism between the algebra H(∆) and the Hecke algebra of all W-invariant operators
on the fundamental apartment A.

Our approach strongly depends on the definition of an α-boundary Ωα, for every simple root α. Indeed
we associate to every point of Ω a tree, called tree at infinity, and we define the α-boundary Ωα as the
collection of all such isomorphic trees. Thus we can show that the maximal boundary splits as the product
of Ωα and the boundary ∂T of the tree at infinity, and so any probability measure on Ω decomposes as
the product of a probability measure on Ωα and the standard measure on ∂T.

Our goal is to present a proof of the results which puts the geometry of the building front and center.
Since we intend to address a non-specialized audience, we make use of a language that reduces to a
minimum the algebraic knowledge required about affine buildings. This makes the paper as self-contained
as possible. Hence we give, without claim of originality except possibly in the presentation, the main
results about buildings and their maximal boundary Ω.

In a forthcoming paper we will use our results here to construct the Macdonald formula for the spherical
functions on the building.

For buildings of type Ã2, B̃2 and G̃2 the eigenvalues of the algebra H(∆) are described in detail in
[10], [11] and [12] respectively.

We point out that an exhaustive presentation of the features of an affine building and its maxi-
mal boundary can be found in the paper [13] of J. Parkinson. Moreover the same author obtains in
[14] the results about the eigenvalues of the algebra H(∆), by expressing all algebra homomorphisms
h : H(∆) → C in terms of the Macdonald spherical functions.

2. Affine buildings

In this section we collect the fundamental definitions and properties concerning buildings and we fix
notation we shall use in the following. Our presentation is based on [3], [15] and [16] and we refer the
reader to these books for more details about the argument. We also point out the paper [13] for a similar
presentation about buildings.
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2.1. Labelled chamber complexes. A simplicial complex (with vertex set V) is a collection ∆ of finite
subsets of V (called simplices) such that every singleton {v} is a simplex and every subset of a simplex
A is a simplex (called a face of A).The cardinality r of A is called the rank of A, and r − 1 is called the
dimension of A. Moreover a simplicial complex is said to be a chamber complex if all maximal simplices
have the same dimension d and any two can be connected by a gallery, that is by a sequence of maximal
simplices in which any two consecutive ones are adjacent, that is have a common codimension 1 face.
The maximal simplices will then be called chambers and the rank d + 1 (respectively the dimension d)
of any chamber is called the rank (respectively the dimension) of ∆. The chamber complex is said to be
thin (respectively thick) if every codimension 1 simplex is a face of exactly two chambers (respectively at
least three chambers).

A labelling of the chamber complex ∆ by a set I is a function τ which assigns to each vertex an element
of I (the type of the vertex), in such a way that the vertices of every chamber are mapped bijectively
onto I. The number of labels or types used is required to be the rank of ∆ (that is the number of vertices
of any chamber), and joinable vertices are required to have different types. When a chamber complex ∆
is endowed by a labelling τ , we say that ∆ is a labelled chamber complex. For every A ∈ ∆, we will call
τ(A) the type of A, that is the subset of I consisting of the types of the vertices of A; moreover we call
I \ τ(A) the co-type of A.

A chamber system over a set I is a set C, such that each i ∈ I determines a partition of C, two elements
in the same class of this partition being called i-adjacent. The elements of C are called chambers and
we write c ∼i d to mean that the chambers c and d are i-adjacent. Then a labelled chamber complex
is a chamber system over the set I of the types and two chambers are i-adjacent if they share a face of
co-type i.

2.2. Coxeter systems. Let W be a group (possibly infinite) and S be a set of generators of W of order
2. Then W is called a Coxeter group and the pair (W,S) is called a Coxeter system, if W admits the
presentation

〈S ; (st)m(s,t) = 1〉,
where m(s, t) is the order of st and there is one relation for each pair s, t, with m(s, t) ≤ ∞. We shall
assume that S is finite, and denote by N the cardinality of S; then, if I is an arbitrary index set with
|I| = N, we can write S = (si)i∈I and

W = 〈(si)i∈I ; (sisj)
mij = 1〉,

where m(sisj) = mij . When w ∈ W is written as w = si1si2 · · · sik , with ij ∈ I and k minimal, we say
that the expression is reduced and we call length |w| of w the number k. The matrix M = (mij)i,j∈I , with
entries mij ∈ Z ∪ {∞}, is called the Coxeter matrix of W. We shall represent M by its diagram D : the
nodes of D are the elements of I (or of S) and between two nodes there is a bond if mij ≥ 3, with the
label mij over the bond if mij ≥ 4. We call D the Coxeter diagram or the Coxeter graph of W. We often
say that W has type M, if M is its Coxeter matrix.

2.3. Coxeter complexes. Let (W,S) be a Coxeter system, with S = (si)i∈I finite. We define a special
coset to be a coset w〈S′〉, with w ∈ W and S′ ⊂ S, and we define Σ = Σ(W,S) to be the set of special
cosets, partially ordered by the opposite of the inclusion relation: B ≤ A in Σ if and only if B ⊇ A as
subsets of W, in which case we say that B is a face of A. The set Σ is a simplicial complex; moreover it
is a thin, labellable chamber complex of rank N = card S and the W -action on Σ is type-preserving. We
remark that the chambers of Σ are the elements of W and, for each i ∈ I, w ∼i w′ means that w′ = wsi or
w′ = w. Following Tits, we shall call Σ the Coxeter complex associated to (W,S), or the Coxeter complex
of type M, if M is the Coxeter matrix of W.

2.4. Buildings. Let (W,S) be a Coxeter system, and let M = (mij)i,j∈I its Coxeter matrix. A building
of type M (see Tits [16]) is a simplicial complex ∆, which can be expressed as the union of subcomplexes
A (called apartments) satisfying the following axioms:

(B0) each apartment A is isomorphic to the Coxeter complex Σ(W,S) of type M of W ;
(B1) for any two simplices A,B ∈ ∆, there is an apartment A(A,B) containing both of them;
(B2) if A and A′ are two apartments containing A and B, there is an isomorphism A → A′ fixing A

and B point-wise.

Hence each apartment of ∆ is a thin, labelled chamber complex over I of rank N = |I|. It can be proved
that a building of type M is a chamber system over the set I with the properties:

(i) for each chamber c ∈ ∆ and i ∈ I, there is a chamber d 6= c in ∆ such that d ∼i c;
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(ii) there exists a W -distance function

δ : ∆×∆→W

such that, if f = i1 · · · ik is a reduced word in the free monoid on I and wf = si1 · · · sik ∈W, then

δ(c, d) = wf

when c and d can be joined by a gallery of type f. We write d = c · δ(c, d).

Actually it can be proved that each chamber system over a set I satisfying these properties is in fact
a building.

To ensure that the labelling of ∆ and Σ(W,S) are compatible, we assume that the isomorphisms in
(B0) and (B2) are type-preserving; this implies that the isomorphism in (B2) is unique. We write C(∆)
for the chamber set of ∆. We call rank of ∆ the cardinality N of the index set I.

We always assume that ∆ is irreducible, that is the associated Coxeter group W is irreducible (that is
its Coxeter graph is connected). Moreover we confine ourselves to consider thick buildings.

2.5. Regularity and parameter system. Let ∆ be a (irreducible) building of type M, with associated
Coxeter group W over index set I, with |I| = N. We say that ∆ is locally finite if

|{d ∈ C(∆), c ∼i d}| <∞, ∀i ∈ I, ∀c ∈ C(∆).

Moreover we say that ∆ is regular if this number does not depend on the chamber c. We shall assume
that ∆ is locally finite and regular. Since, for every i ∈ I, the set

Ci(c) = {d ∈ C(∆), c ∼i d}

has a cardinality which does not depend on the choice of the chamber c, we put

qi = |Ci(c)|, ∀c ∈ C(∆).

The set {qi}i∈I is called the parameter system of the building. We notice that the parameter system has
the following properties (see for instance [13] for the proof):

(i) qi = qj , whenever mi,j <∞ is odd;
(ii) if sj = wsiw

−1, for some w ∈W, then qi = qj .

The property (ii) implies (see [2]) that, for w ∈W, the monomial qi1 · · · qik is independent of the particular
reduced decomposition w = si1 · · · sik of w. So we define, for every w ∈W,

qw = qi1 · · · qik
if si1 · · · sik is any reduced expression for w. If we set, for every c ∈ C(∆) and every w ∈W,

Cw(c) = {d ∈ C(∆), δ(c, d) = w},

it can be proved that

|Cw(c)| = qw = qi1 · · · qik ,
whenever w = si1 · · · sik is a reduced expression for w. Hence the cardinality of the set Cw(c) does not
depend on the choice of the chamber c. Obviously, qw = qw−1 .

If U is any finite subset of W, we define

U(q) =
∑
w∈U

qw

and we call it the Poincaré polynomial of U.

2.6. Affine buildings. According to [2], W is called an affine reflection group if W is a group of affine
isometries of a Euclidean space V (of dimension n ≥ 1) generated by reflections sH , where H ranges over
a set locally finite H of affine hyperplanes of V, which is W -invariant. We also assume W infinite. It is
known that an affine reflection group is in fact a Coxeter group, because it has a finite set S of n + 1
generators and admits the presentation

〈S ; (st)m(s,t) = 1〉.

A building ∆ (of type M) is said affine if the associated Coxeter group W is an affine reflection group.
It is well known that each affine reflection group can be seen as the affine Weyl group of a root system.
So we can define an affine building as a building associated to the affine Weyl group of a root system.

For the purpose of fixing notation, we shall give a brief discussion of root systems and its affine Weyl
group, and we shall describe the geometric realization of the Coxeter complex associated to this group.
We refer to [2] for an exhaustive reference to this subject.
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2.7. Root systems. Let V be a vector space over R, of dimension n ≥ 1, with the inner product 〈·, ·〉.
For every v ∈ V \ {0} we define

v∨ =
2v

〈v, v〉
.

Let R be an irreducible, but not necessarily reduced, root system in V ( see [2]). The elements of R
are called roots and the rank of R is n.

Let B = {αi, i ∈ I0} be a basis of R, where I0 = {1, · · · , n}. Thus B is a subset of R, such that

(i) B is a vector space basis of V;
(ii) each root in R can be written as a linear combination∑

i∈I0

kiαi,

with integer coefficients ki which are either all nonnegative or all nonpositive.

The roots in B are called simple. We say that α ∈ R is positive (respectively negative) if ki ≥ 0,∀i ∈ I0
(respectively ki ≤ 0,∀i ∈ I0). We denote by R+ (respectively R−) the set of all positive (respectively
negative) roots. Thus R− = −R+ and R = R+ ∪R− (as disjoint union). Define the height (with respect
to B) of α =

∑
i∈I0 kiαi by

ht(α) =
∑
i∈I0

ki.

There exists a unique root α0 ∈ R whose height is maximal, and if we wright α0 =
∑
i∈I0 miαi, then

mi ≥ ki for every root α =
∑
i∈I0 kiαi; in particular mi > 0, ∀i ∈ I0 (see [2]).

The set R∨ = {α∨, α ∈ R} is an irreducible root system, which is reduced if and only if R is. We call
R∨ the dual (or inverse) of R and we call co-roots its elements.

For each α ∈ R, we denote by Hα the linear hyperplane of V defined by 〈v, α〉 = 0 and we denote
by H0 the family of all linear hyperplanes Hα. For every α ∈ R, let sα be the reflection with reflecting
hyperplane Hα; we denote by W the subgroup of GL(V) generated by {sα, α ∈ R}. W permutes the set
R and is a finite group, called the Weyl group of R. Note that W(R) = W(R∨).

The hyperplanes in H0 split up V into finitely many regions; the connected components of V \ ∪αHα

are (open) sectors based at 0, called the (open) Weyl chambers of V (with respect to R). The so called
fundamental Weyl chamber or fundamental sector based at 0 (with respect to the basis B) is the Weyl
chamber

Q0 = {v ∈ V : 〈v, αi〉 > 0, i ∈ I0}.
It is known that

(i) W is generated by S0 = {si = sαi , i ∈ I0} and hence (W, S0) is a finite Coxeter system;
(ii) W acts simply transitively on Weyl chambers;
(iii) Q0 is a fundamental domain for the action of W on V.

Moreover, for every w ∈ W, we have |w| = n(w), if n(w) is the number of positive roots α for which
w(α) < 0. We recall that at most two root lengths occur in R, if R is reduced, and all roots of a given
length are conjugate under W. When there are in R two distinct root lengths, we speak of long and short
roots. In this case, the highest root α0 is long.

The root system (or the associated Weyl group) can be characterized by the Dynkin diagram, which
is the usual Coxeter graph D0 of the group W, where we add an arrow pointing to the shorter of the
two roots. We refer to [2] for the classification of (irreducible) root systems. We notice that, for every
n ≥ 1, there is exactly one irreducible non-reduced root system (up to isomorphism) of rank n, denoted
by BCn. If we take V = Rn, with the usual inner product, the root system BCn is the following:

R = {±ek, ±2ek, 1 ≤ k ≤ n} ∪ {±ei ± ej , 1 ≤ i < j ≤ n}.

Hence we can choose B = {αi, 1 ≤ i ≤ n}, if αi = ei − ei+1, 1 ≤ i ≤ n− 1 and αn = en. Moreover

R+ = {ek, 2ek, 1 ≤ k ≤ n} ∪ {ei ± ej , 1 ≤ i < j ≤ n}

and α0 = 2e1. In this case R∨ = R and W(BCn) = W(Cn) = W(Bn).
It will be useful to decompose R = R1 ∪R2 ∪R0, as disjoint union, by defining

R1 = {α ∈ R : α/2 ∈ R, 2α /∈ R}
R2 = {α ∈ R : α/2 /∈ R, 2α ∈ R}
R0 = {α ∈ R : α/2, 2α /∈ R}.

Then α0 ∈ R1, αn ∈ R2, and αi ∈ R0, ∀i = 1, · · · , n− 1, and W stabilizes each Rj .
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The Z-span L(R) of the root system R is called the root lattice of V and L(R∨) is called the co-root
lattice of V associated to R. Notice that L(BCn) = L(Cn) = L(B∨n ). We simply denote by L the co-root
lattice of V associated to R. Moreover we set

L+ = {
∑
α∈R+

nαα, nα ∈ N}.

2.8. Affine Weyl group of a root system. Let R be an irreducible root system, not necessarily
reduced. For every α ∈ R and k ∈ Z, define an affine hyperplane

Hk
α = {v ∈ V : 〈v, α〉 = k}.

We remark that Hk
α = H−k−α and H0

α = Hα; moreover Hk
α can be obtained by translating H0

α by k
2α
∨.

When R is reduced we define H = ∪α∈R+H(α), where, for every α ∈ R+,

H(α) = {Hk
α, for all k ∈ Z}.

When R is not reduced, we note that, for every α ∈ R2, H
k
α = H2k

2α; then we define

H1 = {Hk
α : α ∈ R1, k ∈ 2Z + 1}

H2 = {Hk
α : α ∈ R2, k ∈ Z}

H0 = {Hk
α : α ∈ R0, k ∈ Z},

and H = H1 ∪H2 ∪H0, as disjoint union. Since H1 ∪H2 = {Hk
α, α ∈ R1, k ∈ Z}, we can write

H = ∪α∈R1∪R0
H(α),

by setting, for every α ∈ R0 or α ∈ R1, H(α) = {Hk
α, for all k ∈ Z}, as in the reduced case. Actually,

R1 ∪ R0 is the root system of type Cn and the hyperplanes described before are these associated with
this reduced root system.

Given an affine hyperplane Hk
α ∈ H, the affine reflection with respect to Hk

α is the map skα defined by

skα(v) = v − (〈v, α〉 − k)α∨, ∀v ∈ V.
The reflection skα fixes Hk

α and sends 0 to kα∨; in particular s0
α = sα, ∀α ∈ R. We denote by S the set of

all affine reflections defined above. We define the affine Weyl group W of R to be the subgroup of Aff(V)
generated by all affine reflections skα, α ∈ R, k ∈ Z. (Here Aff(V) is the set of maps v 7→ Tv + λ, for all
T ∈ GL(V) and λ ∈ V).

Let s0 = s1
α0

and I = I0 ∪ {0}; then it can be proved that W is a Coxeter group over I, generated
by the set S = {si, i ∈ I}. Writing tλ for the translation v 7→ v + λ, we can consider V as a subgroup
of Aff(V), by identifying λ and tλ. In this sense we have Aff(V) = GL(V) n V. In the same sense, if we
consider the affine Weyl group W, the co-root lattice L can be seen as a subgroup of W, since tλ, λ ∈ L,
are the only translations of V belonging to W, and we have

W = W n L.

We point out that W (BCn) = W (Cn), whereas W (BCn) ⊃ W (Bn). Hence we can write each w ∈ W in
a unique way as w = wtλ, for some w ∈W and λ ∈ L; moreover, if w1 = w1tλ1

and w2 = w2tλ2
, then

w−1
2 w1 ∈ L if and only if w1 = w2. This implies that there is a bijection between the quotient W/L and

W, in the sense that each coset wL determines a unique w ∈ W. So we denote by w the coset whose
representative in W is w, and we shall write w ∈ w to intend that w = wtλ, for some λ ∈ L.

It is not difficult to construct, for each irreducible root system R, the Coxeter graph D of the affine
Weyl group W ; one just needs to work out the order of sis0, for each i ∈ I0, to see what new bonds and
labels occur when the new node is adjoined to the Coxeter graph D0 of W,that is of R. We refer to [6]
for the classification of all affine Weyl groups.

2.9. Co-weight lattice. Following standard notation, we call weight lattice of V associated to the root

system R the Z-span L̂(R) of the vectors {λ∨i , i ∈ I0}, defined by 〈λ∨i , α∨j 〉 = δij and we call L̂(R∨) the

co-weight lattice of V associated to the root system R. We simply set L̂ = L̂(R∨). Then L̂ is the Z-span
of the vectors {λi, i ∈ I0}, defined by

〈λi, αj〉 = δij , ∀ i, j ∈ I0.

It is easy to see that, when R is reduced, L̂ contains L as a subgroup of finite index f, the so called index
of connection, with 1 ≤ f ≤ n+ 1. Instead, when R is non reduced, that is when R has type BCn, then

L̂(BCn) = L(BCn); thus, in this case

L(Cn) = L(BCn) = L̂(BCn) 6⊆ L̂(Cn).
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A co-weight λ is said dominant (respectively strongly dominant) if 〈λ, αi〉 ≥ 0 (respectively 〈λ, αi〉 > 0)

for every i ∈ I0. We denote by L̂+ (resp. L̂++) the set of all dominant (respectively strongly dominant)

co-weights. Thus λ ∈ L̂+ if and only if λ ∈ Q0 and λ ∈ L̂++ if and only if λ ∈ Q0. Remark that L+ does

not lie on L̂+ and L+ ∩ L̂+ consists of all dominant coweights of type 0.

2.10. Geometric realization of an affine Coxeter complex. Let W be the affine Weyl group of a
root system R; let H be the collection of the affine hyperplanes associated to W. The open connected
components of V\∪α,kHk

α are called chambers. Since R is irreducible, each chamber is an open (geometric)
simplex of rank n+1 and dimension n. The extreme points of the closure of any chamber are called vertices
and the 1 codimension faces of any chamber are called panels.

We write A = A(R) for the vector space V equipped with chambers, vertices, panels as defined above.
Hence A is a geometric simplicial complex of rank n+ 1 and dimension n, realized as a tessellation of the
vector space V in which all chambers are isomorphic.

It is convenient to single out one chamber, called fundamental chamber of A, in the following way:

C0 = {v ∈ V : 0 < 〈v, α〉 < 1, ∀α ∈ R+} = {v ∈ V : 〈v, αi〉 > 0, ∀i ∈ I0, 〈v, α0〉 < 1}.

Define walls of C0 the hyperplanes Hαi , i ∈ I0 and H1
α0

; then the group W is generated by the set of the
reflections with respect to the walls of the fundamental chamber C0.

We denote by C(A) the set of chambers and by V(A) the set of vertices of A. It can be proved that W
acts simply transitively on C(A) and C0 is a fundamental domain for the action of W on V. Moreover W
acts simply transitively on the set C(0) of all chambers C, such that 0 ∈ C. Hence, we have well-defined
walls for each chamber C ∈ C(A) : the walls of C are the images of the walls of C0 under w, if C = wC0.
If we declare wC0 ∼i wC0 and wC0 ∼i wsiC0, for each w ∈W and each i ∈ I, then the map

w 7→ wC0

is an isomorphism of the labelled chamber complex of W onto C(A). For every w ∈W, we set Cw = wC0.
The vertices of C0 are X0

0 , X
0
1 , . . . , X

0
n, where X0

0 = 0 and X0
i = λi/mi, i ∈ I0.

We declare τ(0) = 0 and τ(λi/mi) = i, for i ∈ I0; more generally we declare that a vertex X of A has
type i, i ∈ I, if X = w(X0

i ) for some w ∈W. This define a unique labelling

τ : V(A)→ I,

and the action of W on A is type-preserving. We say that a panel of C0 has co-type i, for any i ∈ I, if i is
the type of the vertex of C0 not lying on the panel; this extends to a unique labelling on the panels of A.

Hence, if we consider the Coxeter complex Σ(W,S) associated to the affine Weyl group W, there is
a unique isomorphism type-preserving of Σ(W,S) onto A; thus A may be regarded as the geometric
realization of Σ; up to this isomorphism, the co-root lattice L consists of all type 0 vertices of A and
W acts on L. We point out that, for every w ∈ W, the chamber Cw can be joined to C0 by a gallery
γ(C0, Cw) of type f = i1 · · · ik, if w = si1 · · · sik ; so, recalling the definition of the W -distance function
given in Section 2.4, we have w = δ(C0, Cw). This suggests to denote by C0 · w, the chamber Cw.

According to [2], a vertex X is a special vertex of A if, for every α ∈ R+, there exists k ∈ Z such that
X ∈ Hk

α. In particular the vertex 0 is special and hence every vertex of type 0 is special, but in general
not all vertices of A are special. We shall denote by Vsp(A) the set of all special vertices of A. We point

out that, when R is reduced, Vsp(A) = L̂. More precisely , if R has type An, all n+ 1 types are special;
furthermore, if R has type Dn, E6 and G2, occur respectively four, three and only one special type; in
all other cases the special types are two. In particular, if R has type Bn or Cn, the special vertices have
type 0 or n. We refer the reader to [6] for more details.

Remark 2.10.1. When R has type Cn and α = αn, then all vertices of type 0 lie on hyperplanes H2k
α ,

for k ∈ Z, whereas all vertices of type n lie on hyperplanes H2k+1
α , for k ∈ Z. Actually, the reflection sα0

fixes each hyperplane Hh
α and the panel of co-type n, containing 0, of the hyperplane H0

α0
and, for every

j, the reflection with respect to Hj
α0

fixes its panel and each hyperplane Hh
α. The same is true for every

long root. If R has type Bn the previous property holds for each simple root α = αi, i = 1, · · · , n− 1, and
then for every long root.

When R is non reduced, the Coxeter complex Σ(W,S) associated to the root system of type BCn has
the same geometric realization as the one associated to the root system of type Cn. Then the special types

are type 0 and type n, and they are arranged according to Remark 2.10.1. Since L̂(BCn) = L(BCn), the

lattice L̂(BCn) is a proper subset of Vsp(A) and it consists of all type 0 vertices, lying on the hyperplanes
H2k
i , for k ∈ Z and i = 0, n.
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In general we denote by V̂(A) the set of all special vertices of A belonging to L̂; so V̂(A) inherits the

group structure of L̂. If we define Î := {τ(λ) : λ ∈ L̂}, then V̂(A) is the set of all special vertices of A
whose type belongs to Î . We remark that Î = {i ∈ I : mi = 1}. See [13] for a proof of this property.

For every λ ∈ L̂+, we define

Wλ = {w ∈W : wλ = λ}.
If Xλ is the special vertex of A associated with λ and Cλ is the chamber containing Xλ in the minimal
gallery connecting C0 to Xλ, that is the chamber of Q0 containing Xλ and nearest to C0, then the set Wλ

is the stabilizer of Xλ in W. Moreover we denote by wλ the unique element of W such that Cλ = wλ(C0).

Finally, for each i ∈ Î , we denote by Wi the stabilizer in W of the vertex X0
i of type i lying on the

fundamental chamber C0, that is the Weyl group associated with Ii = I \ {i}. Obviously W0 = W.

2.11. Extended affine Weyl group of R. Let us consider in Aff(V) the translation group corresponding

to L̂; since this group is also normalized by W, we can form the semi-direct product

Ŵ = W n L̂,

called the extended affine Weyl group of R. We notice that Ŵ/W is isomorphic to L̂/L; hence Ŵ contains

W as a normal subgroup of finite index f. In particular when R is non reduced, then Ŵ (BCn) = W (BCn),

as in this case L̂(BCn) = L(BCn); moreover Ŵ (BCn) is not isomorphic to Ŵ (Cn), since Ŵ (Cn) is

larger than W (Cn). Notice that Ŵ permutes the hyperplanes in H and acts transitively, but not simply
transitively, on C(A).

Given any two special vertices X,Y of A, there exists a unique ŵ ∈ Ŵ such that ŵ(X) = 0 and ŵ(Y )

belongs to Q0. We call shape of Y with respect to X the element λ = ŵ(Y ) of L̂+ and we denoted it by

σ(X,Y ). For every λ ∈ L̂+, we set

Vλ(X) = {Y ∈ V(A) : σ(X,Y ) = λ}.

As for W/L, there is a bijection between the quotient Ŵ/L̂ and W, in the sense that each coset ŵL̂
determines a unique w ∈ W; so we denote by w the coset whose representative in W is w. Hence we

shall write ŵ ∈ w to mean that ŵ = wtλ, for some λ ∈ L̂.

For every ŵ ∈ Ŵ , let define

L(ŵ) = |{H ∈ H : H separates C0 and ŵ(C0)}|.

If w ∈W, then L(w) = |w|. The subgroup G = {g ∈ Ŵ : L(g) = 0} is the stabilizer of C0 in Ŵ and

Ŵ ∼= GnW.

Hence G ∼= L̂/L and is a finite abelian group. If R is reduced, it can be proved that G = {gi, i ∈ Î},
where g0 = 1 and, for every i ∈ I0, gi = tλiw

0
λi

w0, if w0 and w0
λi

denote the longest elements of W and
Wλi = {w ∈W : wλi = λi} respectively. A proof of this property can be found in [13]. Obviously, if
R is non reduced, then G is trivial.

We extend to Ŵ the definition of qw given in Section 2.5, for every w ∈W, by setting

qŵ = qw if ŵ = wg,

where w ∈W and g ∈ G. In particular, for each λ ∈ L̂, qtλ = quλ if tλ = uλg.

2.12. Automorphisms of A and D. As usual, an automorphism of A is a bijection ϕ on V mapping
chambers to chambers, with the property that ϕ(C) and ϕ(C ′) are adjacent if and only if C and C ′ are
adjacent. If D denotes the Coxeter graph of W, then an automorphism of D is a permutation σ of I, such
that mσ(i),σ(j) = mi,j , ∀i, j ∈ I. We denote by Aut(A) and Aut(D) the automorphism group of A and D
respectively. It can be proved (see for instance [13]) that, for every ϕ ∈ Aut(A), there exists σ ∈ Aut(D),
such that , for every X ∈ V(A),

τ ◦ ϕ(X) = σ ◦ τ(X),

and ϕ(C) ∼σ(i) ϕ(C ′), if C ∼i C ′.
Obviously W, W and Ŵ can be seen as subgroups of Aut(A) such that W ≤ W ≤ Ŵ ≤ Aut(A) (in

some cases Ŵ is a proper subgroup). Consider in particular the finite abelian group G and, for every

i ∈ Î , denote by σi the automorphism of D such that τ ◦ gi = σi ◦ τ ; then σi(0) = i, for every i ∈ Î .
Hence we call type-rotating every σi, i ∈ Î , and denote

Auttr(D) = {σi, i ∈ Î}.
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In particular σ0 = 1. We note that Aut(D) = Aut(D0) n Auttr(D), if D0 is the Coxeter graph of W,

and Auttr(D) acts simply transitively on Î . Since each w ∈ W is type-preserving, it corresponds to the
element σ0 = 1 of Auttr(D); actually W is the subgroup of all type-preserving automorphisms of A.
Keeping in mind the formula Ŵ ∼= GnW, we call type-rotating automorphism of A any element of Ŵ .

The group Auttr(D) acts on W as following: for every σ ∈ Auttr(D) and w = si1 · · · sik ∈W, then

σ(w) = sσ(i1) · · · sσ(ik).

In particular, for every i ∈ Î , we have Wi = σi(W).

Consider now the map

ι(µ) = −w0(µ), ∀µ ∈ A.
Since the map µ 7→ −µ is an automorphism of A, then ι ∈ Aut(A); moreover ι2 = 1 and ι(Q0) = Q0.
Therefore either ι is the identity or it permutes the walls of the sector Q0. Since the identity is the unique
element of W which fixes the sector Q0, by virtue of the simple transitivity of W on the sectors based
at 0, it follows that ι belongs to W only when is the identity. This happens when the map µ 7→ −µ
belongs to W, that is when w0 = −1. Hence, if we consider the automorphism σ? of D induced by ι,
then in general σ? is not an element of Auttr(D), but σ? ∈ Auttr(D) if and only if σ? = 1. Moreover,
when σ? 6= 1, then it belongs to Aut(D0). On the other hand, Aut(D0) is non trivial only for a root
system of type Al (l ≥ 2), Dl (l ≥ 4) and E6. Hence, apart these three cases, ι is always the identity, or
equivalently, the map µ 7→ −µ belongs to W.

Simple computations allow to state if ι is trivial or not for a Dynkin diagram D0 of type Al (l ≥ 2),
Dl (l ≥ 4) and E6. The results are listed in the following proposition.

Proposition 2.12.1. Let R be an irreducible root system.

(i) If R has type Al (l ≥ 2), then ι induces the unique automorphism non trivial of the diagram D0;
(ii) if R has type Dl (l ≥ 4), then ι is the identity for n even and it induces the unique automorphism

non trivial of the diagram D0 for n odd;
(iii) if R has type E6, then ι induces the unique automorphism non trivial of the diagram D0.

For every µ ∈ Vsp(A), we denote µ? = ι(µ); then µ? ∈ Q0 for each µ ∈ Q0.

2.13. Affine buildings of type X̃n. Let ∆ be an affine building; we assume ∆ is irreducible, locally
finite, regular and we denote by {qi}i∈I its parameter system. By definition, there is a Coxeter group W
canonically associated to ∆ and W is an affine reflection group, which can be interpreted as the affine
Weyl group of a (irreducible) root system R. Hence there is a root system R canonically associated to each
(irreducible, locally finite, regular) affine building. The choice of R is in most cases ”straightforward”,
since in general different root systems have different affine Weyl group.

The only exceptions to this rule are the root systems of type Cn and BCn, which have the same
affine Weyl group. So, when the group W associated to the building is the affine Weyl group of the root
systems of type Cn and BCn, we have to choose the root system. We assume to operate this choice
according to the parameter system of the building. Actually, we choose R to ensure that in each case
the group Auttr(D) preserves the parameter system of the building, that is in order to have, for each
σ ∈ Auttr(D), qσ(i) = qi, for all i ∈ I. Actually, in the case R = Cn or BCn, the Coxeter graph of W is

• • • • •
4

0 1 2 (n− 1) n
·· · · · · ·

Hence q1 = q2 = · · · = qn−1, but in general q0 6= q1 6= qn. On the other hand, if R = Cn, then
Auttr(D) = {1, σ}, while, if R = BCn, then Auttr(D) = {1}. Thus, if R = Cn, the condition qσ(0) = q0

implies qn = q0, while, if R = BCn, q0 and qn can have different values.

Keeping in mind the above choice and the classification of root systems, we shall say that

(1) ∆ is an affine building of type X̃n, if R has type Xn, in the following cases:

Xn = An (n ≥ 2), Bn (n ≥ 3), Dn (n ≥ 4), En (n = 6, 7, 8), F4, G2;

(2) ∆ is an affine building of type

(i) Ã1, associated to a root system of type A1, if q0 = q1 (homogeneous tree);

(ii) B̃C1, associated to a root system of type BC1, if q0 6= q1 (semi-homogeneous tree);
(3) ∆ is an affine building of type

(i) C̃n, n ≥ 2, associated to a root system of type Cn, if q0 = qn;

(ii) B̃Cn, n ≥ 2, associated to a root system of type BCn, if q0 6= qn.
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We refer to Appendix of [13] for the classification of all irreducible, locally finite, regular affine buildings,
in terms of diagram and parameter system.

In each case Auttr(D) preserves the parameter system of the building. Actually, if we define

Autq(D) = {σ ∈ Aut(D) : qσ(i) = qi, i ∈ I},
then in each case Auttr(D) ∪ {σ?} ⊂ Autq(D).

2.14. Subgroups of G. We are interested to determine the subsets of the set Î of special types corre-

sponding to sublattices of L̂. In order to solve this problem we have to determine all the subgroups of the

finite group G = L̂/L of order f. We only consider buildings of type Ãn, D̃n and Ẽ6, as only in these cases

f is greater than 2 and hence there is the possibility to have proper subgroups of L̂/L. Since the order of

a proper subgroup of a finite group must be a divisor of the order of the group, then in the cases Ẽ6 and

Ãn, n = 2k + 1, we have no one proper subgroup of L̂/L. So the only cases to consider are the case Ãn,

if n is an even number, and the case D̃n. The following results can be proved by direct computations.

Proposition 2.14.1. Let ∆ be a building of type D̃n; then

(i) if n is even, G has three subgroups of order two: G0,1 = 〈g0, g1〉, G0,n−1 = 〈g0, gn−1〉 and
G0,n = 〈g0, gn〉, corresponding to types {0, 1}, {0, n− 1} and {0, n} respectively;

(ii) if n is odd, then G0,1 = 〈g0, g1〉 is the unique subgroup of order two of G corresponding to the
types {0, 1}.

Proposition 2.14.2. Let ∆ be a building of type Ãn; assume n = lm, for some l,m ∈ Z, 1 < l,m < n.
Then {g0, gl, g2l, · · · , g(m−1)l} generate the unique subgroup of order m in G.

Proposition 2.14.1 implies that, for a building of type D̃n, the vertices of A of types 0 and 1 form an

sublattice of L̂, for every n; moreover, when n is even, also the vertices of types {0, n−1} and the vertices

of type {0, n} form a sublattice of L̂. Besides the types {n − 1, n} do not correspond to a subgroup of

order two in L̂/L, but to its complement; this means that the vertices of A of types n − 1 and n form
an affine lattice which does not contain the origin 0. The same is true, when n is even, for the types
{1, n− 1} and {1, n}.

As a consequence of Proposition 2.14.2, the vertices of A of types {0, l, 2l, . . . , (m−1)l} form a sublattice

of L̂, whereas the types {j, j+ l, j+2l, . . . , j+(m−1)l}, for 0 < j < l, do not correspond to any subgroup

of order m in L̂/L, but to a lateral of this subgroup. This means that the vertices of A of types
{j, j+ l, j+ 2l, . . . , j+ (m− 1)l}, for 0 < j < l, form an affine lattice which does not contain the origin 0.

2.15. Geometric realization of an affine building. Let ∆ be any affine building of type X̃n. The
affine Coxeter complex A associated to W is called the fundamental apartment of the building. By
definition, each apartment A of ∆ is isomorphic to A and hence it can be regarded as a Euclidean space,
tessellated by a family of affine hyperplanes isomorphic to the familyH. Moreover every such isomorphism
is type-preserving or type-rotating. If ψ : A → A is any type-preserving isomorphism, then, for each

ŵ ∈ Ŵ , ψ′ = ŵψ is a type-rotating isomorphism and for every vertex x of type i, the type of ψ′(x) is
σj(i), if ŵ = wgj . Moreover each type-rotating isomorphism ψ′ : A → A is obtained in this way.

For any apartment A, we denote by H(A) the family of all hyperplanes h of A. If ψ : A → A is any
type-rotating isomorphism, we set h = hkα, if ψ(h) = Hk

α. Obviously k and α depend on ψ.
We denote by V(∆) the set of all vertices of the building and, for each i ∈ I, we denote by Vi(∆) the

set of all type i vertices in ∆.
There is a natural way to extend to ∆ the definition of special vertices given in A; we call special each

vertex x of ∆ such that its image on A (under any isomorphism type-preserving between any apartment
containing x and the fundamental apartment) is a special vertex of A. We point out that all types are

special for a building of type Ãn; furthermore for a building of type D̃n, Ẽ6 and G̃2 occur respectively
four, three and only one special type; in all other cases the special types are two. We denote by Vsp(∆)
the set of all special vertices of ∆.

Finally, we denote by V̂(∆) the set of all vertices of type i ∈ Î , that is the set of all vertices x such
that its image on A (under any isomorphism type-preserving between any apartment containing x and

the fundamental apartment) belongs to L̂. It is obvious that V̂(∆) = Vsp(∆), if ∆ is reduced, while

V̂(∆) = V0(∆), if ∆ is not reduced. We always refer vertices of V̂(∆).
We recall that, for every pair of chambers c, d ∈ C(∆), there exists a minimal gallery γ(c, d) from c to

d, lying on any apartment containing both chambers; the type of γ(c, d) is f = i1 · · · ik if δ(c, d) = wf. If
{qi}i∈I is the parameter system of the building, for every c ∈ C(∆) and w ∈ W, we have |Cw(c)| = qw, if
Cw(c) = {d ∈ C(∆) : δ(c, d) = w}.
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Analogously, given a vertex x ∈ V̂(∆), and a chamber d, there exists a minimal gallery γ(x, d) from x
to d, lying on any apartment containing x and d; if c is the chambers of γ(x, d) containing x, then the
type of this gallery is f = i1 · · · ik, if δ(c, d) = wf, and we set δ(x, d) = δ(c, d). Hence we define, for every

x ∈ V̂(∆) and w ∈W,
Cw(x) = {d ∈ C(∆) : δ(x, d) = w}.

If, for every x ∈ V̂(∆), we denote by C(x) the set of all chambers containing x, then Cw(x) = ∪c∈C(x) Cw(c),

as a disjoint union. We notice that, for every x of type i ∈ Î , then, fixed any chamber c containing x,

C(x) = {c′ ∈ C(∆) : δ(c, c′) = w, ∀w ∈Wi},

if Wi = σi(W) is the stabilizer of the type i vertex of C0. Hence the cardinality of the set C(x) is the
Poicaré polynomial Wi(q) of Wi. On the other hand, Wi(q) = Wσi(0)(q) = W(q); so, in each case,

|C(x)| = W(q).

Therefore, for every x ∈ Vsp(∆) and w ∈W, the cardinality of the set Cw(x) does not depend on x and

|Cw(x)| = W(q) qw.

For any pair of facets F1,F2 of the building, there exists an apartment A(F1,F2) containing them.
We call convex hull of {F1,F2} the minimal convex region [F1,F2] delimited by hyperplanes of A(F1,F2)
containing {F1,F2}.

Given two special vertices x, y, there exists a minimal gallery γ(x, y) from x to y, lying on any apartment
A(x, y) containing x and y. If c and d are the chambers of γ(x, y) containing x and y respectively, and
δ(c, d) = wf, then the type of this gallery is f = i1 · · · ik. Moreover, if we denote by ϕ any type-preserving
isomorphism from A(x, y) onto A, we define the shape of y with respect to x as

σ(x, y) = σ(X,Y ), if X = ϕ(x), Y = ϕ(y).

Hence, by definition of σ(X,Y ), the shape σ(x, y) is an element of L̂+ and, if σ(x, y) = λ, there exists a
type-rotating isomorphism ψ : A(x, y)→ A, such that ψ(x) = 0 and ψ(y) = λ.

For every vertex x ∈ V̂(∆) and every λ ∈ L̂+, we define

Vλ(x) = {y ∈ V̂(∆) : σ(x, y) = λ}.

It is easy to prove that, for every x ∈ V̂(∆), we have V̂(∆) = ∪λ∈L̂+Vλ(x) as a disjoint union.

The following proposition provides a formula for the cardinality of the set Vλ(x).

Proposition 2.15.1. Let x ∈ V̂(∆) and λ ∈ L̂+. If τ(x) = i, τ(Xλ) = l and j = σi(l), then

|Vλ(x)| =
1

W(q)

∑
w∈WwλWj

qw =
W(q)

Wλ(q)
qwλ .

In particular |Vλ(x)| = W(q) qwλ , if λ ∈ L++.

Proof. For every chamber c of ∆ and for every i ∈ I, we denote by vi(c) the vertex of type i of c. Then

Vλ(x) = {y = vj(d), d ∈ C(∆) : δ(x, d) = σi(wλ)}.

If we define

Cλ(x) = {d ∈ C(∆) : vj(d) ∈ Vλ(x)},
then it is immediate to note that, for each y ∈ Vλ(x), there are W(q) chambers in Cλ(x) containing y;
hence |Cλ(x)| = W(q)|Vλ(x)|. On the other hand, if c denotes any chamber in the set C(x), it can be
proved that, as disjoint union,

Cλ(x) =
⋃

w∈Wiσi(wλ)Wj

Cw(c).

This implies that |Cλ(x)| =
∑
w∈Wiσi(wλ)Wj

|Cw(c)|. Since Wiσi(wλ)Wj = σi(WwλWj) and qσi(w) = qw,

it follows that

|Cλ(x)| =
∑

w∈WwλWj

qw.

So the first formula is proved.
Furthermore we notice that, if fλ is the type of the gallery γ(C0, Cλ), then , for each c ∈ C(x), the

gallery γ(c, y) has type σi(fλ). Since, for each c ∈ C(x), the number of galleries γ(c, y) is qwλ/Wλ(q) and
|C(x)| = W(q), also the last formula is proved. ut
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Proposition 2.15.1 shows that |Vλ(x)| does not depend on x; so we can set, for every vertex x ∈ V̂(∆),

Nλ = |Vλ(x)|.
We notice that, if we set λ? = ι(λ), then y ∈ Vλ(x) if and only if x ∈ Vλ?(y). Hence Nλ = Nλ? .

We provide an alternative formula for Nλ, in terms of qtλ .

Proposition 2.15.2. Let λ ∈ L̂+; then

Nλ =
W(q−1)

Wλ(q−1)
qtλ .

In particular, if λ ∈ L++, we have

Nλ = W(q−1)qtλ .

Proof. For any x ∈ V̂(∆) and y ∈ Vλ(x), we denote by cx and cy the chambers containing x and y
respectively in any minimal gallery connecting x to y. Then, defining

Ctλ(x, y) = {d ∈ C(∆) : y ∈ d, δ(x, d) = tλ},
it is easy to check that

Ctλ(x, y) = {d ∈ C(∆) : δ(cy, d) = w0
jw

0
j,λ},

if w0
j and w0

j,λ are the longest elements of Wj and Wj,λ = {w ∈Wj , : wλ = λ} respectively. Therefore,

|Ctλ(x, y)| = qw0
jw

0
j,λ

= qw0
j
q−1
w0
j,λ

= qw0
q−1
w0
λ

and

qtλ = qwλqw0
q−1
w0
λ
.

Hence

Nλ =
W(q)

Wλ(q)
q−1
w0
qw0

λ
qtλ .

Since W(q) = qw0
W(q−1) and Wλ(q) = qw0

λ
Wλ(q−1), we conclude that

Nλ =
W(q−1)

Wλ(q−1)
qtλ .

In particular, if λ ∈ L++, we have

Nλ = W(q−1)qtλ .

ut

2.16. Parameter system of R. Let ∆ be a building of type X̃n and let {qi}i∈I the parameter system
of ∆. As we said in section 2.13, qσ(i) = qi, for every i ∈ I and every σ ∈ Auttr(D). Moreover we notice
that qi = qj , if there exists an hyperplane h on any apartment of the building which contains two panels
πi and πj of co-type i and j respectively. Hence for every hyperplane h of the building we may define
qh = qi if there is a panel of co-type i lying on h. We notice that if h and h′ are two hyperplanes of the
building, lying on A and A′ respectively, and there exists a type-rotating isomorphism ψ : A → A′, such
that h′ = ψ(h), then qh′ = qh; actually, if πi is a panel lying on h, then h′ contains a panel of co-type
σ(i), for some σ ∈ Auttr(D).

Consider any apartment A of ∆ and the set H(A) of all the hyperplanes of A. Let ψ : A → A any
type-rotating isomorphism. According to notation of Section 2.15, we set h = hkα if ψ(h) = Hk

α, for any
positive root α and any k ∈ Z. In this case we define

qα,k = qh.

This definition is independent of the particular choice of A and ψ. Actually, if ψ′ : A′ → A is another
type-rotating isomorphism and ψ(h) = ψ′(h′) = Hk

α, then qh′ = qh, since ψ
′−1ψ is a type-rotating

automorphism mapping h onto h′.

If R is reduced, it is easy to check that qα,k = qα′,k′ , if Hk′

α′ = ŵ(Hk
α), for some ŵ ∈ Ŵ ; actually

qh′ = qh, if ψ(h) = Hk
α and ψ(h′) = Hk′

α′ , for any ψ : A → A. In particular qα,0 = qα′,0, if α′ = w(α), for
some w ∈W and, for every α ∈ R+, qα,k = qα,0, for every k ∈ Z. Moreover qαi,0 = qi, i = 1, · · · , n, and
qα0,1 = q0. These properties suggest to define, for every α ∈ R+,

qα = qα,k, ∀k ∈ Z.

Then qαi = qi, ∀i ∈ I, and for every α ∈ R+, qα = qαi , if α = wαi, for some w ∈W. Hence qα = qαi ,
if |α| = |αi|. It turns out that, if all roots have the same length (as for R of type An), then qi = q, for
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every i ∈ I and qα = q, for every α ∈ R. Moreover, if R contains long and short roots, then qi = q, if αi
is long, and qi = p, if α is short; so qα = q, for all long α, and qβ = p, for all short β.

Consider now the case of a non reduced root system of type BCn. Since L̂ = L and Ŵ = W, then
every isomorphism of an apartment A onto A is type-preserving and qα,k = qα′,k′ , if Hk′

α′ = w(Hk
α), for

some w ∈W. Hence it is easy to prove that, for all k ∈ Z,
qα,2k+1 = qα,1 = qα0,1, ∀α ∈ R1,

qα,k = qα,0 = qαn,0, ∀α ∈ R2,

qα,k = qα,0 = qαi,0, i = 1, · · · , n− 1, if α ∈ R0 and α = wαi, for some w ∈W.

Moreover

qα0,1 = q1, qαi,0 = q0, for every i = 1, · · · , n− 1 and qαn,0 = qn.

So, if we define

qα =

{
qα,2k+1, ∀α ∈ R1, ∀k ∈ Z,
qα,k, ∀α ∈ R2 ∪R0, ∀k ∈ Z,

we have

qα =


q1, ∀α ∈ R1,

q0, ∀α ∈ R0,

qn, ∀α ∈ R2.

For ease of notation, we set q1 = p, q0 = q, qn = r. In each case it is convenient to extend the definition
of qα, by setting qα = 1, if α /∈ R. Thus, qα = p, qα/2 = r, if α ∈ R1, qα = q, qα/2 = 1, if α ∈ R0, and
qα = r, qα/2 = 1, if α ∈ R2.

It will be useful to give the following alternative characterization of qtλ , for every λ ∈ L̂+.

Proposition 2.16.1. For every λ ∈ L̂+, then

qtλ =
∏
α∈R+

q〈λ,α〉α q
−〈λ,α〉
2α .

Proof. In order to prove this formula, we recall that quλ denotes the number of chambers c′ connected
to any chamber c by a gallery of type uλ. Moreover qtλ = quλ = qi1 · · · qir , if tλ = uλgl and uλ = si1 · · · sir .

Fix in the building ∆ two chambers c, c′ such that δ(c, c′) = uλ; denote by A any apartment containing
c, c′ (and hence the gallery γ(c, c′) of type uλ), and consider the isomorphism ψ : A → A such that
ψ(c) = C0. Through this isomorphism, the chamber c′ maps to the chamber uλ(C0), lying on Q0. For
every i1, · · · , ir, the panel πij of the gallery belongs to a hyperplane h of A such that ψ(h) = Hj

α, for
some α ∈ R+ and j ∈ Z; therefore it follows that

qtλ =
∏
α∈R+

qkαα ,

if, for each α ∈ R+, kα denotes the number of hyperplanes in H(α) separating C0 and uλ(C0). Since
vl(uλ(C0)) = λ, we notice that kα = 〈λ, α〉, when α/2 /∈ R, and kα = 〈λ, α/2〉, otherwise; so we get the
required formula. ut

Corollary 2.16.2. Let λ ∈ L̂+; then

Nλ =
W(q−1)

Wλ(q−1)

∏
α∈R+

q〈λ,α〉α q
−〈λ,α〉
2α .

In particular, if λ ∈ L̂++, we have

Nλ = W(q−1)
∏
α∈R+

q〈λ,α〉α q
−〈λ,α〉
2α .

2.17. The algebra H(C). We denote by L(C) the space of all finitely supported functions on C = C(∆).
Each function f ∈ L(C) can be written uniquely as f =

∑
c f(c)1Ic, where, for each chamber c ∈ C(∆),

1Ic(c
′) =

{
1, c′ = c

0, c′ 6= c.

For each w ∈W, we define

Tw1Ic =
∑

δ(c′,c)=w

1Ic′ .
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The operator Tw may be extended by linearity to the space L(C), by setting Twf =
∑
c f(c) Tw1Ic, if

f =
∑
c f(c)1Ic. It is easy to prove that, for every c,

Twf(c) =
∑

δ(c,c′)=w

f(c′).

Actually

Twf(c) = 〈Twf, 1Ic〉 =
∑
c′

f(c′)
∑

δ(c′′,c′)=w

〈1Ic′′ , 1Ic〉 =
∑

δ(c,c′)=w

f(c′),

since we can choose c′′ = c in the sum only in the case δ(c, c′) = w and 〈1Ic′′ , 1Ic〉 = 0 for c′′ 6= c.

We denote by H(C) the linear span of {Tw, w ∈W}. We shall prove that in fact H(C) is an algebra.

Lemma 2.17.1. Let S be the finite set of generators of W ; for every s ∈ S,

T 2
s = qsI + (qs − 1)Ts,

if qs = qα, when s = sα.

Proof. Fix s ∈ S; then, for every chamber c,

T 2
s 1Ic =

∑
δ(c′,c)=s

Ts1Ic′ =
∑

δ(c′,c)=s

∑
δ(c′′,c′)=s

1Ic′′ =
∑

δ(c′,c)=s

1Ic +
∑

δ(c′′,c′)=s,c′′ 6=c

1Ic′′ ,

 .

Since qs is the number of chambers c′ such that δ(c, c′) = δ(c′, c) = s, we conclude that

T 2
s = qs1Ic + (qs − 1)

∑
δ(c′,c)=s

1Ic′ = qsI + (qs − 1)Ts.

ut

Proposition 2.17.2. For every w ∈W, and s ∈ S, then

TwTs =

{
Tws, if |ws| = |w|+ 1,

qsTws + (qs − 1)Tw, if |ws| = |w| − 1.

Proof. For each function f ∈ L(C), and each chamber c, we have by definition

(TwTs)f(c) =
∑

δ(c,c′)=w

∑
δ(c′,c′′)=s

f(c′′) and Twsf(c) =
∑

δ(c,c̃)=ws

f(c̃).

If |ws| = |w| + 1, then, for every c̃, there exists c′ such that δ(c, c′) = w and δ(c′, c̃) = s; hence
Cws(c) = {c̃ : δ(c, c̃) = ws} = ∪δ(c,c′)=w{c′′ : δ(c′, c′′) = s}. Therefore (TwTs)f(c) = Twsf(c).

Assume now |ws| = |w|−1 and define w1 = ws. In this case w = w1s, with |w1s| = |w1|+ 1. Therefore
Tw = Tw1s = Tw1

Ts and, by Lemma 2.17.1,

TwTs = Tw1T
2
s = qsTw1 + (qs − 1)Tw1Ts = qsTw1 + (qs − 1)Tw1s = qsTws + (qs − 1)Tw.

ut

Theorem 2.17.3. Let w1, w2 ∈W ; for every w ∈W there exists Nw(w1, w2), such that

Tw1
Tw2

=
∑
w∈W

Nw(w1, w2) Tw.

Moreover the set {w ∈W : Nw(w1, w2) 6= 0} is finite, for all w1, w2 ∈W.

Proof. We use induction on |w2|. If |w2| = 1, then w2 = s, for some s ∈ S, and the identity follows from
Proposition 2.17.2. If |w2| = n, for n > 1, we write w2 = w′s, for some s and w′ such that |w′| = n− 1.
Hence Tw1

Tw2
= Tw1

Tw′Ts. If we assume that the identity is true for each k < n, then

Tw1
Tw2

= (Tw1
Tw′)Ts =

(∑
w∈W

Nw(w1, w
′) Tw

)
Ts =

∑
w∈W

Nw(w1, w
′) (Tw Ts).

Therefore the identity follows from Proposition 2.17.2. ut

Corollary 2.17.4. Let w1, w2 ∈W ; if |w1w2| = |w1|+ |w2|, then Tw1
Tw2

= Tw1w2
.
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Proof. If |w2| = 1, the identity follows from Proposition 2.17.2. If |w2| = n, for n > 1, and w2 = w′s,
for some s and w′ such that |w′| = n − 1, then |w1w

′| = |w1| + |w′|, and |w1w2| = |w1w
′| + |s|. Thus, if

we assume the identity true for each k < n, we have, by Proposition 3.1.2,

Tw1Tw2 = Tw1Tw′Ts = Tw1w′Ts = Tw1w′s = Tw1w2 .

ut
Theorem 2.17.3 shows that H(C) is an associative algebra, generated by {Ts, s ∈ S}. We refer to the

numbers Nw(w1, w
′) as the structure constants of the algebra H(C). We notice that H(C) is (up to an

isomorphism) the Hecke algebra H(qs, qs − 1)associated to W and S (see [6], Chapter 7).

It will be useful to exhibit some particular operators of the algebra H(C). For every i ∈ Î and for any
chamber c, we set

Ti1Ic =
∑

vi(c′)=vi(c)

1Ic′ ,

if, as usual, vi(c) denotes the vertex of type i lying in c. We extend Ti to the space L(C) by linearity.

Proposition 2.17.5. For every i ∈ Î , the operator Ti belongs to the algebra H(C). Moreover T ?i = Ti.

Proof. We observe that Ti ∈ H(C), for every i ∈ Î , because Ti =
∑
w∈Wi

Tw; actually

{c′ : vi(c
′) = vi(c)} = ∪w∈Wi

{c′ : δ(c, c′) = w}.

To prove that Ti is selfadjoint, we consider, for all c1, c2,

〈Ti1Ic1 , 1Ic2〉 =
∑

vi(c′)=vi(c1)

〈1Ic′ , 1Ic2〉 and 〈1Ic1 , Ti1Ic2〉 =
∑

vi(c′′)=vi(c2)

〈1Ic1 , 1Ic′′〉.

We notice that 〈1Ic′ , 1Ic2〉 6= 0 only for c′ = c2 and we can choose c′ = c2 in the set {c′ : vi(c
′) = vi(c1)}

only if vi(c1) = vi(c2). Analogously, 〈1Ic1 , 1Ic′′〉 6= 0 only for c′′ = c1 and we can choose c′′ = c1 in the set
{c′′ : vi(c

′′) = vi(c2)} only if vi(c1) = vi(c2). Therefore we conclude that

〈Ti1Ic1 , 1Ic2〉 = 〈1Ic1 , Ti1Ic2〉 =

{
1, if vi(c1) = vi(c2),

0, if vi(c1) 6= vi(c2).

ut

2.18. Chamber and vertex regularity of the building. For every triple w0, w1, w2 ∈ W and every
pair of chambers c1, c2, such that δ(c1, c2) = w0, consider the set

{c′ ∈ C(∆) : δ(c1, c
′) = w1, δ(c2, c

′) = w2}.

We say that the building ∆ is chamber regular if the cardinality of this set does not depend on the
choice of the chambers , but only depends on w0, w1, w2.

Proposition 2.18.1. The building ∆ is chamber regular.

Proof. Fix a triple w0, w1, w2 ∈W and a pair of chambers c1, c2, such that δ(c1, c2) = w0. Consider the
operator Tw1

Tw−1
2
. For any chamber c,

(Tw1
Tw−1

2
)1Ic =

∑
δ(c′,c)=w−1

2

∑
δ(c′′,c′)=w1

1Ic′′ =
∑

δ(c,c′)=w2

∑
δ(c′′,c′)=w1

1Ic′′ .

Let c1, c2 ∈ C(∆) and assume that δ(c1, c2) = w0. Then

〈(Tw1Tw−1
2

)1Ic2 , 1Ic1〉 =
∑

δ(c2,c′)=w2

∑
δ(c′′,c′)=w1

〈1Ic′′ , 1Ic1〉 = |{c′ : δ(c1, c
′) = w1, δ(c2, c

′) = w2}|,

since 〈1Ic′′ , 1Ic1〉 = 1, if c′′ = c1 and 〈1Ic′′ , 1Ic1〉 = 0 otherwise. On the other hand, as we have proved in
Section 2.17, there exist constants Nw(w1, w

−1
2 ), w ∈W, such that

Tw1
Tw−1

2
=
∑
w∈W

Nw(w1, w
−1
2 ) Tw.

Therefore
〈(Tw1

Tw−1
2

)1Ic2 , 1Ic1〉 =
∑
w∈W

Nw(w1, w
−1
2 )〈Tw1Ic2 , 1Ic1〉

=
∑
w∈W

Nw(w1, w
−1
2 )

∑
δ(d,c2)=w

〈1Id, 1Ic1〉 = Nw0(w1, w
−1
2 ),
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since 〈1Id, 1Ic1〉 6= 0 only if d = c1 and this equality is possible only in the case w = w0, as we assumed
δ(c1, c2) = w0. So we conclude that

|{c′ : δ(c1, c
′) = w1, δ(c2, c

′) = w2}| = Nw0
(w1, w

−1
2 ).

This prove the required statement. ut

Using the operators Ti, defined in Section 2.17, we extend the previous result to every set

{c′ ∈ C(∆) : δ(c1, c
′) = w1, δ(c2, c

′) = w2}.

Proposition 2.18.2. Let w0, w1, w2 ∈W. If x ∈ Vsp(∆) and c ∈ C(∆) satisfy δ(x, c) = w0, then

|{c′ ∈ C(∆) : δ(x, c′) = w1, δ(c, c
′) = w2}|

does not depend on x and c, but only on w0, w1, w2.

Proof. Let x be a special vertex and let c be a chamber; assume δ(x, c) = w0. This means that
δ(cx, c) = w0, if cx denotes the chamber containing x in a minimal gallery γ(x, c). If τ(x) = i, we have

〈(Tw1
Tw−1

2
)1Ic, Ti1Icx〉 =

∑
c′x:x∈c′x

〈(Tw1
Tw−1

2
)1Ic, 1Ic′x〉 =

∑
c′x:x∈c′x

|{c′ : δ(c′x, c
′) = w1, δ(c, c

′) = w2}|

= |{c′ : δ(x, c′) = w1, δ(c, c
′) = w2}|.

On the other hand Ti is a selfadjoint operator of the algebra generated by {Tw, w ∈W}; hence

〈(Tw1
Tw−1

2
)1Ic, Ti1Icx〉 = 〈(TiTw1

Tw−1
2

)1Ic, 1Icx〉

and there exist constants niw(w1, w
−1
2 ) such that TiTw1Tw−1

2
=
∑
w∈W niw(w1, w

−1
2 )Tw. Therefore, by the

same argument used in Proposition 2.18.1,

〈(Tw1
Tw−1

2
)1Ic, Ti1Icx〉 =

∑
w∈W

niw(w1, w
−1
2 )〈Tw1Ic, 1Icx〉 = niw0

(w1, w
−1
2 ).

This proves the required statement, as

|{c′ : δ(x, c′) = w1, δ(c, c
′) = w2}| = niw0

(w1, w
−1
2 ).

ut

Corollary 2.18.3. Let λ ∈ L̂+ and w1, w2 ∈W. If x, y ∈ V̂(∆), and σ(x, y) = λ, then

|{c′ ∈ C(∆) : δ(x, c′) = w1, δ(y, c
′) = w2}|

does not depend on x and y, but only on λ,w1, w2.

For every triple λ, µ, ν ∈ L̂ and every pair x, y ∈ V̂(∆), such that σ(x, y) = λ, consider the set

{z ∈ V̂(∆) : σ(x, z) = µ, σ(y, z) = ν}.

We say that the building ∆ is vertex regular if the cardinality of this set does not depend on the choice
of the vertices , but only depends on λ, µ, ν.

Proposition 2.18.4. The building is vertex regular. Moreover

|{z ∈ V̂(∆) : σ(x, z) = µ, σ(y, z) = ν}| = |{z ∈ V̂(∆) : σ(x, z) = ν?, σ(y, z) = µ?}|.

Proof. Let λ ∈ L̂+ and σ(x, y) = λ. Consider in W the elements σi(wµ), σj(wν), if i = τ(x), j = τ(y).
By Corollary 2.18.3, the cardinality of the set

A = {c′ ∈ C(∆) : δ(x, c′) = σi(wµ), δ(y, c′) = σj(wν)}

does not depend on x and y. On the other hand σ(x, z) = µ, σ(y, z) = ν if and only if z = vl(c
′), for

some c′ ∈ A, and some l ∈ Î . This proves that the set {z ∈ V̂(∆) : σ(x, z) = µ, σ(y, z) = ν} has a
cardinality independent of x and y. Moreover we notice that, if σ(x, y) = λ, then σ(y, x) = λ?; hence

|{z ∈ V̂(∆) : σ(x, z) = µ, σ(y, z) = ν}| = |{z′ ∈ V̂(∆) : σ(y, z′) = µ?, σ(x, z′) = ν?}|.

This completes the proof. ut
We set

(2.18.1) N(λ, µ, ν) = |{z ∈ V̂(∆) : σ(x, z) = µ, σ(y, z) = ν}| = N(λ, ν?, µ?), if σ(x, y) = λ.
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2.19. Partial ordering on A. We define a partial order on L̂, by setting

µ � λ, if λ− µ ∈ L+.

Since V̂(A) may be identified with the co-weight lattice L̂, the partial ordering defined on L̂ applies to

V̂(A). For every λ ∈ L̂+, we define

Πλ = {wµ : µ ∈ L̂+, µ � λ, w ∈W}.

This set is saturated: for every η ∈ Πλ and every α ∈ R, then η−jα∨ ∈ Πλ, for every 0 ≤ j ≤ 〈η, α〉. Hence
it is stable under W. Moreover λ is the highest co-weight of Πλ. It is easy to prove that Πλ+Πµ ⊂ Πλ+µ,

for every λ, µ ∈ L̂+. We recall that W is endowed with the Bruhat ordering, defined as follows (see [7]).
We declare w1 < w2 if there exists a sequence w1 = u0 → u1, · · · , uk−1 → uk = w2, where uj → uj+1

means that uj+1 = ujs, for some s ∈ S, and |uj | < |uj+1|. This defines a partial order on W that can be

extended to Ŵ , by setting ŵ1 ≤ ŵ2, if ŵ1 = w1g1 and ŵ2 = w2g2 with w1 < w2. We remark that w1 ≤ w2

if and only if w1 can be obtained as a sub-expression sik1 · · · sikm of any reduced expression si1 · · · sir for

w2. We notice that, for every λ ∈ L̂+, if ŵ(0) ∈ Πλ, then ŵ′(0) ∈ Πλ, for each ŵ′ ≤ ŵ.

We define also a partial ordering on C(A), in the following way. Given two chambers C1, C2 consider all
the hyperplanes Hk

α separating C1 and C2. We declare C1 ≺ C2, if C2 belongs to the positive half-space
determined by each of these hyperplanes. It is clear that the resulting relation C1 � C2 is a partial
ordering of C(A). We notice that, by definition of Q0, we have C0 ≺ C if and only if C ⊂ Q0. Moreover,
if C is any chamber and s = skα is the affine reflection with respect to the hyperplane containing a panel
of C, then C ≺ s(C) or s(C) ≺ C, since C and s(C) are adjacent. Since C(A) may be identified with W,
the previous definition induces a partial ordering on W. We point out that this ordering is different from
the Bruhat order. Nevertheless, if w1(C0) and w2(C0) belong to Q0, then w1(C0) ≺ w2(C0) if and only
if w1 < w2. Moreover, on W, we have

w1(C0) ≺ w2(C0) if and only if w1 > w2.

Proposition 2.19.1. Let C be a chamber of A; let s = skα be the affine reflection with respect to the
hyperplane Hk

α containing a panel of C and s = s0
α. Assume that C ≺ s(C). Let w ∈ W ; if w = wtλ for

some w ∈W and λ ∈ L, then

(i) if w(C) ≺ ws(C), then w < ws;
(ii) if ws(C) ≺ w(C), then ws < w.

Proof. Since α is positive and C ≺ s(C), then C and s(C) belong respectively to the negative and the
positive half-space determined by the affine hyperplane Hk

α, that is, for every vertex v lying in C,

〈v, α〉 ≤ k, 〈s(v), α〉 ≥ k.

The adjacent chambers w(C) and ws(C) share a panel which belongs to the hyperplane w(Hk
α) = Hk′

w(α);

moreover, for every v ∈ C,

〈w(v),w(α)〉 ≤ k′ and 〈ws(v),w(α)〉 ≥ k′.

Actually, if we set k′ = k + 〈λ, α〉, then

〈w(v),w(α)〉 = 〈wtλ(v),w(α)〉 = 〈tλ(v), α〉 = 〈v, α〉+ 〈λ, α〉 ≤ k′

〈ws(v),w(α)〉 = 〈wtλs(v),w(α)〉 = 〈tλs(v), α〉 = 〈s(v), α〉+ 〈λ, α〉 ≥ k′.

This implies that w(α) is positive in the case (i) and negative in the case (ii).
If w(α) > 0, then, for every v ∈ Q0, we have

〈w−1v, α〉 = 〈v,w(α)〉 > 0, 〈(ws)−1v, α〉 = 〈v,ws(α)〉 = −〈v,w(α)〉 < 0,

since 〈v, s(α)〉 = −〈v, α〉. Therefore Q0 and w−1(Q0) belong to the same half-space determined by Hα,
while Hα separates (ws)−1(Q0) and Q0. So the number of hyperplanes separating Q0 and (ws)−1(Q0) is
bigger than the number of hyperplanes separating Q0 and (w)−1(Q0), and we conclude that w < ws.

On the contrary, if w(α) < 0, then, for every v ∈ Q0, we have

〈w−1v, α〉 < 0, 〈(ws)−1v, α〉 > 0,

and therefore we conclude that w > ws. ut
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2.20. Retraction ρx. Let x be any special vertex of ∆ (say τ(x) = i). For every c ∈ C(∆), we denote by
projx(c) the chamber containing x in any minimal gallery γ(x, c). In particular we write proj0(c) when x
is the fundamental vertex e. We note that projx(c) does not depend on the minimal gallery we consider.

In the fundamental apartment A, let Q−0 = w0(Q0) and C−0 the base chamber of Q−0 .

Definition 2.20.1. For every c ∈ C(∆), the retraction of c with respect to x is defined as

ρx(c) = C−0 · δi(projx(c), c),

if, for every pair c, d of chambers, we set δi(c, d) = wσ−1
i (f) when δ(c, d) = wf. In particular, if τ(x) = 0,

ρx(c) = C−0 · δ(projx(c), c).

Obviously, ρx(c) belongs to Q−0 , for every c. We extend the previous definition to all special vertices.
For every y ∈ Vsp(∆), say τ(y) = j, we set

ρx(y) = vl(ρx(c)),

if c is any chamber containing y, and l = σ−1
i (j). Actually this definition does not depend on the choice of

the chamber containing the vertices y, since vl(c1) = vl(c2) implies vl(ρx(c1)) = vl(ρx(c2)). In particular,
we denote by ρ0 the retraction with respect to the fundamental vertex e. It will be useful to remark that,

if λ ∈ L̂+, and tλ = uλgl, then, for every c such that δ(proj0(c), c) = uλ, we have ρ0(c) = w0uλ(C0).
Therefore, if σ(e, x) = λ, then ρ0(x) = w0λ.

2.21. Extended chambers. We recall that the action of Ŵ on the set C(A) is transitive but not simply

transitive; actually, if ŵi = wgi, then ŵi(C0) = w(C0), for every w ∈W and for every i ∈ Î . Nevertheless,
the action of the elements ŵi on the special vertices vj(C0) of C0 depends on i, because

ŵi(vj(C0)) = vσi(j)(w(C0)).

This suggest to enlarge the set C(A) in the following way. We call extended chamber of A a pair

Ĉ = (C, σ), for every C ∈ C(A) and for every σ ∈ Auttr(D); we denote by Ĉ(A) the set of all extended

chambers. A straightforward consequence of this definition is that Ŵ acts simply transitively on Ĉ(A) :

for every couple of extended chambers Ĉ1 = (C1, σi1) and Ĉ2 = (C2, σi2), there exists a unique element

ŵ ∈ Ŵ such that Ĉ2 = ŵ(Ĉ1). Actually, if C2 = w(C1), g = gi2g
−1
i1

and σ is the automorphism of D

corresponding to g, then ŵ = wg = gσ(w). In particular, for every Ĉ = (C, σi), then ŵ = wgi = giσi(w)

is the unique element of Ŵ such that ŵ(C0) = Ĉ, if C = w(C0).
In the same way we enlarge the set C(∆) and we define

Ĉ(∆) = {ĉ = (c, σi), c ∈ C(∆), i ∈ Î}.

We notice that for every c ∈ C(∆) and i ∈ Î , there exists a unique ĉ such that vi(c) = v0(ĉ); actually,

this element is ĉ = (c, σi). The W -distance on C(∆) can be extended to a Ŵ -distance on Ĉ(∆) in the
following way: for every couple of extended chambers ĉ1 = (c1, σi1) and ĉ2 = (c2, σi2), we set

δ̂(ĉ1, ĉ2) = δ(c1, c2)gi2g
−1
i1
.

For every λ ∈ L̂+, with τ(λ) = l, consider the translation tλ = uλgl; then tλ(C0) = (uλ(C0), gl) and
v0(tλ(C0)) = vl(uλ(C0)).

3. Maximal boundary

3.1. Sectors of A. Let R be a root system and let A = A(R). In Section 2.7 we defined a sector of A,
based at 0, as any connected component of V \ ∪αHα; in particular Q0 = {v ∈ V : 〈v, α〉 > 0, i ∈ I0}
is the fundamental sector based at 0. For every chamber C containing 0, we denote by Q0(C) the sector
based at 0, of base chamber C; in particular, C0 is the base chamber of Q0. We notice that Q0(C) = wQ0,
for some w ∈W.

More generally, for each special vertex X of A, in particular for every X ∈ V̂(A), we call sector of A,
based at X, any connected component of V \∪Hkα∈HXH

k
α, if HX denotes the collection of all hyperplanes

of H sharing X. For every chamber C containing X, we denote by QX(C) the sector based at X, of

base chamber C. We remark that, for every X ∈ V̂(A), and every C containing X, there exists a unique

ŵ ∈ Ŵ , such that QX(C) = ŵ Q0.
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3.2. Maximal boundary. We extend to any irreducible regular affine building ∆ the definition of sector
given on its fundamental apartment A = A(R), declaring that, for any x ∈ Vsp(∆), a sector of ∆, with
base vertex x, is a subcomplex Qx of any apartment A of the building, such that ψtp(Qx) = QX , if X is
any special vertex such that τ(X) = τ(x), and ψtp : A → A is a type-preserving isomorphism mapping
x to X. We note that, given any apartment A of the building, for every sector Qx ⊂ A, there exists a
unique type-rotating isomorphism ψtr : A → A mapping Qx to Q0.

We say that a sector Qy is a subsector of a sector Qx if Qy ⊂ Qx. Two sectors Qx and Qy are said
to be equivalent if they share a subsector Qz. Each equivalence class of sectors is called a boundary point
of the building and it is denoted by ω; the set of all equivalence classes of sectors is called the maximal
boundary of the building and it is denoted by Ω. As an immediate consequence of definition, for every
special vertex x and ω ∈ Ω, there is one and only one sector in the class ω, based at x, denoted by Qx(ω).

For every special vertex x ∈ Vsp(∆) and every ω ∈ Ω, there exists an apartment A(x, ω) containing
x and ω (in fact containing Qx(ω)). Analogously, for every chamber c and every ω ∈ Ω, there exists an
apartment A(c, ω) containing c and ω, that is c and a sector in the class ω. On this apartment we denote
by Qc(ω) the intersection of all sectors in the class ω containing c.

For every x ∈ Vsp(∆) and every chamber c ∈ C(∆), we define on the maximal boundary Ω the set

Ω(x, c) = {ω ∈ Ω : Qx(ω) ⊃ c}.

Analogously, for every pair of special vertices x, y, we can define the set Ω(x, y) of Ω given by

Ω(x, y) = {ω ∈ Ω : y ∈ Qx(ω)}.

We note that , for every x,

Ω(x, c′), Ω(x, z) ⊃ Ω(x, c), for every c′, z in the convex hull of {x, c},
Ω(x, c′), Ω(x, z) ⊃ Ω(x, y), for every c′, z in the convex hull of {x, y}.

From now on we shall limit to consider sectors based at a vertex of V̂(∆).

3.3. Retraction ρxω. Let ω ∈ Ω and x ∈ V̂(∆); for every apartment A = A(x, ω) containing ω and
x, there exists a unique type-rotating isomorphism ψtr : A → A, such that ψtr(Qx(ω)) = Q0. On the
other hand, if A′ contains a subsector Qy(ω) of Qx(ω), but not x, then there exists a type-preserving
isomorphism φ : A′ → A(x, ω) fixing Qy(ω); hence it is well defined the type-rotating isomorphism
ψ′tr = ψtr φ : A′ → A. Since every facet F of the building lies on an apartment A′ containing a subsector
Qy(ω) of Qx(ω) (possibly Qx(ω)), then, according to previous notation, F maps uniquely on the facet
F = ψ′tr(F) of A.

Definition 3.3.1. We call retraction of ∆ on A, with respect to ω and of center x, the map

ρxω : ∆→ A,

such that , for every apartment A′ and for every facet F ∈ A′, ρxω(F) = F = ψ′tr(F).

In particular we remark that ρxω(x) = 0, and, if we denote by cxω the base chamber of Qx(ω), then
ρxω(cxω) = C0. Moreover, for every chamber c ∈ Qx(ω), and for every special vertex y ∈ Qx(ω), then

ρxω(c) = C0 · δ(cxω, c), and ρxω(y) = Xµ,

if Xµ is the special vertex associated with µ = σ(x, y). For ease of notation, we simply set ρxω(z) = µ, to
mean that ρxω(y) = Xµ. In the case x = e, we set ρω = ρeω.

Proposition 3.3.2. Let x ∈ V̂(∆), c ∈ C(∆) and ω ∈ Ω. If d ⊂ Qx(ω) ∩ Qc(ω), then δ(x, d) δ(d, c) is
independent of d. Moreover

ρxω(c) = C0 · δ(x, d) δ(d, c).

Proof. Fix d ∈ Qx(ω) ∩Qc(ω); for every d′ ∈ Qd(ω), we have

δ(x, d′) = δ(cxω, d
′) = δ(cxω, d) δ(d, d′) and δ(c, d′) = δ(c, d) δ(d, d′),

if cxω is the base chamber of the sector Qx(ω). Hence δ(cxω, d
′) δ(c, d′)−1 = δ(cxω, d) δ(c, d)−1. Given d1 and

d2 in Qx(ω) ∩Qc(ω), and chosen d′ ∈ Qd1(ω) ∩Qd2(ω), we conclude that

δ(cxω, d1) δ(c, d1)−1 = δ(cxω, d
′) δ(c, d′)−1 = δ(cxω, d2) δ(c, d2)−1.

By definition of ρxω, we have

ρxω(d) = ρxω(cxω) · δ(cxω, d) = C0 · δ(cxω, d) and ρxω(d) = ρxω(c) · δ(c, d).
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Actually, since d ⊂ Qx(ω)∩Qc(ω), the retraction of a gallery γ(cxω, d) is a gallery Γ(ρxω(cxω), ρxω(d)) of the
same type as γ(cxω, d) and the retraction of a gallery γ(c, d) is a gallery Γ(ρxω(c), ρxω(d)) of the same type
as γ(c, d). Therefore

ρxω(c) = ρxω(d) · δ(c, d)−1 = ρxω(d) · δ(d, c) = C0 · δ(cxω, d) δ(d, c).

ut
An analogous of Proposition 3.3.2 holds for the retraction ρxω of special vertices of the building.

Proposition 3.3.3. Let x, y ∈ V̂(∆) and ω ∈ Ω. For every z ∈ Qx(ω) ∩ Qy(ω), σ(x, z) − σ(y, z) is
independent of z. Moreover

ρxω(y) = σ(x, z)− σ(y, z).

Proof. Fix z ∈ Qx(ω) ∩Qy(ω) and assume that σ(x, z) = µ and σ(y, z) = ν; for every z′ ∈ Qz(ω), we
have σ(x, z′) = µ+ λ′, σ(y, z′) = ν + λ′, if σ(z, z′) = λ′; hence σ(x, z′)− σ(y, z′) = µ− ν. Given z1 and
z2 in Qx(ω) ∩Qy(ω), and chosen z′ ∈ Qz1(ω) ∩Qz2(ω), we conclude that

σ(x, z1)− σ(y, z1) = σ(x, z′)− σ(y, z′) = σ(x, z2)− σ(y, z2).

This proves that σ(x, z)− σ(y, z) does not depend on the choice of z in Qx(ω) ∩Qy(ω).
In order to prove that ρxω(y) = σ(x, z) − σ(y, z), for every z ∈ Qx(ω) ∩ Qy(ω), we fix any apartment

A(x, ω) containing Qx(ω). If y ∈ A(x, ω), and z ∈ Qx(ω)∩Qy(ω), then ρxω(x) = 0, ρxω(z) = µ; moreover,
if we set ρxω(y) = η, then τ−η(Qη) = Q0, and in particular µ−η = τ−η(ρxω(z)) = ν. If, instead, y /∈ A(x, ω),
there is y′ ∈ A(x, ω), such that ρxω(y) = ρxω(y′) and we have σ(y, z) = σ(y′, z) = µ− ν; hence, as before,
µ− η = τ−η(ρxω(z)) = ν. ut

Corollary 3.3.4. For all x, y, z in V̂(∆) and for each ω ∈ Ω,

ρyω(z) = ρxω(z)− ρxω(y).

Proof. If z′ ∈ Qx(ω) ∩Qy(ω) ∩Qz(ω), then

ρxω(y) = σ(x, z′)− σ(y, z′), ρxω(z) = σ(x, z′)− σ(z, z′), ρyω(z) = σ(y, z′)− σ(z, z′)

and hence

ρxω(z)− ρxω(y) = σ(y, z′)− σ(z, z′) = ρyω(z).

ut
We notice that if z = x, then ρyω(x) = −ρxω(y). In particular, for all x, y special and for each ω ∈ Ω,

ρxω(y) = ρω(y)− ρω(x).

We point out that in fact this formula is independent of the choice of the fundamental vertex e.

We shall prove that, for every λ ∈ L̂+, it is possible to choose µ large enough with respect to λ, such
that Proposition 3.3.3 holds for every y ∈ Vλ(x) and every ω ∈ Ω. For every chamber c we denote by
L(x, c) the length of the element w = δ(x, c), that is the number of hyperplanes separating x and c. On
the fundamental apartment A we define, for every v ∈ Q0,

∂(v, ∂Q0) = min{〈v, αi〉, i ∈ I0}.

We extend this definition to all special vertices of Qx(ω), for any x and ω, in the following way: for each
special vertex y ∈ Qx(ω),

∂(y, ∂Qx(ω)) = ∂(ρxω(y), ∂Q0).

We define, for k ∈ N,
Qkx(ω) = {y ∈ Qx(ω) : ∂(y, ∂Qx(ω)) ≥ k}.

Lemma 3.3.5. Let x ∈ V̂(∆) and ω ∈ Ω; let k > 0. Then

(3.3.1) Qkx(ω) ⊂ Qc(ω),

for every c ∈ C(∆) such that L(x, c) ≤ k.

Proof. We use induction with respect to k. If k = 0, then x ∈ c, and hence Qx(ω) ⊂ Qc(ω). Since
{y ∈ Qx(ω) : ∂(y, ∂Qx(ω)) ≥ 0} = Qx(ω), we have the required formula. Assume now that (3.3.1) holds
for every c such that L(x, c) ≤ k; let c1 such that L(x, c1) = k + 1. If γ(x, c1) is a gallery joining x to c1,
we denote by d1 the chamber of this gallery adjacent to c1; then L(x, d1) = k and then

{y ∈ Qx(ω) : ∂(y, ∂Qx(ω)) ≥ k} ⊂ Qd1(ω).
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Hence, if Qc1 ⊃ Qd1 , the result follows immediately. Otherwise, we have Qc1 ⊂ Qd1 and for every
y ∈ (Qd1 \Qc1) ∩Qx(ω), we have 〈ρxω(y), α〉 = k, for some α ∈ R+, and 〈ρxω(y), α′〉 = k ≥ k, for α′ 6= α.
On the other hand,

{y ∈ Qx(ω) : ∂(y, ∂Qx(ω)) ≥ k+1} = {y ∈ Qx(ω) : ∂(y, ∂Qx(ω)) ≥ k}\{y ∈ Qx(ω) : ∂(y, ∂Qx(ω)) = k}
and {y ∈ Qx(ω) : ∂(y, ∂Qx(ω)) = k} is the set of all y ∈ Qx(ω) such that 〈ρxω(y), α〉 = k, for some
α ∈ R+, and 〈ρxω(y), α′〉 = k′ ≥ k, for α′ 6= α. Thus (3.3.1) is true also in this case. ut

Let x ∈ V̂(∆) and ω ∈ Ω; for every w ∈ W, we denote by Qw(ω) the intersection of all sectors in the
class ω containing the chamber dw such that δ(cx(ω), dw) = w.

Proposition 3.3.6. Let w1 ∈W ; there exists w0 ∈W such that, for every x and c such that δ(x, c) = w1,
and for every ω ∈ Ω,

Qw0
(ω) ⊂ Qx(ω) ∩Qc(ω).

Moreover, for every chamber d of Qw0
(ω),

ρxω(c) = C0 · δ(cx(ω), d)δ(d, c).

Proof. Let k > 0 and Qk = {v ∈ Q0 : 〈v, αi〉 ≥ k, ∀i ∈ I0}. Choose a chamber D ⊂ Qk and
let wk be the element of W such that D = C0 · wk. For every ω, consider the chamber dwk such that
δ(cx(ω), dwk) = wk and the sector Qwk(ω). If k is bigger than the length of w1, that is L(x, c) ≤ k, then
Lemma 3.3.5 implies that, for every ω, the sector Qwk(ω) lies on Qx(ω) ∩ Qc(ω). Therefore w0 = wk is
the required element of W. Moreover, Proposition 3.3.2 implies that, for every chamber d of Qw0

(ω),

ρxω(c) = C0 · δ(cx(ω), d)δ(d, c).

ut
Fix x and ω; for every λ ∈ L̂+, we denote by zλ the unique vertex of Qx(ω) such that σ(x, zλ) = λ and

by Qλ(ω) the subsector of Qx(ω) of base vertex zλ. Moreover we denote by kλ the number of hyperplanes
separating 0 and λ.

Proposition 3.3.7. Let λ ∈ L̂+; there exists µ ∈ L̂+ (large enough with respect to λ) such that, for every
pair x, y ∈ Vλ(x) and for every ω ∈ Ω,

Qµ(ω) ⊂ Qx(ω) ∩Qy(ω).

Moreover, for every ν such that ν − µ ∈ L̂+,

ρxω(y) = µ− σ(y, zµ) = ν − σ(y, zν).

Proof. Let λ ∈ L̂+; consider Qkλ = {v ∈ Q0 : 〈v, αi〉 > kλ, ∀i ∈ I0}. Choose a special vertex µ ∈ Qkλ ;
for every ω consider the special vertex zµ of Qx(ω) such that σ(x, zµ) = µ, and the sector Qµ(ω) based
at zµ. By Proposition 3.3.6, for every ω, the sector Qµ(ω) lies on Qx(ω) ∩Qc(ω); hence, by Proposition

3.3.3, ρxω(y) = µ− σ(y, zµ). The same is true for every ν such that ν − µ ∈ L̂+; actually, if ν − µ ∈ L̂+,
we have zν ∈ Qµ(ω). ut

We notice that Proposition 3.3.7 holds if 〈µ, αi〉 ≥ kλ, ∀i ∈ I0.
As a consequence of Proposition 3.3.7 we obtain the following result.

Theorem 3.3.8. Let y ∈ Vλ(x) and z ∈ Vµ(x). If µ is large enough with respect to λ, then Ω(x, z) ⊂
Ω(y, z). Moreover, for all ω ∈ Ω(x, z), ρxω(y) = µ− ν, if σ(y, z) = ν.

Proof. If ω ∈ Ω(x, z), then z ∈ Qx(ω) and therefore, if µ is large enough, z ∈ Qy(ω), by Proposition
3.3.7, that is ω ∈ Ω(y, z). The second part of the theorem follows immediately from Proposition 3.3.3. ut
Corollary 3.3.9. Let y ∈ Vλ(x) and z ∈ Vµ(x) ∩ Vν(y). If µ is large enough with respect to λ and ν is
large enough with respect to λ?, then Ω(x, z) = Ω(y, z).

Let y ∈ Vλ(x) and ω ∈ Ω. We know that ρxω(y) = λ, if y ∈ Qx(ω). The following proposition describes
the retraction of the vertices of the set Vλ(x).

Proposition 3.3.10. Let ω ∈ Ω and x special; let λ ∈ L̂+. For every y ∈ Vλ(x), then ρxω(y) ∈ Πλ.

Proof. Let fλ be the type of a minimal gallery connecting 0 to λ; then each vertex y ∈ Vλ(x) is connected
to x by a minimal gallery γ(x, y) of type σi(fλ) (see Section 2.12). This implies that ρxω(γ(x, y)) is a gallery
of type fλ (eventually not reduced) on A joining 0 to µ = ρxω(y); thus there is a reduced gallery from 0
to µ, of type, say, f′. Let λ′ = sf′gl(0); since λ = wλgl(0) and sf′ ≤ wλ, then λ′ ∈ Πλ. On the other hand,
if c and d are the chambers of γ(x, y) containing x and y respectively, there exists w ∈ W such that
ρxω(c) = w(C0) and hence ρxω(d) = w(sf′(C0)). This implies that µ = w(λ′) belongs to Πλ. ut



Eigenvalues 21

It will be useful to determine how many vertices of Vλ(x) are mapped by ρxω onto an element of Πλ.
We shall prove, using Proposition 2.18.2, that this number actually is independent of x and ω.

Theorem 3.3.11. Let x ∈ Vλ(x) and ω ∈ Ω. For w,w1 ∈W, then

|{c ∈ C(∆) : δ(x, c) = w1, ρ
x
ω(c) = C0 · w}|

is independent of x and ω.

Proof. Fix w1 ∈W ; by Proposition 3.3.6, there exists w0 ∈W such that, for every chamber c such that
δ(x, c) = w1, and for every ω ∈ Ω, the set Qx(ω) ∩Qc(ω) contains a chamber c′ such that δ(x, c′) = w0.
Moreover, by Proposition 3.3.2, ρxω(c) = C0 · δ(cxω, c′) δ(c′, c) = C0 · w0 δ(c

′, c). Hence, for any w ∈W,
{c : δ(x, c) = w1, ρ

x
ω(c) = C0·w} = {c : δ(x, c) = w1, w0δ(c

′, c) = w} = {c : δ(x, c) = w1, δ(c
′, c) = w−1

0 w}.
On the other hand, Proposition 2.18.2 implies that |{c : δ(x, c) = w1, δ(c

′, c) = w−1
0 w}| only depends

on τ(x), and w0, w1, w
−1
0 w. This proves that |{c ∈ C(∆) : δ(x, c) = w1, ρ

x
ω(c) = C0 ·w}| is independent

of x and ω. ut
Finally we have

Theorem 3.3.12. Let x ∈ Vλ(x) and ω ∈ Ω. For every λ ∈ L̂+ and µ ∈ Πλ,

|{y ∈ Vλ(x) : ρxω(y) = µ}|
is independent of x and ω.

Proof. Let λ ∈ L̂+ and µ ∈ Πλ; let ω ∈ Ω. Consider the set

A = {y : σ(x, y) = λ, ρxω(y) = µ}.
For any y ∈ Vλ(x), we denote by cλ the chamber containing y in a minimal gallery γ(x, y). Then y = vj(cλ),
if τ(y) = j, and δ(x, cλ) = wλ. Thus

A = {vj(c), δ(x, c) = wλ, vj(ρ
x
ω(c)) = µ}.

Let Wµ be the stabilizer of µ in W ; for every w ∈Wµ, consider the set of chambers

Bw = {c : δ(x, c) = wλ, ρ
x
ω(c) = C0 · w}

and B = ∪w∈Wµ
Bw. We notice that, if vj(ρ

x
ω(c)) = µ, then ρxω(c) = C0 · w, for some w ∈ Wµ. Therefore

A = {vj(c), c ∈ B}, and then |A| = |B| =
∑
w∈Wµ

|Bw|. Since Theorem 3.3.11 implies that |Bw| is

independent of x and ω, the same is true for |A|. ut
As a consequence of this theorem, we set, for every x ∈ Vλ(x) and ω ∈ Ω

(3.3.2) N(λ, µ) = |{y ∈ Vλ(x) : ρxω(y) = µ}|.

It will be useful to compare, for every x ∈ Vλ(x) and ω ∈ Ω, the retraction ρxω with the retraction ρx
with respect to x, defined in Section 2.20.

Lemma 3.3.13. Let c be any chamber and let y be any special vertex of V̂(∆).

(i) If c (respectively y) lies on the sector Q−x (ω) opposite to the sector Qx(ω), in any apartment
A(x, ω), then

ρxω(c) = ρx(c), (respectively ρxω(y) = ρx(y)).

(ii) If c (respectively y) belongs to the sector (Qαx)−(ω), α−adjacent to Q−x (ω), in a convenient apart-
ment containing c and Qx(ω), then

ρxω(c) = sαρx(c), (respectively ρxω(y) = sαρx(y)).

Proof. First assume τ(x) = 0.
(i) We shall prove that ρxω(c) = ρx(c), for every chamber c of Q−x (ω). Since c lies on the sector Q−x (ω),

then Qc(ω) ⊃ Qx(ω), and hence cxω belongs to Qc(ω). This implies that

ρxω(c) = C0 · δ(cx(ω), c).

On the other hand δ(cx(ω), c) = δ(cx(ω), projx(c)) δ(projx(c), c) = w0 δ(projx(c), c) and therefore

ρxω(c) = C0 ·w0 δ(projx(c), c) = C−0 · δ(projx(c), c) = ρx(c).

If y ∈ Q−x (ω), we may choose γ(x, y) in Q−x (ω); hence, if c is the chamber of γ(x, y) containing y, we have
ρxω(c) = ρx(c) and hence ρxω(y) = ρx(y).

(ii) We shall prove that ρxω(c) = sαρx(c), for every chamber c of (Qαx)−(ω). Since c lies on the
sector (Qαx)−(ω), then projx(c) is the base chamber of the sector (Qαx)−(ω), that is the opposite of
the base chamber cαx(ω) of the sector (Qαx)(ω), which is α-adjacent to (Qx)−(ω). This implies that
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δ(cx(ω), projx(c)) = sαδ(c
α
x(ω), projx(c)) = sαw0. From this equality it follows that δ(cx(ω), c) =

δ(cx(ω), projx(c)) δ(projx(c), c) = sαw0 δ(projx(c), c), and then

ρxω(c) = C0 · sαw0 δ(projx(c), c) = sα(C0 ·w0δ(projx(c), c) = sαρ
x(c).

If y ∈ (Qαx)−x (ω), we may choose γ(x, y) in (Qαx)−x (ω); hence, if c is the chamber of γ(x, y) containing y,
we have ρxω(c) = sαρx(c) and hence ρxω(y) = sαρx(y).

If τ(x) = i 6= 0, we only have to change δ with δi and the proof is the same. ut

3.4. Topologies on the maximal boundary. The maximal boundary Ω may be endowed with a

totally disconnected compact Hausdorff topology in the following way. Fix a special vertex x ∈ V̂(∆),
say of type i = τ(x); consider the family

Bx = { Ω(x, c), c ∈ C}.
Then Bx generates a totally disconnected compact Hausdorff topology on Ω; for every ω ∈ Ω, a local base
at ω is given by

Bx,ω = { Ω(x, c), c ⊂ Qx(ω)}.
We observe that it suffices to consider, as a local base at ω, only the chambers c lying on Qx(ω), such that,

for some λ ∈ L̂+, δ(cx(ω), c) = σi(tλ), if cx(ω) is the base chamber of the sector Qx(ω), and i = τ(x).

Remark 3.4.1. For every special vertex y ∈ V̂(∆), let λ = σ(x, y); we denote by Cy the set of all
chambers containing y such that δ(x, c) = σi(tλ), that is the set of all chambers containing y and opposite
to the chamber containing y in a minimal gallery connecting x and y. It is easy to check that

Ω(x, y) =
⋃
c∈Cy

Ω(x, c).

Moreover, for every chamber c choose y ∈ V̂(∆) such that c lies on [x, y] and let λ = σ(x, y). Then

Ω(x, c) =
⋃

y∈Vλ(x),c⊂[x,y]

Ω(x, y).

Hence the family B̃x = { Ω(x, y), y ∈ V} generates the same topology on Ω as Bx and, for every ω ∈ Ω,

a local base at ω is given by B̃x,ω = { Ω(x, y), y ⊂ Qx(ω)}.

Proposition 3.4.2. The topology on Ω does not depend on the particular x ∈ V̂(∆).

Proof. Let x, y special vertices and λ = σ(x, y). Let ω0 ∈ Ω. We prove that, for every neighborhood
Ω(y, z) of ω0, there exists a neighborhood Ω(x, z′) of ω0, such that Ω(x, z′) ⊂ Ω(y, z). Actually, if z′ is a
vertex of Qx(ω0) ∩Qy(ω0), such that z ∈ [y, z′], then ω0 ∈ Ω(y, z′) ∩ Ω(x, z′) and Ω(y, z′) ⊂ Ω(y, z). On
the other hand, if σ(x, z′) = µ, then, by Theorem 3.3.8, we can choose µ large enough with respect to λ,
so that Ω(x, z′) ⊂ Ω(y, z′). ut

3.5. Probability measures on the maximal boundary. For each vertex x of V̂(∆), we denote by νx
the regular Borel probability measure on Ω, such that, for every y ∈ V̂(∆),

νx(Ω(x, y)) = N−1
λ =

Wλ(q−1)

W(q−1)

∏
α∈R+

q−〈λ,α〉α q
〈λ,α〉
2α , if y ∈ Vλ(x).

We notice that in fact there exists a unique regular Borel probability measure on Ω, satisfying this
property; actually νx is the measure such that, for every f ∈ C(Ω),

J(f) =

∫
Ω

f(ω) dνx(ω),

where J denotes the linear functional on C(Ω) obtained as extension of the linear functional on the space
of all locally constant functions on Ω, defined as

J(f) = N−1
λ

∑
σ(x,y)=λ

fy,

if, for each y ∈ Vλ(x), we set fy = f(ω), ∀ω ∈ Ω(x, y).

The following property of the measure νx is a consequence of Theorem 3.3.6 and Theorem 3.3.11.

Theorem 3.5.1. Let x ∈ V̂(∆) and w,w0 ∈W. For each c ∈ C(∆), such that δ(x, c) = w0,

νx({ω ∈ Ω : ρxω(c) = C0 · w})
is independent of x and c.
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Proof. Fix w0 ∈W and a chamber c such that δ(x, c) = w0; by Proposition 3.3.6, there exists w1 ∈W
such that, for every ω, Qw1

(ω) ⊂ Qx(ω)∩Qc(ω); moreover ρxω(c) = C0 · δ(x, d)δ(d, c), if d is any chamber
of Qw1

(ω). In particular,
ρxω(c) = C0 · w1δ(dw1

(ω), c),

if dw1
(ω) denotes the chamber of Qw1

(ω) such that δ(x, dw1
(ω)) = w1. Therefore, for any w ∈W, we have

ρxω(c) = C0 · w if and only if w = w1δ(dw1(ω), c), that is if and only if δ(c, dw1(ω)) = w−1w1. Hence, by
setting w−1w1 = w2 and C(w1, w2) = {c′ : δ(x, c′) = w1, δ(c, c

′) = w2}, we have

{ω ∈ Ω : ρxω(c) = C0 · w} =
⋃

c′∈C(w1,w2)

Ω(x, c′).

This implies that

νx({ω ∈ Ω : ρxω(c) = C0 · w}) =
∑

c′∈C(w1,w2)

νx(Ω(x, c′)).

On the other hand, νx(Ω(x, c′)) has the same value for each chamber c′ such that δ(x, c′) = w1; therefore,
by fixing any chamber c′ such that δ(x, c′) = w1,

νx({ω ∈ Ω : ρxω(c) = C0 · w}) = νx(Ω(x, c′)) |{c′ ∈ C(∆) : δ(x, c′) = w1, δ(c, c
′) = w2}|.

Thus Theorem 3.3.11 implies that νx({ω ∈ Ω : ρxω(c) = C0 ·w}) is independent of the choice of x and c,
but only depends on w,w0. ut

A version of this theorem holds for the set of vertices.

Theorem 3.5.2. Let x be a special vertex of V̂(∆), let λ ∈ L̂+ and µ ∈ Πλ. For each y ∈ V̂(∆), such
that σ(x, y) = λ,

νx({ω ∈ Ω : ρxω(y) = µ})
is independent of x and y.

Proof. Fix y ∈ V̂(∆) such that σ(x, y) = λ, and consider, for every µ ∈ Πλ, the set

Ωµ = {ω ∈ Ω : ρxω(y) = µ}.
If τ(x) = i, τ(y) = j, then τ(Xλ) = l = σ−1

i (j). Therefore

Ωµ = {ω ∈ Ω : vl(ρ
x
ω(cλ)) = µ},

if cλ denotes, as usual, the chamber containing the vertex y in a minimal gallery connecting x and y.
Therefore, Ωµ = {ω ∈ Ω : ρxω(y) = C0 · w, w ∈ Wµ} =

⋃
w∈Wµ

{ω ∈ Ω : ρxω(y) = C0 · w}, if Wµ is the

stabilizer of µ in W. Thus Theorem 3.5.1 ends the proof. ut

4. The α-boundary Ωα

4.1. Walls. Let ∆ be an affine building and let R be its root system. Consider on the fundamental
apartment A = A(R) the fundamental sector Q0 = Q0(C0). It is straightforward to call walls of Q0 the
walls of C0 containing 0 (see Section 2.10). Actually, we slightly change this definition and we shall call
wall of Q0 the intersection with Q0 of any hyperplane Hi = Hαi , i ∈ I0. Moreover, we say that a wall of
Q0 is the i-type wall of Q0, for each i ∈ I0, if it lies on Hi. This is the case if and only if it contains the
co-type i panel of C0. For every i ∈ I0, we denote by H0,i the i-type wall of Q0.

We extend this definition to each sector of A by declaring that, for every special vertex Xλ in A, and
for every chamber C sharing Xλ, the walls of the sector Qλ(C) based at Xλ are the intersection with

Qλ(C) of any affine hyperplane Hk
α, α ∈ R+, k ∈ Z, which is a wall of the chamber C. Moreover we say

that a wall of Qλ(C) has type i, for some i ∈ I0, if there is a type-preserving isomorphism on A mapping
the wall on an affine hyperplane Hk

i = Hk
αi , for some i ∈ I0 and k ∈ Z.

The definition of wall can be extended to each sector of the building; actually, if Qx(c) is any sector
of ∆, and A is any apartment of the building containing Qx(c), then the walls of Qx(c) are the inverse
images of the walls of the sector Qλ(C) = ψtp(Qx(c)), under a type-preserving isomorphism ψtp : A → A.
Moreover, for every i ∈ I0, a wall of Qx(c) has type i, if its image in A has type i. The previous definition
does not depend on the choice of the apartment A containing the sector and of the type-preserving
isomorphism ψtp : A → A. For every sector Qx(c) and for every i ∈ I0, we denote by hx,i(c) = hx,i(Qx(c))
the type i wall of the sector. If ω is any element of the maximal boundary Ω, then, for every x ∈ Vsp(∆)
and for every i ∈ I0, we simply denote by hx,i(ω) the wall of type i of the sector Qx(ω). If α is a simple
root, that is α = αi, for some i ∈ I0, for every special vertex x of ∆, and for every ω ∈ Ω, we shall denote
by hx,α(ω) the wall of Qx(ω) of type i and we simply call it the α-wall of Qx(ω). In general, for every
simple root α, we shall denote by hx,α the α-wall of any sector based at x.
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Definition 4.1.1. Let x, y ∈ Vsp(∆), x 6= y; let hx,α and hy,α be α-walls, based at x and y respectively.

(i) The walls hx,α and hy,α are said to be equivalent if they definitely coincide, i.e. there is hz,α such
that hz,α ⊂ hx,α ∩ hy,α.

(ii) The walls hx,α and hy,α are said to be parallel if they are not equivalent , but there is an apartment
containing them and, through any type-preserving isomorphism ψtp of this apartment onto A, they
correspond to walls of A, lying on parallel affine α-hyperplanes Hk

α, H
j
α, for some k, j ∈ Z.

(iii) The walls hx,α and hy,α are said to be definitely parallel if there exist hx′,α ⊂ hx,α and hy′,α ⊂ hy,α
which are parallel. If hx,α and hy,α are definitely parallel, we call distance between the two
walls the usual distance between the two hyperplanes of A, containing the images of their parallel
subwalls, that is the positive integer number |j − k|, if ψtp(hx,α) = Hk

α and ψtr(hy,α) = Hj
α.

We remark that if hx,α and hy,α are definitely parallel, there exists an apartment containing, say, hx,α
and a subwall of hy,α.

Proposition 4.1.2. For every ω ∈ Ω and for every pair of special vertices x, y ∈ Vsp(∆), the walls
hx,α(ω) and hy,α(ω) are equivalent or definitely parallel.

Proof. Fix ω ∈ Ω, x 6= y in Vsp(∆) and consider the α-walls hx,α(ω) and hy,α(ω). Assume that hx,α(ω)
and hy,α(ω) are not equivalent and prove that they are definitely parallel. We point out that, if there
exists an apartment A containing hx,α(ω) and hy,α(ω), then the two walls are parallel. Actually, if ω′

denotes a boundary point α-equivalent to ω and lying onto the apartment A, then ρxω′ is a type-rotating
isomorphism from A onto A, such that ρxω′(hx,α(ω)) lies on Hα and ρxω′(hy,α(ω)) lies on Hk

α, for some
k ∈ Z. Hence, in order to prove that hx,α(ω) and hy,α(ω) are definitely parallel, we only have to prove
that there exists an apartment A containing subwalls hx′,α(ω) ⊂ hx,α(ω) and hy′,α(ω) ⊂ hy,α(ω). To this
end, we shall use induction with respect to the distance between x and y.

We consider at first the case when Vsp(∆) contains vertices of different types. This happens for every

building of type different from G̃2. If d(x, y) = 1, the vertices x and y are adjacent; then there exists a
chamber c such that x, y ∈ c; if A is an apartment containing ω and c, we have Qx(ω), Qy(ω) ⊂ A. Thus
hxα(ω), hyα(ω) lie on A. Moreover the distance between hxα(ω) and hyα(ω) is zero or one. Now assume that,
when d(x, y) ≤ n, then hx,α(ω) and hy,α(ω) have subwalls hx′,α(ω) and hy′,α(ω) lying on an apartment;
hence hx′,α(ω) and hy′,α(ω) are parallel and their distance is less than or equal to n. Actually we may
assume, without loss of generality, that d(x′, y′) ≤ n. Let d(x, y) = n + 1 and choose z such that
d(y, z) = 1 and d(x, z) = n. By inductive hypothesis, there exist x′, z′, with d(x′, z′) = n, such that the
subwalls hx′,α(ω) ⊂ hx,α(ω) and hz′,α(ω) ⊂ hz,α(ω) lie on an apartment A1 and are parallel, at distance
less than or equal to n. Without loss of generality, we may assume, for ease of notation, that x′ = x and
z′ = z. Moreover, if c is a chamber such that y, z ∈ c, then there exists an apartment A2, containing
hy,α(ω), hz,α(ω) and c. We shall prove that there exists an apartment A containing hx,α(ω), hz,α(ω) and
hy,α(ω). If hy,α(ω) lies on A1, then A2 = A1, and the required apartment is A1 and, on this apartment,
the distance of the parallel hyperplanes hx,α(ω), hy,α(ω) is less than or equal to n. If, on the contrary,
hy,α(ω) does not lie on A1, we consider two isomorphisms ψ1 : A1 → A and ψ2 : A2 → A such that
ψ1(hz,α(ω)) = ψ2(hz,α(ω)) = H0,α; then,

ψ1(hx,α(ω)) = Hh,α, ψ2(hy,α(ω)) = Hk,α,

for some h, k ∈ Z. When hk < 0, then Hh,α and Hk,α lie on distinct half-apartments A+
0,α,A

−
0,α, say

Hh,α ⊂ A+
0,α and Hk,α ⊂ A−0,α; in this case consider the apartment A = ψ−1(A), if ψ = ψ1 on A+

0,α and

ψ = ψ2 on A−0,α. On the contrary, when hk > 0, then Hh,α and Hk,α lie on a same half-apartment A+
0,α

or A−0,α, say Hh,α, Hk,α ⊂ A+
0,α; in this case consider the apartment A = ψ−1(A), if ψ = ψ1 on A+

0,α and

ψ = ψ2sα on A−0,α. In both cases A is the required apartment, containing hx,α(ω), hz,α(ω) and hyα(ω).

Assume now that ∆ has type G̃2. In this case, all special vertices have type 0 and we can not choose
x, y adjacent. However, if we choose as x and y the vertices of type 0 of two adjacent chambers c, c′, it is
a consequence of the geometry of the building that the walls hx,α(ω), hy,α(ω) are definitely parallel and
have distance 0 or 1. Hence we can use the same inductive argument as before, to conclude. ut

We point out that if ∆ has type C̃n or B̃Cn, a wall of type n of any sector of the building contains
special vertices of only one type, that is only of type 0, or only of type n. (The same is true for a wall of

type i, i < n, of a building of type B̃n).

From now on we shall limit to consider walls based at special vertices of the set V̂(∆).

4.2. The α-boundary Ωα. Let α be a simple root, that is α = αi, for some i ∈ I0; for every special

vertex x of V̂(∆), and for every ω ∈ Ω, we consider the α-wall hx,α(ω) of Qx(ω).
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Lemma 4.2.1. Let ω1, ω2 ∈ Ω. If there exists a vertex x ∈ V̂(∆) such that hx,α(ω1) = hx,α(ω2), then

hy,α(ω1) = hy,α(ω2), for every y ∈ V̂(∆).

Proof. (i) At first assume that there exists an apartment A containing Qx(ω1) and Qx(ω2). Since
hx,α(ω1) = hx,α(ω2), there exists a type-rotating isomorphism ψtr : A → A, mapping Qx(ω1) onto Q0 and
Qx(ω2) onto sαQ0. Hence the same property holds for each y ∈ A. This proves that hy,α(ω1) = hy,α(ω2),
for every y ∈ A. On the other hand, if y /∈ A, the sectors Qy(ω1) and Qy(ω2) do not lie on A, but
there exists z ∈ A, such that Qz(ω1) ⊂ Qy(ω1), Qz(ω2) ⊂ Qy(ω2) and hz,α(ω1) = hz,α(ω2). Hence
Qy(ω1) ∩ Qy(ω2) contains hz,α(ω1) = hz,α(ω2), besides y. This implies that Qy(ω1) ∩ Qy(ω2) contains
the convex hull of y and hz,α(ω1) = hz,α(ω2), which includes the wall of type α of the two sectors; thus
hy,α(ω1) = hy,α(ω2).

(ii) If there is none apartment containing Qx(ω1) and Qx(ω2), then there exists a vertex z such that
Qz(ω1) ⊂ Qx(ω1) and Qz(ω2) ⊂ Qx(ω2), and Qz(ω1) and Qz(ω2) lie on some apartment A; moreover
hz,α(ω1) = hz,α(ω2). Hence, using the same argument as in (i), we complete the proof. ut

Definition 4.2.2. Let ω, ω′ ∈ Ω. We say that ω is α-equivalent to ω′, and we write ω ∼α ω′, if, for
some x, hα,x(ω) = hα,x(ω′).

Lemma 4.2.1 implies that the definition of α-equivalence does not depend on the vertex x such that
hα,x(ω) = hα,x(ω′). Moreover, if ω is α-equivalent to ω′, and A = A(ω, ω′) denotes any apartment having
ω and ω′ as boundary points, then for every x ∈ A, the sectors Qx(ω) and Qx(ω′) are α-adjacent, that is
there exists a type rotating isomorphism ψtr : A → A, mapping Qx(ω) onto Q0 and Qx(ω′) onto sαQ0.
On the contrary, if x does not lie on any A(ω, ω′), then Qx(ω) ∩Qx(ω′) contains properly their common
α-wall.

Definition 4.2.3. We call α-boundary of the building ∆ the set Ωα = Ω/∼α, consisting of all equivalence
classes [ω]α of boundary points and we denote by ηα any element of Ωα. Hence ηα = [ω]α, if ω belongs to
the equivalence class ηα.

Fix ω ∈ Ω and consider the set Hα(ω) = {hx,α(ω), x ∈ V̂(∆)}. If ω′ ∼α ω then, for every x,
hx,α(ω′) = hx,α(ω) and hence Hα(ω) = Hα(ω′). Therefore the set Hα(ω) only depends on the equivalence
class ηα = [ω]α represented by ω and we shall denote Hα(ηα) = Hα(ω), if ω ∈ ηα. Moreover, if ω 6∼α ω′,
then, for every x ∈ V̂(∆), hx,α(ω) 6= hx,α(ω′) and hence Hα(ω)∩Hα(ω′) = ∅. This implies that the map

ηα → Hα(ηα)

is a bijection between the α-boundary Ωα and the set {Hα(ηα)}. In particular, for every x ∈ V̂(∆),
each element ηα of Ωα determines one α-wall based at x; we shall denote this wall by hx(ηα). Of course,
hx(ηα) = hx,α(ω), for every ω ∈ ηα.

4.3. Trees at infinity. Let us consider the α-boundary Ωα, corresponding to a simple root α of the
building. We claim that it is possible to construct a graph associated to each element ηα of Ωα, and this
graph is in fact a tree, whose boundary can be canonically identified with the set of all ω belonging to
the class ηα. To this end, we shall examine in details, for any class ηα, the set Hα(ηα) and we prove that
the set Hα(ηα) determines a tree. Proposition 4.1.2 implies the following corollary.

Corollary 4.3.1. For every ηα ∈ Ωα, the set Hα(ηα) consists of walls equivalent or definitely parallel.

Let ηα be a fixed element of Ωα; for every x ∈ V̂(∆) consider the wall hx(ηα) of Hα(ηα) and the class
of all walls hx′(ηα), equivalent to hx(ηα), according to Definition 4.1.1, (i). We simply denote by x this
equivalence class, represented by the wall hx(ηα). Obviously, x = y if and only if hx(ηα) and hy(ηα) are
equivalent.

Remark 4.3.2. Consider, on the fundamental apartment A, the α-wall of any sector QX equivalent to
Q0. Each of these walls lies on an affine hyperplane Hk

α, for some k ∈ Z. For every k ∈ Z, we simply
denote by Xk the class of all walls lying on Hk

α, and we set

Γ0 = {Xk, k ∈ Z}.
For every apartment A of the building we consider, for any ηα, the walls of Hα(ηα) lying on A, and the
equivalence classes x represented by these walls. By a type-preserving isomorphism ψtp : A → A, each x
maps to an element Xk, of Γ0, for some k ∈ Z.

We recall that if the root system R has type Cn or BCn, and α = αn, then, for every j ∈ Z, H2j
α

only contains special vertices of type 0 and H2j+1
α only contains special vertices of type n. (The same is

true if R has type Bn and α = αi, i < n). Hence in this case it is natural to endow the set Γ0 with a
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labelling in the following way: we say that Xk has type 0, if k = 2j and has type 1, if k = 2j + 1, for
j ∈ Z. This labelling can be extended to all equivalence classes x represented by walls of Hα(ηα) lying
on any apartment A, and hence to all walls of the building; we say that x has type 0 if (through any
type-preserving isomorphism) it maps to some X2j , and has type 1, if it maps to some X2j+1.

Definition 4.3.3. Let ηα ∈ Ωα. We denote by Tα(ηα) the graph having as vertices the classes x of equiv-
alent walls associated to ηα, and as edges the pairs [x,y] of equivalence classes represented by (definitely
parallel) walls hx(ηα) and hy(ηα) at distance one.

For every ω ∈ ηα, we can then associate to ω the graph Tα(ω) = Tα(ηα) and, for every ω ∈ Ω, we can
associate to ω the graph of the element ηα of the α-boundary, represented by ω.

We recall that, according to notation of Section 2.16, the simple root α belongs to R2 if and only if R
is not reduced and α = αn = en. In this particular case, for every k ∈ Z, we have Hk

α = H2k
2α; hence the

parallel hyperplanes of A, orthogonal to α are the hyperplanes Hh
2α, for all h ∈ Z. Moreover, for every

k ∈ Z,
q2α,2k = qα,k = qα = r, q2α,2k+1 = q2α = p.

In all other cases, that is for all simple root of a reduced building or for all simple root αi, i 6= n, for a

building of type B̃Cn, we always have α ∈ R0, and hence

qα,k = qα, for every k ∈ Z.

Proposition 4.3.4. For every simple root α, and for every ηα ∈ Ωα, the graph Tα(ηα) is a tree.

(i) If α ∈ R0, the tree is homogeneous, with homogeneity qα.
(ii) If α ∈ R2, the tree is labelled and semi-homogeneous; each vertex of type 0 shares q2α = p edges

and each vertex of type 1 shares qα = r edges.

Proof. We have to prove that Tα(ηα) is connected and has no loops.
Let x, y be two vertices of the graph. If ω ∈ ηα and hx,α(ω), hy,α(ω) are representatives of x and y

respectively, we may assume, without loss of generality, that the two walls are parallel, and hence they
lie on an apartment A. Let n be the distance between the two walls on this apartment. We can choose
x0, x1, . . . , xn on A, such that x0 ∈ hx,α(ω), xn ∈ hy,α(ω) and d(xi−1, xi) = 1, for every i = 1, . . . , n.
The walls hx0,α(ω), hx1,α(ω), . . . , hxn,α(ω) are pairwise adjacent on A and

hx0,α(ω) ∼ hx,α(ω), hxn,α(ω) ∼ hy,α(ω).

Therefore, if xi is the vertex of the graph represented by hxi,α(ω), for i = 0, . . . , n, then d(xi−1,xi) = 1,
for i = 0, . . . , n and x = x0, y = xn. This proves that x, y are connected by a path of length n.

For every n ≥ 2, let us consider on the graph a path x0, . . . ,xn, such that xi−1 6= xi,xi+1, for
i = 1, . . . , n − 1. We shall prove by induction that x0 6= xn. If n = 2, the property holds by def-
inition; assume the property is true for n − 1 and we show that it is true also for n. Actually, if
hx0,α(ω), . . . , hxn−1,α(ω), hxn,α(ω) are representatives of the vertices x0, . . . , xn−1, xn respectively,
we know that there exists an apartment A containing all the walls hx0,α(ω), . . . , hxn−1,α(ω) and on
this apartment the distance between hx0,α(ω) and hxn−1,α(ω) is n− 1. On the other hand, it is possible
to choose the apartment A in such a way that also the wall hxn,α(ω) lies on it. On this apartment,
d(hx0,α(ω), hxn,α(ω)) = n, as hxn,α(ω) 6= hxn−2,α(ω). This proves that x0 6= xn.

Finally, if R is not reduced and α = αn = en, the parallel hyperplanes of A, orthogonal to α, are the
hyperplanes Hk

2α, for all k ∈ Z. Moreover, for every j ∈ Z,

q2α,2j = qα,k = qα = r, q2α,2j+1 = q2α = p.

Hence, in this case the number of edges sharing any vertex x of type 0 is r, while the number of edges
sharing the vertex y is p.

In all other cases, that is for all simple roots of a reduced building or for all simple roots αi, i 6= n, for

a building of type B̃Cn, we always have α ∈ R0, and hence

qα,k = qα, for every k ∈ Z.

Therefore, each wall hxα(ω) is adjacent to qα walls hyα(ω); hence each vertex x belongs to qα edges. ut

Remark 4.3.5. For every apartment A, the walls hx,α(ω) of H(ηα), lying on A, determine a geodesic
γ(ηα) of the tree T (ηα), consisting of all vertices x associated to these walls and of all edges connecting
each pair of adjacent vertices x,y.

The set Γ0 can be seen as the fundamental geodesic of the tree, since each geodesic γ(ηα) of the building
is isomorphic to Γ0 through any type-preserving isomorphism ψtp : A → A, if A denotes any apartment
containing γ(ηα).
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The tree T (ηα), is labelled and semi-homogeneous only when R is not reduced and α = αn = en, i.e.

only when the building has type B̃Cn; in this case V̂(∆) consists only of vertices of type 0. Therefore
for such a tree it is straightforward to restrict to consider only its vertices of type 0. Hence, if x,y are
vertices of type 0, then the geodesic [x,y] has length 2n, for some n ∈ N. Moreover on the fundamental
geodesic Γ0 we consider only the vertices X2n, for n ∈ N.

Proposition 4.3.4 shows that, for every element ηα ∈ Ωα, we may identify the set Hα(ηα) with a tree
Tα(ηα). Moreover trees Tα(ηα,1), Tα(ηα,2) associated to any two ηα,1, ηα,2 in Ωα are isomorphic. For

every x ∈ V̂(∆), the vertex x can be seen as the projection of x onto the tree Tα(ηα). In this sense we
can refer to Tα(ηα) as to the tree at infinity associated to the element ηα of the α-boundary.

Proposition 4.3.6. For every ηα ∈ Ωα, the set

{ω ∈ Ω : ω ∈ ηα}

can be identified with the boundary ∂Tα(ηα) of the tree Tα(ηα).

Proof. We fix x ∈ V̂(∆). For every ω in the class ηα = [ω]α, we consider the sector Qx(ω) based at x
and its wall hxα(ω). Let us denote by h

xj
α (ω), j ≥ 0, a sequence of walls lying on Qx(ω) such that

hx0
α (ω) = hxα(ω) and d(hxjα (ω), hxj+1

α (ω)) = 1, j ≥ 0.

The sequence xj , j ≥ 0, is a geodesic of the tree Tα(ηα) starting from x0 = x and hence it determines, as
usual, a boundary point ω of the tree. The map ω → ω is a bijection of ηα = [ω]α onto ∂Tα(ηα), since
each boundary point of the tree can be obtained from a suitable ω in the class ηα, with the procedure
described before, and ω1 6= ω2, if ω1 6= ω2 are two elements of the same class ηα. ut

Since the trees Tα(ηα,1), Tα(ηα,2) associated to any two ηα,1, ηα,2 in Ωα are isomorphic, the same is
true for their boundaries ∂Tα(ηα,1), ∂Tα(ηα,2). We denote by Tα an abstract tree such that

Tα(ηα) ∼ Tα, ∀ηα ∈ Ωα;

moreover we denote by t any element of Tα and by b any element of its boundary ∂Tα.

As a consequence of Proposition 4.3.6, the maximal boundary Ω of the building can be decomposed
as a disjoint union of boundaries of trees, one for each equivalence class ηα = [ω]α :

Ω =
⋃

ηα∈Ωα

∂T (ηα).

The previous decomposition implies that each boundary point ω of the building can be seen as a pair
(ηα,b) ∈ Ωα × ∂Tα, where ηα is the equivalence class [ω]α containing ω and b is the boundary point of
Tα corresponding on ∂T (ηα) to ω. In this sense we may write, up to isomorphism,

Ω = Ωα × ∂Tα.

4.4. Orthogonal decomposition with respect to a root α.

Definition 4.4.1. Let sα be the reflection with respect to the linear hyperplane Hα of A. For every vector
v of the Euclidean space supporting A, we set

Pα(v) =
v − sαv

2
, Qα(v) =

v + sαv

2
.

By definition, Pα(v) +Qα(v) = v and Qα(v)− Pα(v) = sαv. Moreover

Pα(sαv) = −Pα(v) and Qα(sαv) = Qα(v).

We observe that, for every v, Qα(v) lies on Hα and Pα(v) is the component of the vector v, in the
direction orthogonal to the hyperplane Hα, that is in the direction of the vector α.

Proposition 4.4.2. Let ω1, ω2 be α-equivalent. Then, for every x, y ∈ V̂(∆),

Qα(ρω2
(y)− ρω2

(x)) = Qα(ρω1
(y)− ρω1

(x)).

If x, y belong to an apartment containing both the boundary points ω1, ω2, then

Pα(ρω2
(y)− ρω2

(x)) = −Pα(ρω1
(y)− ρω1

(x)).
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Proof. Let x, y ∈ V̂(∆) and ηα = [ω]α, for every ω ∈ Ω. Consider the tree Tα(ηα) and let x and y be
the vertices of this tree, associated to x and y respectively.

If x = y, the walls hx,α(ω) and hy,α(ω) are equivalent, and hence they intersect in a wall hz,α(ω). In
this case, Qα(ρω(y)− ρω(x)) is given by the difference between σ(y, z) and σ(x, z).

Assume now x 6= y. If b is the boundary point of the tree corresponding to ω, we consider the geodesics
[x,b], [y,b] from x and from y to b respectively. We denote by z the vertex of the tree such that [z,b] =
[x,b] ∩ [y,b], and by z a vertex of the building corresponding to z, such that Qz(ω) ⊂ Qx(ω) ∩ Qy(ω).
In the case when [y,b] ⊂ [x,b], then z = y, and hence hzα(ω) ⊂ hyα(ω). Otherwise, hz,α(ω) and hx,α(ω)
are definitely parallel; if hx′,α(ω) is the subwall of hx,α(ω) parallel to hz,α(ω), it is easy to check that
Qα(ρω(y)−ρω(x)) is given by the difference between σ(y, z) and σ(x, x′). In the case when [x,b] ⊂ [y,b],
a similar argument shows that Qα(ρω(y)− ρω(x)) is given by the difference between σ(y, y′) and σ(x, z),
if we denote by hy′,α(ω) the subwall of hy,α(ω) parallel to hz,α(ω). Finally, if z 6= x and z 6= y, then both
the walls hx,α(ω) and hy,α(ω) are definitely parallel to hz,α(ω). If we denote by hx′,α(ω) and by hy′,α(ω)
the subwall of hx,α(ω) and of hy,α(ω) respectively, which are parallel to hz,α(ω), then Qα(ρω(y)− ρω(x))
is given by the difference between σ(y, y′) and σ(x, x′). In every case Qα(ρω(y)− ρω(x)) is a vector lying
on the hyperplane Hα and it is the same for all boundary points α-equivalent to ω. Assume now that
there exists an apartment containing x, y and both the boundary points ω1, ω2. In this particular case,
ρω2(y)− ρω2(x) = sα(ρω1(y)− ρω1(x)). Therefore in this case

Pα(ρω2(y)− ρω2(x)) = −Pα(ρω1(y)− ρω1(x)).

ut

4.5. Topologies on Ωα. As the maximal boundary, also each α-boundary Ωα may be endowed with a

totally disconnected compact Hausdorff topology. Let x, y be special vertices in V̂(∆); consider the set
Ω(x, y), defined in Section 3. We define a set of Ωα in the following way:

Ωα(x, y) = {ηα = [ω]α, ω ∈ Ω(x, y)}.

Let x ∈ V̂(∆); the family

B̃xα = { Ωα(x, y), y ∈ V̂(∆), y ∈ ∪ hxα}
generates a (totally disconnected compact Hausdorff) topology on Ωα; for every ηα ∈ Ωα, say ηα = [ω]α,
a local base at ηα is given by

B̃x,ηα = { Ωα(x, y), y ∈ Qx(ω)}.
We observe that there exists a α-wall based at x containing y, if and only if y ∈ Vλ(x), with λ ∈ H0,α.

Then, for every pair of vertices x, y ∈ V̂(∆), such that y ∈ Vλ(x), with λ ∈ H0,α, we have

Ωα(x, y) = {ηα ∈ Ωα : y ∈ hxα(ηα)}.

Moreover the family

Bxα = { Ωα(x, y), y ∈ V̂(∆), y ∈ ∪hxα}
generates the same topology on Ωα as before; hence, for every ηα ∈ Ωα, a local base at ηα is given by

Bx,ηα = { Ωα(x, y), y ⊂ hx(ηα)}.

By the same argument used for the maximal boundary, we can prove that the topology on Ωα does not

depend on the particular x ∈ V̂(∆).

4.6. Probability measures on the α- boundary. For every x of V̂(∆), we define a regular Borel

measure ναx on Ωα, in the following way. For every y ∈ V̂(∆), let λ = σ(x, y); then σ(x,y) = Pαλ, if x
and y are the projection of x and y on the tree at infinity associated with any ω ∈ Ω(x, y). Thus define

ναx (Ωα(x, y)) =
Nα
Pαλ

Nλ
,

if Nα
Pαλ

= |{z : σ(x, z) = Pαλ}|. By the same argument used on the maximal boundary we can in fact
prove that there exists a unique regular Borel probability measure ναx on Ω, satisfying this property. We
notice that if λ ∈ H0,α, then y = x and then Pαλ = λ. Therefore in this case

ναx (Ωα(x, y)) = νx(Ω(x, y)).

Define

R+
α = {β ∈ R+, β 6= α, 2α};
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then, recalling the formula for Nλ given in Corollary 2.16.2, we have

ναx (Ωα(x, y)) =
Wλ(q−1)

W(q−1)

∏
β∈R+

α

q−<λ,β>β q<λ,β>2β , if λ ∈ H0,α,

ναx (Ωα(x, y)) =
Wλ(q−1)(1 + q−1

α )

W(q−1)

∏
β∈R+

α

q−<λ,β>β q<λ,β>2β , otherwise.

4.7. Topologies and probability measures on the trees at infinity. Let Tα be the abstract tree

isomorphic to each tree at infinity Tα(ηα) and let ∂Tα be its boundary. As usual, we denote by V̂(Tα)
the set of all vertices of Tα, when the tree is homogeneous, or the set of all vertices of type 0, when the

tree is semi-homogeneous. For every t ∈ V̂(Tα) and every b ∈ ∂Tα, we denote by γ(t,b) the geodesic

from t to b. It is well known that, for every t ∈ V̂(Tα), the family

Bt = { B(t, t′), t′ ∈ V̂(Tα)},

where, for every t, t′ ∈ V̂(Tα), B(t, t′) = {b ∈ ∂Tα : t′ ∈ γ(t,b)}, generates a totally disconnected
compact Hausdorff topology on ∂Tα; moreover for every element b, a local base at b is given by

Bt,b = { B(t, t′), t′ ∈ γt(b)}.

We shall denote by µt the usual probability measure on ∂Tα associated with the isotropic random walk
on Tα starting from the vertex t. We refer the reader to [5] and to [1] for the definition of this measure.
We recall that, in the homogeneous case, with homogeneity qα, we have, for every vertex t′,

µt(B(t, t′)) =
1

qα + 1
q1−n
α ,

if n is the length of the finite geodesic [t, t′]. Otherwise, in the semi-homogeneous case, with homogeneities
p, r, we have, for every vertex t′, at distance 2n from t,

µt(B(t, t′)) =
1

p(1 + r)
(pr)1−n.

Since, for every element ηα ∈ Ωα, the tree T (ηα) is isomorphic to the abstract tree Tα, all previous

arguments apply to ∂T (ηα), if t is replaced by the projection x on T (ηα) of some x ∈ V̂(∆), and in
particular e is the projection on T (ηα) of the fundamental vertex e of the building. We point out that,

for every x ∈ V̂, the measure µx on ∂Tα(ηα) defined before can be seen as a measure on Ω, supported
on [ω]α, if ηα = [ω]α. Actually, it is easy to check that, if ηα = [ω]α, then, through the identification of
∂Tα(ηα) with the subset [ω]α of the maximal boundary, the measure µx coincides with the measure ναx,ω
on Ω, obtained as restriction to [ω]α of the probability measure νx on Ω.

4.8. Decomposition of the measure νx. Let x ∈ V̂(∆); let x be its projection on the tree T (ηα)
associated with an assigned ω ∈ Ω and let t be the element of the abstract tree Tα, which corresponds
to the vertex x. For ease of notation, from now on, we identify t with x. If we identify the maximal
boundary Ω with Ωα × ∂Tα, according to Section 4.3, we claim that each probability measure νx splits
as product of the probability measure ναx on the α-boundary Ωα and the canonical probability measure

µx on the boundary of the tree Tα. In order to prove this decomposition we consider, for x, y ∈ V̂(∆),
the set Ω(x, y). If ω ∈ Ω(x, y) and ω = (ηα,b), then ηα ∈ Ωα(x, y) and b ∈ B(x,y). Hence

Ω(x, y) = Ωα(x, y)×B(x,y).

Proposition 4.8.1. For every x ∈ V̂(∆), then νx = ναx × µx.

Proof. Let x, y ∈ V̂(∆) and y ∈ Vλ(x). Let x and y be the projection of x and y on the tree at infinity
associated with any ω ∈ Ω(x, y). We prove that

νx(Ω(x, y)) = ναx (Ωα(x, y)) µx(B(x,y)).

If λ ∈ H0,α, we proved that νx(Ω(x, y)) = ναx (Ωα(x, y)); on the other hand, in this case y = x, and
therefore B(x,y) = ∂Tα. Hence µx(B(x,y)) = 1 and the required statement is proved. Assume now
λ /∈ H0,α; in this case µx(B(x,y)) = Nα

Pαλ
. Then the required formula is a direct consequence of the

definition of ναx (Ωα(x, y)). ut
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5. Characters and Poisson kernels

5.1. Characters of A. Consider in the fundamental apartment A the co-weight lattice L̂. We call char-

acter of A any multiplicative complex-valued function χ acting on L̂ :

χ(λ1 + λ2) = χ(λ1) χ(λ2), ∀λ1, λ2 ∈ L̂.

We assume, without loss of generality, that a character of A is the restriction to L̂ of a multiplicative

complex-valued function acting on V. We denote by X(L̂) the group of all characters of A. If n = dimV,
then X(L̂) ∼= (C×)n, and the group X(L̂) can be endowed with the weak topology and also with the
usual measure of Cn.

The Weyl group W acts on X(L̂) in the following way: for every w ∈W and for every χ ∈ X(L̂),

(wχ)(λ) = χ(w−1(λ)), for all λ ∈ L̂.
It is immediate to observe that wχ is a character and we simply denote χw = wχ.

5.2. The fundamental character χ0 of A. We shall be interested in a particular character of A.

Definition 5.2.1. We denote by χ0 the following function on L̂ :

χ0(λ) =
∏
α∈R+

q〈λ,α〉α q
−〈λ,α〉
2α , ∀λ ∈ L̂.

Being α a linear functional on the vector space V supporting A, the function χ0 is a character of A, called
the fundamental character of A. Since each α in the previous formula is a positive root (with respect to

Q0) then χ0(λ) > 1, for all λ ∈ L̂+.
If R is reduced, then 2α /∈ R and therefore q2α = 1, for every α ∈ R; hence

χ0(λ) =
∏
α∈R+

q〈λ,α〉α .

In particular ifR is reduced and all roots have the same length, that is for buildings of type Ãn, D̃n, Ẽ6, Ẽ7

and Ẽ8, then qα = q, for every α ∈ R+ and

χ0(λ) = q
∑
α∈R+ 〈λ,α〉 = q2〈λ,δ〉,

if δ = 1
2 (
∑
α∈R+ α). Instead, if R is reduced but it contains long and short roots, then, denoting by α

any long root and by β any short root and setting δl = 1
2 (
∑
α), δs = 1

2 (
∑
β), it follows that

χ0(λ) = q2〈λ,δl〉 p2〈λ,δs〉.

This happens for buildings of type B̃n, C̃n, F̃4 and G̃2.

Assume now that R is not reduced, that is the building is of type (̃BC)n. In this case R = R0 ∪
R1 ∪ R2. We denote by α, β and γ any root of R0, R1 and R2 respectively. Then, keeping in mind that
R2 = {β/2, β ∈ R1}, it follows that

χ0(λ) =
∏
α∈R+

0

q〈λ,α〉α

∏
β∈R+

1

q
〈λ,β〉
β

∏
γ∈R+

2

q〈λ,γ〉γ q
−〈λ,γ〉
2γ =

∏
α∈R+

0

q〈λ,α〉α

∏
β∈R+

1

q
〈λ,β〉
β

∏
β∈R+

1

q
〈λ,β/2〉
β/2 q

−〈λ,β/2〉
β

=
∏
α∈R+

0

q〈λ,α〉α

∏
β∈R+

1

(qβ/2 qβ)〈λ,β/2〉 = q2〈λ,δ0〉(pr)〈λ,δ1〉

if δ0 = 1
2 (
∑
α), δ1 = 1

2

∑
β.

We notice that, by Proposition 2.16.1, then, for every λ ∈ L̂+,

χ0(λ) = qtλ .

More generally, if λ is any element of L̂, and tλ = uλgl, with uλ = si1 · · · sir , then the same argument
used in Proposition 2.16.1 shows that,

χ0(λ) =
∏
j∈J+

qij .
∏
j∈J−

q−1
ij
,

where
J+ = {j : si1 · · · sij−1

(C0) ≺ si1 · · · sij (C0)}
J− = {j : si1 · · · sij (C0) ≺ si1 · · · sij−1

(C0)}.
Actually, we notice that, when λ is dominant, then J− = ∅ and thus J+ = {1, · · · , r}; so we get the
previous formula for χ0(λ).
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We can easily compute the fundamental character in each simple co-root α∨. We consider separately
the reduced and non-reduced case.

Proposition 5.2.2. Let R be a reduced root system; for every simple root α, then

χ0(α∨) = q2
α.

Proof. We notice that, for every simple α, we have 〈α∨, δ〉 = 1. This is a consequence of (13.3) in [6]. ut

Proposition 5.2.3. Let R be a non-reduced root system; then

(i) χ0(α∨) = q2, for every α = ei − ei+1, i = 1, · · · , n− 1;
(ii) χ0(β∨) = pr, for β = 2en.

Proof. We compute χ0(α∨) and χ0(β∨) by using the formula of χ0(λ) given above.

(i) If α = αi = ei − ei+1, for some i = 1, . . . , n− 1, then α∨i = αi, and, by definition,

χ0(α∨i ) = χ0(αi) =

 ∏
α∈R+

0

q〈αi,α〉

  ∏
β∈R+

1

p〈αi,β〉
(
r

p

)〈αi,β/2〉
= q
〈αi,

∑
α∈R+

0
α〉
p
〈αi,

∑
β∈R+

1
β〉
(
r

p

)〈αi,∑β∈R+
1
β/2〉

.

We notice that∑
α∈R+

0

α = 2[(n− 1)e1 + (n− 2)e2 + · · ·+ en−1] and
∑
β∈R+

1

β = 2

n∑
k=1

ek.

Hence, for every i = 1, · · · , n− 1,

〈αi,
∑
α∈R+

0

α〉 = 2[(n− i)− (n− i− 1)] = 2 and 〈αi,
∑
β∈R+

1

β〉 = 0,

since 〈ei − ei+1, 2ek〉 = 2,−2, 0, if k = i; k = i+ 1 or k 6= i, i+ 1 respectively. Therefore∏
α∈R+

0

q〈αi,α〉 = q2 and
∏
β∈R+

1

p〈αi,β〉 =
∏
β∈R+

1

(
r

p

)〈αi,β/2〉
= 1

and we conclude that χ0(α∨i ) = q2, for every i.
(ii) If β = βn = 2en, then β∨ = en; therefore

χ0(β∨n ) =

 ∏
α∈R+

0

q〈β
∨,α〉

  ∏
β∈R+

1

p〈β
∨
n ,β〉

(
r

p

)〈β∨n ,β/2〉
= q
〈β∨n ,

∑
α∈R+

0
α〉
p
〈β∨n ,

∑
β∈R+

1
β〉
(
r

p

)〈β∨n ,∑β∈R+
1
β/2〉

.

On the other hand

〈β∨n ,
∑
α∈R+

0

α〉 = 0 and 〈β∨n ,
∑
β∈R+

1

β〉 = 2,

since 〈β∨n , ek〉 = 〈en, 2ek〉 = 2 or 0, according if k = n or k 6= n. Therefore∏
α∈R+

0

q〈β
∨
n ,α〉 = 1,

∏
β∈R+

1

p〈β
∨
n ,β〉 = p2,

∏
β∈R+

1

(
r

p

)〈β∨n , β2 〉
=
r

p

and we conclude that χ0(β∨) = pr.
ut

For every simple root α we define, for every λ ∈ L̂,

χα0 (λ) =
∏
β∈R+

α

q
〈λ,β〉
β q

−〈λ,β〉
2β .

Obviously χα0 is a character on A; moreover it is easy to check that, if λ ∈ H0,α, then

χα0 (λ) = χ0(λ),
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since for every λ ∈ H0,α, we have 〈λ, α〉 = 〈λ, 2α〉 = 0 and therefore∏
β∈R+

α

q
〈λ,β〉
β q

−〈λ,β〉
2β =

∏
β∈R+

q
〈λ,β〉
β q

−〈λ,β〉
2β = χ0(λ).

Let Tα be the abstract tree isomorphic to each tree at infinity Tα(ηα). We denote by Γ0 the fundamental
geodesic of the tree and by Γ+

0 the fundamental geodesic based at 0. We define a character χ0 on Γ0 in
the following way:
χ0(Xn) = qnα, if Xn is the vertex of Γ+

0 at distance n from 0, in the homogeneous case;
χ0(X2n) = (pr)n, if X2n is the vertex of Γ+

0 at distance 2n from 0, otherwise.

The characters χ0, χ
α
0 and χ0 are related through the operators Pα and Qα defined in Section 4.4, as

the following lemma shows.

Lemma 5.2.4. Let λ ∈ L̂; assume λ ∈ Hn,α, if α ∈ R0, and λ ∈ H2n,α, if α ∈ R2. Then

(i) χ0(Qα(λ)) = χα0 (Qα(λ)) = χα0 (λ),

(ii) χ0(Pα(λ)) =

{
χ0(Xn) = qnα, if α ∈ R0,

χ0(X2n) = (pr)n, if α ∈ R2.

Proof. (i) We notice at first that 〈Qα(λ), α〉 = 0, for every α. Hence

χα0 (Qα(λ)) =
∏
β∈R+

α

q
〈Qα(λ),β〉
β q

−〈Qα(λ),β〉
2β =

∏
β∈R+

q
〈Qα(λ),β〉
β q

−〈Qα(λ),β〉
2β = χ0(Qα(λ)).

Moreover it is easy to prove that ∏
β∈R+

α

q
〈Pα(λ),β〉
β q

−〈Pα(λ),β〉
2β = 1.

Actually, for every β ∈ R+
α the root sαβ belongs to R+

α , and 〈Pα(λ), β〉 = −〈Pα(λ), σαβ〉. Therefore,

χα0 (λ) =
∏
β∈R+

α

q
〈λ,β〉
β q

−〈λ,β〉
2β =

∏
β∈R+

α

q
〈Qα(λ),β〉
β q

−〈Qα(λ),β〉
2β

∏
β∈R+

α

q
〈Pα(λ),β〉
β q

−〈Pα(λ),β〉
2β = χα0 (Qα(λ)).

(ii) By the same argument of (i), we have

χ0(Pα(λ)) = q〈Pα(λ),α〉
α q

−〈Pα(λ),α〉
2α

∏
β∈R+

α

q
〈Pα(λ),β〉
β q

−〈Pα(λ),β〉
2β = q〈Pα(λ),α〉

α q
−〈Pα(λ),α〉
2α = q〈λ,α〉α q

−〈λ,α〉
2α ;

therefore (ii) is proved, because

q〈λ,α〉α q
−〈λ,α〉
2α =

{
χ0(Xn) if α ∈ R0,

χ0(X2n) if α ∈ R2.

ut

Corollary 5.2.5. For every λ ∈ L̂, χ0(λ) = χα0 (Qα(λ)) χ0(Xλ), if Xλ is the vertex of Γ0 corresponding
to Pα(λ).

Let ρb be the retraction of the tree on Γ0, with respect to the boundary point b, such that ρb(γ(e,b)) =
Γ+

0 . (Here e denotes the fundamental vertex of the tree). An immediate consequence of Lemma 5.2.4 is
the following proposition.

Proposition 5.2.6. Let x, y ∈ V̂(∆) and ω ∈ Ω. Let x and y be the projection of x and y on the tree at
infinity Tα(ηα) associated with ω. Then

(i) χ0(Qα(ρω(y)− ρω(x)) = χα0 (ρω(y)− ρω(x)),
(ii) χ0(Pα(ρω(y)− ρω(x)) = χ0(ρb(y)− ρb(x)).

Proof. Let x, y ∈ V̂(∆) and ω ∈ Ω. If λ = ρω(y)− ρω(x), (i) follows from Lemma 5.2.4, (i).
Let ηα = [ω]α, and consider the vertices x,y of the tree T (ηα), corresponding to x, y. If b is the

boundary point of this tree, corresponding to ω, then b ∈ B(x,y); this implies that ρb(y)− ρb(x) = n,
if 〈λ, α〉 = n. Hence (ii) follows from Lemma 5.2.4, (ii). ut
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5.3. Probability measures on the boundaries. The measure νx defined, for any x ∈ V̂(∆), on the
maximal boundary Ω can be characterized in terms of the character χ0.

Proposition 5.3.1. Let x and y be vertices of V̂(∆); then, for every ω ∈ Ω(x, y),

νx(Ω(x, y)) =
Wλ(q−1)

W(q−1)
χ−1

0 (ρxω(y)) =
Wλ(q−1)

W(q−1)
χ−1

0 (ρω(y)− ρω(x)).

Proof. Since χ0(λ) = qtλ , for every λ ∈ L̂+, then, by definition of νx, we have, for each y ∈ Vλ(x),

νx(Ω(x, y)) =
Wλ(q−1)

W(q−1)
χ−1

0 (λ).

On the other hand, in Section 3.3 we have proved that, if y ∈ Ωx(ω), then ρxω(y) = σ(x, y), and that
ρxω(y) = ρω(y)− ρω(x). Therefore the required formula is proved. ut

Let α be any simple root of the root system R associated with ∆. The measure ναx defined in Section
4.6 on the α-boundary can be characterized in terms of the character χα0 .

Proposition 5.3.2. Let λ ∈ L̂+, and y ∈ Vλ(x); then, for every ηα ∈ Ωα(x, y) and for every ω in the
class ηα,

ναx (Ωα(x, y)) =
Wλ(q−1)

W(q−1)
(χα0 )−1(ρω(y)− ρω(x)), if λ ∈ H0,α

ναx (Ωα(x, y)) =
Wλ(q−1)(1 + q−1

α )

W(q−1)
(χα0 )−1(ρω(y)− ρω(x)), otherwise.

Proof. Recalling the definition of the character χα0 we have

ναx (Ωα(x, y)) =
Wλ(q−1)

W(q−1)
(χα0 )−1(λ), if λ ∈ H0,α,

ναx (Ωα(x, y)) =
Wλ(q−1)(1 + q−1

α )

W(q−1)
(χα0 )−1(λ), otherwise.

On the other hand, for every ηα ∈ Ωα(x, y) and for every ω in the class ηα,

ρω(y)− ρω(x) = λ, if σ(x, y) = λ.

In particular, if we assume y ∈ Vλ(x), with λ ∈ H0,α, then the vector ρω(y)− ρω(x) belongs to H0,α. ut

Taking in account Proposition 5.2.6, we can express the measures ναx and µx in terms of the character
χ0 and the operators Pα and Qα.

Corollary 5.3.3. Let x, y ∈ V̂(∆) and y ∈ Vλ(x). Let x and y be the projection of x and y on the tree
at infinity Tα(ηα) associated with any ω ∈ Ω(x, y). Then

ναx (Ωα(x, y)) =


Wλ(q−1)
W(q−1) (χ0)−1(ρω(y)− ρω(x)), λ ∈ H0,α,

Wλ(q−1)(1+q−1
α )

W(q−1) (χ0)−1(Qα(ρω(y)− ρω(x))) otherwise.

Moreover

µx(B(x,y)) =

{
1, if λ ∈ H0,α,
qα

1+qα
(χ0)−1(Pα(ρω(y)− ρω(x))), otherwise.

Therefore, in view of Corollaries 5.3.3, the decomposition of the measure νx for the maximal boundary,
stated in Section 4.8, is a direct consequence of the orthogonal decomposition χ0(λ) = χ0(Pα(λ)) χ0(Qα(λ)).

5.4. Poisson kernel and Poisson transform.

Proposition 5.4.1. For x, y ∈ V̂(∆) the measures νx, νy are mutually absolutely continuous and the
Radon-Nikodym derivative of νy with respect to νx is given by

dνy
dνx

(ω) = χ0(ρxω(y)) = χ0(ρω(y)− ρω(x)), ∀ω ∈ Ω.
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Proof. We fix x, y and ω; by Corollary 3.3.9, we can choose a special vertex z lying into Qy(ω)∩Qx(ω),
so that Ω(x, z) = Ω(y, z). We set Ωz = Ω(x, z) = Ω(y, z). Of course ω belongs to Ωz. We have, by
Proposition 5.3.1,

νx(Ωz) = νx(Ω(x, z)) =
Wλ(q−1)

W(q−1)
χ−1

0 (ρω(z)− ρω(x)),

νy(Ωz) = νy(Ω(y, z)) =
Wλ(q−1)

W(q−1)
χ−1

0 (ρω(z)− ρω(y)).

So we conclude that
νy(Ωz)

νx(Ωz)
=
χ−1

0 (ρω(z)− ρω(y))

χ−1
0 (ρω(z)− ρω(x))

= χ0(ρω(y)− ρω(x)).

This proves that νy is absolutely continuous with respect to νx and shows the required formula for the
Radon-Nikodym derivative of νy with respect to νx. ut

Definition 5.4.2. We call Poisson kernel of the building ∆ the function

P (x, y, ω) = χ0(ρω(y)− ρω(x)) = χ0(ρxω(y)), ∀x, y ∈ V̂(∆) and ∀ω ∈ Ω.

This definition does not depend on the choice of the special vertex e. By Proposition 5.4.1, for every

choice of x, y in V̂(∆), the function P (x, y, ·) is the Radon-Nikodym derivative of νy with respect to νx :

dνy
dνx

(ω) = P (x, y, ω), ∀ω ∈ Ω.

Using the same argument of Proposition 5.4.1, we can prove the following proposition.

Proposition 5.4.3. For x, y ∈ V̂(∆), the measures ναx , ν
α
y are mutually absolutely continuous and

dναy
dναx

(ηα) = χα0 (ρω(y)− ρω(x)), ∀ω ∈ ηα, ∀ηα ∈ Ωα.

We shall denote, for every x, y ∈ V̂(∆) and for every ηα ∈ Ωα,

Pα(x, y, ηα) =
dναy
dναx

(ηα) = χα0 (ρω(y)− ρω(x)), ∀ω ∈ ηα.

It is known that, for every pair of vertices t, t′ in V̂(Tα), the measure µt′ is absolutely continuous with
respect to µt, and the Radon-Nikodym derivative dµt′/dµt(b) is the Poisson kernel P (t, t′,b), where
P (t, t′,b) = qn−1

α , if d(t, t′) = n, in the homogeneous case

P (t, t′,b) = (pr)n−1, if d(t, t′) = 2n, in the semi-homogeneous case.

In both cases, as a straightforward consequence of the definition,

P (t, t′,b) = χ0(ρb(t′)− ρb(t)), ∀b ∈ ∂Tα.

Since , for every pair of vertices x, y ∈ V̂(∆), the measure νy on Ω is absolutely continuous with respect
to νx, the measure ναy on Ωα is absolutely continuous with respect to ναx and the measure µy on ∂Tα is
absolutely continuous with respect to µx; actually we have the following result.

Corollary 5.4.4. Let x, y ∈ V̂(∆), and ω ∈ Ω. If ω = (ηα,b), and x and y are the projection of x and
y on the tree at infinity Tα(ηα), then

P (x, y, ω) = Pα(x, y, ηα) P (x,y,b).

Proof. By Proposition 5.2.6, for every x, y ∈ V̂(∆), and every ω ∈ Ω,

Pα(x, y, ηα) = χ0(Qα(ρω(y)− ρω(x)) and P (x,y,b) = χ0(Pα(ρω(y)− ρω(x)).

Therefore, the decomposition of the Poisson kernel P (x, y, ω) is a direct consequence of the orthogonal
decomposition χ0(λ) = χ0(Pα(λ)) χ0(Qα(λ)).

ut

Definition 5.4.2 can be generalized, if the character χ0 is replaced by any character χ.

Definition 5.4.5. We call generalized Poisson kernel of the building ∆ associated with the character χ
the function

Pχ(x, y, ω) = χ(ρω(y)− ρω(x)), ∀x, y ∈ V̂(∆) and ∀ω ∈ Ω.
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It is obvious that also this definition does not depend on the choice of the vertex e. According to this
definition, P (x, y, ω) = Pχ0(x, y, ω).

The following proposition shows the properties of any function Pχ(x, y, ω).

Proposition 5.4.6. Let χ be a character on A; then,

(i) Pχ(x, x, ω) = 1, for every x and every ω; moreover, for every x, y and every ω,

Pχ(y, x, ω) = (Pχ(x, y, ω))−1 = Pχ
−1

(x, y, ω);

(ii) for every x and every ω, the function Pχ(x, ·, ω) is constant on the set of vertices

{y ∈ V̂(∆) : σ(x, y) = λ, ρxω(y) = µ},

for any λ ∈ L̂+ and µ ∈ Πλ.
(iii) for every x, y, the function Pχ(x, y, ·) is locally constant on Ω, and, if σ(x, y) = λ, then

Pχ(x, y, ω) = χ(λ), for all ω ∈ Ω(x, y).

Proof. (i) and (ii) follow immediately from the definition. Moreover (iii) is a consequence of the prop-
erties of the retraction ρxω, proved in Section 3.3. Actually, if σ(x, y) = λ, and we choose µ big enough
with respect to λ, then Ω = ∪z∈Vµ(x)Ω(x, z) and ρxω(y) does not depend on the choice of ω in each set
Ω(x, z). In particular, ρxω(y) = λ, for all ω ∈ Ω(x, y). ut

Definition 5.4.7. Let x0 ∈ V̂(∆) and let χ be a character on A. For any complex valued function f on
Ω, we call generalized Poisson transform of f of initial point x0, associated with the character χ, the

function on V̂(∆) defined by

Pχx0
f(x) =

∫
Ω

Pχ(x0, x, ω)f(ω)dνx(ω) =

∫
Ω

χ(ρω(x)− ρω(x0))f(ω)dνx0(ω), ∀x ∈ V̂(∆),

whenever the integral exists.

In particular, we set Px0 = Pχ0
x0

and P = Pe.

6. The algebra H(∆) and its eigenvalues

6.1. The algebra H(∆). For every λ ∈ L̂+, we define an operator Aλ, acting on the space of complex

valued functions f on V̂(∆), by

(Aλf)(x) =
∑

y∈Vλ(x)

f(y) =
∑

y∈V̂(∆)

1IVλ(x)(y)f(y), for all x ∈ V̂(∆).

The operators Aλ are linear; moreover, for each y, the coefficient 1IVλ(x)(y) only depends on λ. We notice

that the operators {Aλ, λ ∈ L̂+} are linearly independent. Actually, if assume
∑
λ∈L̂+ aλAλ = 0, then∑

λ∈L̂+

aλ(Aλδy)(x) = 0, ∀x, y ∈ V̂(∆).

On the other hand
∑
λ∈L̂+ aλ(Aλδy)(x) = aµ, if σ(x, y) = µ. Hence we get aµ = 0, for every µ ∈ L̂+.

We denote by H(∆) the linear span of {Aλ, λ ∈ L̂+} over C.

Proposition 6.1.1. The space H(∆) is a commutative C-algebra.

Proof. We shall prove that, for every λ, µ the operator Aλ◦Aµ is a finite linear combination of operators

Aν , for convenient ν. Actually, recalling (2.18.1), for every function f and for every x ∈ V̂(∆),

Aλ ◦Aµf(x) =
∑

y∈V̂(∆)

1IVλ(x)(y) Aµf(y) =
∑

y∈V̂(∆)

1IVλ(x)(y)
∑

z∈V̂(∆)

1IVµ(y)(z)f(z)

=
∑

z∈V̂(∆)

 ∑
y∈V̂(∆)

1IVλ(x)(y)1IVµ(y)(z)

 f(z)

=
∑

z∈V̂(∆)

∣∣∣{y ∈ V̂(∆) : σ(x, y) = λ, σ(y, z) = ν}
∣∣∣ f(z)

=
∑
ν∈L̂+

∑
z∈Vν(x)

N(ν, λ, µ?)f(z) =
∑
ν∈L̂+

N(ν, λ, µ?)(Aνf)(x)
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and N(ν, λ, µ?) is different from zero only for finitely many ν. Moreover

Aµ ◦Aλf(x) =
∑
ν∈L̂+

N(ν, µ, λ?)(Aνf)(x) =
∑
ν∈L̂+

N(ν, λ, µ?)(Aνf)(x) = Aλ ◦Aµf(x)

and this complete the proof. ut

We refer to the numbers N(ν, λ, µ?) in Proposition 6.1.1 as the structure constants of H(∆).

6.2. Eigenvalue of the algebra H(∆) associated with a character χ. In this section we study the
eigenvalues of the algebra H(∆).

Let χ be a character on A; consider the generalized Poisson kernel Pχ(x, y, ω) associated with χ.

Lemma 6.2.1. Let z ∈ V̂(∆) and ω ∈ Ω. For every λ ∈ L̂+, the sum
∑
y∈Vλ(z) χ(ρω(y) − ρω(z)) is

independent of z and ∑
y∈Vλ(z)

χ(ρω(y)− ρω(z)) =
∑
µ∈Πλ

N(λ, µ)χ(µ),

where N(λ, µ) = |{y : σ(e, y) = λ, ρω(y) = µ}| .

Proof. For every z ∈ V̂(∆), ω ∈ Ω and λ ∈ L̂+, we have∑
y∈Vλ(z)

χ(ρω(y)− ρω(z)) =
∑
µ∈Πλ

∣∣∣{y ∈ V̂(∆) : σ(z, y) = λ, ρω(y)− ρω(z) = µ}
∣∣∣ χ(µ).

By Theorem 3.3.12, for every µ ∈ Πλ,∣∣∣{y ∈ V̂(∆) : σ(z, y) = λ, ρω(y)− ρω(z) = µ}
∣∣∣ =

∣∣∣{y ∈ V̂(∆) : σ(e, y) = λ, ρω(y) = µ}
∣∣∣ = N(λ, µ).

Hence the lemma is proved. ut
For every λ ∈ L̂+, we define

Λχ(λ) =
∑
µ∈Πλ

N(λ, µ)χ(µ).

Proposition 6.2.2. For every λ ∈ L̂+, Λχ(λ) is an eigenvalue of the operator Aλ and, for every x ∈ V̂(∆)
and ω ∈ Ω, the function Pχ(x, ·, ω) is an eigenfunction of Aλ, associated with the eigenvalue Λχ(λ) :

AλP
χ(x, ·, ω) = Λχ(λ) Pχ(x, ·, ω).

Proof. For every z ∈ V̂(∆), we can write

AλP
χ(x, ·, ω)(z) =

∑
y∈Vλ(z)

Pχ(x, y, ω) =
∑

y∈Vλ(z)

χ(ρω(y)− ρω(x)) =
∑

y∈Vλ(z)

χ(ρω(y))χ(−ρω(x))

= χ(ρω(z)− ρω(x))
∑

y∈Vλ(z)

χ(ρω(y)− ρω(z)) = Pχ(x, z, ω)
∑

y∈Vλ(z)

χ(ρω(y)− ρω(z)).

Hence, by Lemma 6.2.1, we conclude that

AλP
χ(x, ·, ω) = Λχ(λ) Pχ(x, ·, ω).

ut

Since {Aλ, λ ∈ L̂+} generates H(∆), then {Λχ(λ), λ ∈ L̂+} generates an algebra homomorphism Λχ

from H(∆) to C, such that Λχ(Aλ) = Λχ(λ), for every λ ∈ L̂+. Moreover, for every x ∈ V̂(∆) and ω ∈ Ω,
the function Pχ(x, ·, ω) is an eigenfunction of H(∆), associated with the eigenvalue Λχ.

In the particular case when χ = χ0, then, for every x ∈ V̂(∆) and for every ω ∈ Ω, the Poisson kernel
P (x, ·, ω) is an eigenfunction of all operators Aλ, with associated eigenvalue Λχ0(λ). Since P (x, y, ω) is
the Radon-Nikodym derivative of the measure νy with respect to the measure νx, this implies that∑

y∈Vλ(x)

νy = Λχ0(λ) νx.

On the other hand, since νy and νx are probability measures on Ω, then∑
y∈Vλ(x)

νy =
∣∣∣{y ∈ V̂(∆) : σ(x, y) = λ}

∣∣∣ νx.
This implies that

Λχ0(λ) =
∣∣∣{y ∈ V̂(∆) : σ(x, y) = λ}

∣∣∣ ,
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and hence ∑
µ∈Πλ

N(λ, µ) χ0(µ) =
∣∣∣{y ∈ V̂(∆) : σ(x, y) = λ}

∣∣∣ = Nλ.

Corollary 6.2.3. For every f ∈ L1(Ω, νx), the Poisson transform Pχx (f) of f, of initial point x, associated
with the character χ, is an eigenfunction of the algebra H(∆), associated with the eigenvalue Λχ.

Proof. Actually, for every λ ∈ L̂+,

AλPχx (f)(z) =
∑

y∈Vλ(x)

Pχx (f)(y) =
∑

y∈Vλ(x)

∫
Ω

Pχ(x, y, ω)f(ω) dνx(ω)

=

∫
Ω

 ∑
y∈Vλ(x)

Pχ(x, y, ω)

 f(ω) dνx(ω) =

∫
Ω

Λχ(λ) Pχ(x, z, ω) f(ω) dνx(ω) = Λχ(λ) Pχx (f)(z).

ut

Since the Weyl group W acts on the characters χ, according to definition given in Section 5.1, then
W acts also on the eigenvalues Λχ of the algebra H(∆). We shall prove that in fact these eigenvalues are
invariant with respect to the action of W, in the sense that, for every character χ,

Λχχ
1/2
0 = Λχ

wχ
1/2
0 , ∀w ∈W.

6.3. Preliminary results. Let χ be a fixed character on A; let α be a fixed simple root and let ηα be
an element of the α-boundary Ωα.

Definition 6.3.1. Let x ∈ V̂(∆); for each pair ω1, ω2 in the class ηα ∈ Ωα, we fix a vertex of V̂(∆), say
e = eω1,ω2

, in any apartment A(ω1, ω2) containing both the boundary points. We set

jαx,χ(ω1, ω2) = χχ
1/2
0 (Pα(ρω1

(e) + ρω2
(e)− ρω1

(x)− ρω2
(x))).

Remark 6.3.2. The function jαx,χ(ω1, ω2) does not depend on the choice of the vertex eω1,ω2
on any

apartment A(ω1, ω2). Actually, if e and e′ are two vertices on this apartment, then, for every x ∈ V̂(∆),

Pα(ρω1
(x)− ρω1

(e) + ρω2
(x)− ρω2

(e))− Pα(ρω1
(x)− ρω1

(e′) + ρω2
(x)− ρω2

(e′))

= Pα((ρω1
(e′)− ρω1

(e)) + (ρω2
(e′)− ρω2

(e))) = Pα((ρω1
(e′)− ρω1

(e))) + Pα((ρω2
(e′)− ρω2

(e))) = 0,

since Pα((ρω1
(e′)− ρω1

(e))) = −Pα((ρω2
(e′)− ρω2

(e))), as we proved in Proposition 4.4.2,

For every ω ∈ Ω, let ηα be the element of the α-boundary Ωα, such that ω ∈ ηα. We denote by ναx,ω
the restriction of the measure νx to the set {ω′ ∈ Ω : ω′ ∈ ηα}. Since the set {ω′ ∈ Ω : ω′ ∈ ηα} can be
identified with the boundary of the tree T (ηα), then ναx,ω can be seen as the usual measure µx on ∂T (ηα).

Definition 6.3.3. Let x ∈ V̂(∆); we denote by Jαx,χ the following operator acting on the complex valued
functions f defined on Ω :

Jαx,χ(f)(ω0) =

∫
Ω

jαx,χ(ω0, ω) f(ω) dναx,ω0
(ω), ∀ω0 ∈ Ω.

Theorem 6.3.4. Assume that |χ(α∨)| < 1; then

(i) Jαx,χ1 = c(χ)1, where c(χ) is a non zero complex number.
(ii) Jαx,χ : L∞(Ω)→ L∞(Ω) is a bounded operator.

Proof. (i) Fix ω0 in Ω and let ηα = [ω0]α. By Definitions 6.3.1 and 6.3.3, we have

Jαx,χ1(ω0) =

∫
Ω

jαx,χ(ω0, ω) dναx,ω0
(ω) =

∫
[ω0]α

χχ
1/2
0 (Pα(ρω0(e) + ρω(e)− ρω0(x)− ρω(x))) dναx,ω0

(ω),

if e is a vertex in any apartment containing ω0 and ω.
Consider the tree T (ηα) and its boundary ∂T (ηα). According to notation of Section 5.2, we simply

denote by χ the character on the fundamental geodesic Γ0 of the tree, such that, for every n ∈ Z,
χ(Xn) = χ(Pα(λ)), if α ∈ R0,

χ(X2n) = χ(Pα(λ)), if α ∈ R2,
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if λ ∈ L̂ satisfies 〈λ, α〉 = n. Since we can identify the set [ω0]α with the boundary of the tree T (ηα) and
the measure ναx,ω0

can be seen as the usual measure µx on ∂T (ηα), we can write

Jαx,χ1(ω0) =

∫
∂T (ηα)

χ χ
1/2
0 (ρb0

(e) + ρb(e)− ρb0
(x)− ρb(x)) dµx(b),

if b0 is the boundary point of the tree corresponding to ω0, b is the boundary point of the tree corre-
sponding to ω, for every ω ∈ [ω0]α, and e is the vertex of the geodesic γ(b0,b) obtained as projection of

e on the tree T (ηα). For every x ∈ V̂(∆), let x be the vertex of the tree corresponding to x and denote
by Nx(b0,b) the distance of x from the geodesic [b0,b], that is the minimal distance of x from the set
{y ∈ V(T (ηα)) : y ∈ [b0,b]}. For every j ≥ 0, we set

Bj(x,b0) = {b ∈ ∂T (ηα) : Nx(b0,b) = j}.

Then, we can decompose ∂T (ηα), as a disjoint union, in the following way

∂T (ηα) = ∪jBj(x,b0).

We can easily compute µx(Bj(x,b0)), for every j ≥ 0. If α ∈ R0, the tree T (ηα) is homogeneous and

µx(B0(x,b0)) =
qα

qα + 1
and µx(Bj(x,b0)) =

qα − 1

qα + 1
q−jα for all j > 0.

Otherwise, if α ∈ R2, the tree T (ηα) is semi-homogeneous and we have

µx(B0(x,b0)) =
r

r + 1

µx(B2j(x,b0)) =
r − 1

(r + 1)
(pr)−j , for all j > 0

µx(B2j+1(x,b0)) =
p− 1

p(r + 1)
(pr)−j , for all j ≥ 0.

It is easy to see that, for every j ≥ 0,

ρb0
(e) + ρb(e)− ρb0

(x)− ρb(x) = X2j , for all b ∈ Bj(x,b0).

Thus

Jαx,χ1(ω0) =

∞∑
j=0

µx(Bj(x,b0) χ χ
1/2
0 (X2j).

Therefore, if α ∈ R0, then

Jαx,χ1(ω0) =
qα

qα + 1
χ χ

1/2
0 (0) +

∑
j≥1

qα − 1

qα + 1
q−jα χ χ

1/2
0 (X2j)

=
qα

qα + 1
+
qα − 1

qα + 1

∑
j≥1

q−jα qjα χ(2jX1) =
qα

qα + 1
+
qα − 1

qα + 1

∑
j≥1

(χ(X1))2j .

Analogously, if α ∈ R2, then

Jαx,χ1(ω0) =
r

r + 1
χ χ

1/2
0 (X0) +

∑
j≥1

r − 1

r + 1
(pr)−j χ χ

1/2
0 (X4j) +

∑
j≥1

r(p− 1)

r + 1
(pr)−j χ χ

1/2
0 (X4j−2)

=
r

(r + 1)
+
r − 1

r + 1

∑
j≥1

(pr)−j(pr)jχ(2jX2) +
r(p− 1)

r + 1

1
√
pr

∑
j≥1

(pr)−j(pr)jχ((2j − 1)X2)

=
r

(r + 1)
+

[
r − 1

r + 1
+
r(p− 1)

r + 1

1
√
pr
χ(−X2)

] ∑
j≥1

(χ(X2))2j .

Since χ(X2) = χ(α∨), and χ(X1) = χ1/2(α∨), then, if we assume |χ(α∨)| < 1, it follows that |χ(X1)| < 1,
if α ∈ R0, and that |χ(X2)| < 1, if α ∈ R2; hence the geometric series

∑
j≥1(χ(X1))2j and

∑
j≥1(χ(X2))2j

converge. Since the sum of these series does not depend on the choice of x and ω0, we have proved (i) by
setting

c(χ) =
qα

qα + 1
+
qα − 1

qα + 1

∑
j≥1

(χ(X1))2j , if α ∈ R0 ,

c(χ) =
r

(r + 1)
+

[
r − 1

r + 1
+
r(p− 1)

r + 1

1
√
pr
χ2(−X2)

] ∑
j≥1

(χ(X2))2j , if α ∈ R2 .
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(ii) The same argument, applied to the real character |χ|, shows that∫
Ω

∣∣jαx,χ(ω0, ω)
∣∣ dναx,ω0

(ω) = k(χ),

being k(χ) a real positive number. Hence, for any f ∈ L∞(Ω), and for every ω0 ∈ Ω,∣∣Jαx,χf(ω0)
∣∣ ≤ ||f ||∞ ∫

Ω

∣∣jαx,χ(ω0, ω)
∣∣ dναx,ω0

(ω) = k(χ) ||f ||∞.

This proves that Jαx,χf belongs to L∞(Ω) and that Jαx,χ is a bounded operator. ut

Remark 6.3.5. The constant c(χ) is different from 1 except in the case when χ = χ−1
0 .

Definition 6.3.6. Let x, y ∈ V̂(∆); we denote by Tχx,y the following operator acting on the complex valued
functions f defined on Ω :

Tχx,y(f)(ω) = Pχχ
−1
0 (x, y, ω) f(ω), ∀ω ∈ Ω.

For every x, y ∈ V̂(∆), the operator Tχx,y is bounded on the space L∞(Ω), because Pχχ
−1
0 (x, y, ·) is a

locally constant function on Ω.

Proposition 6.3.7. Assume |χ(α∨)| < 1. For every pair of vertices x, y ∈ V̂(∆),

Jαy,χ ◦ T
χχ

1/2
0

x,y = T
χsαχ

1/2
0

x,y ◦ Jαx,χ.

Proof. By Theorem 6.3.4, the assumption |χ(α∨)| < 1 assures that, for every pair x, y ∈ V̂(∆), the
operators Jαx,χ, J

α
y,χ are bounded on the space L∞(Ω). By Definitions 6.3.1, 6.3.3 and 6.3.6, for every

function f and for every boundary point ω0, we have(
T
χsαχ

1/2
0

x,y ◦ Jαx,χ
)
f(ω0) = Pχ

sαχ
−1/2
0 (x, y, ω0)

∫
Ω

jαx,χ(ω0, ω) f(ω) dναx,ω0
(ω)

=

∫
Ω

jαx,χ(ω0, ω) Pχ
sαχ

−1/2
0 (x, y, ω0) f(ω) dναx,ω0

(ω)

=

∫
Ω

jαx,χ(ω0, ω)

jαy,χ(ω0, ω)
jαy,χ(ω0, ω) Pχ

sαχ
−1/2
0 (x, y, ω0) f(ω)

dναx,ω0
(ω)

dναy,ω0
(ω)

dναy,ω0
(ω).

Definition 6.3.1 implies that, for any vertex e lying on any apartment containing ω0 and ω,

jαx,χ(ω0, ω)

jαy,χ(ω0, ω)
=
χχ

1/2
0 (Pα(ρω0

(e) + ρω(e)− ρω0
(x)− ρω(x))

χχ
1/2
0 (Pα(ρω0

(e) + ρω(e)− ρω0
(y)− ρω(y))

=
χχ

1/2
0 (Pα(−ρω0

(x)− ρω(x))

χχ
1/2
0 (Pα(−ρω0

(y)− ρω(y))
.

Moreover, according to definition of measure ναx,ω0
,

dναx,ω0
(ω)

dναy,ω0
(ω)

= χ0(Pα(ρω(x)− ρω(y)).

Therefore

jαx,χ(ω0, ω)

jαy,χ(ω0, ω)

dναx,ω0
(ω)

dναy,ω0
(ω)

=
χχ

1/2
0 (Pα(−ρω0

(x)− ρω(x))

χχ
1/2
0 (Pα(−ρω0(y)− ρω(y))

χ0(Pα(ρω(x)− ρω(y)))

=
χ(Pα(ρω(y)− ρω(x)))

χ(Pα(ρω0
(x)− ρω0

(y)))
χ

1/2
0 (Pα(ρω0

(y)− ρω0
(x))χ

−1/2
0 (Pα(ρω(y)− ρω(x))

=
χχ
−1/2
0 (Pα(ρω(y)− ρω(x)))

χsαχ
−1/2
0 (Pα(ρω0

(y)− ρω0
(x)))

.

Moreover, if we recall that Qα(ρω0
(y)− ρω0

(x)) = Qα(ρω(y)− ρω(x)) (see Proposition 4.4.2), we have

jαx,χ(ω0, ω)

jαy,χ(ω0, ω)

dναx,ω0
(ω)

dναy,ω0
(ω)

=
χχ
−1/2
0 (ρω(y)− ρω(x))

χsαχ
−1/2
0 (ρω0(y)− ρω0(x))

=
Pχχ

−1/2
0 (x, y, ω)

Pχ
sαχ

−1/2
0 (x, y, ω0)

.
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So we can conclude that(
T
χsαχ

1/2
0

x,y ◦ Jαx,χ
)
f(ω0) =

∫
Ω

jαy,χ(ω0, ω)
Pχχ

−1/2
0 (x, y, ω)

Pχ
sαχ

−1/2
0 (x, y, ω0)

Pχ
sαχ

−1/2
0 (x, y, ω0) f(ω) dναy,ω0

(ω)

=

∫
Ω

jαy,χ(ω0, ω) Pχχ
−1/2
0 (x, y, ω) f(ω) dναy,ω0

(ω) =

∫
Ω

jαy,χ(ω0, ω) T
χχ

1/2
0

x,y (f)(ω) dναy,ω0
(ω)

=

(
Jαy,χ ◦ T

χχ
1/2
0

x,y

)
f(ω0).

ut

6.4. W-invariance of the eigenvalues.

Theorem 6.4.1. For every character χ and for for every simple root α,

(6.4.1) Λχχ
1/2
0 = Λχ

sαχ
1/2
0 .

Proof. (i) At first assume |χ(α∨)| > 1. Then |χ−1(α∨)| < 1 and hence Theorem 6.3.4 implies that, for

every x, y ∈ V̂(∆), Jαx,χ−1 and Jαy,χ−1 are bounded operators on L∞(Ω). Therefore, applying Proposition

6.3.7, we get, for every x, y ∈ V̂(∆),

Jαy,χ−1 ◦ Tχ
−1χ

1/2
0

x,y 1(ω) = T
(χsα )−1χ

1/2
0

x,y ◦ Jαx,χ−11(ω), ∀ω ∈ Ω,

since (χsα)−1 = (χ−1)sα . Thus if we fix y ∈ V̂(∆) and, for every λ ∈ L̂, sum on all x such that σ(y, x) = λ,
we get, by linearity,

∑
x∈Vλ(y)

Jαy,χ−1 ◦ Tχ
−1χ

1/2
0

x,y 1(ω) = Jαy,χ−1 ◦
∑

x∈Vλ(y)

T
χ−1χ

1/2
0

x,y 1(ω) = Jαy,χ−1

 ∑
x∈Vλ(y)

Pχ
−1χ

−1/2
0 (x, y, ·)

 (ω)

and, if we recall that
∑
x∈Vλ(y) P

χ−1χ
−1/2
0 (x, y, ω) =

∑
x∈Vλ(y) P

χχ
1/2
0 (y, x, ω) = Λχχ

1/2
0 (λ), , for every

ω ∈ Ω, then∑
x∈Vλ(y)

Jαy,χ−1 ◦ Tχ
−1χ

1/2
0

x,y 1(ω) = Jαy,χ−1(Λχχ
1/2
0 (λ)1)(ω) = Λχχ

1/2
0 (λ) Jαy,χ−11(ω) = Λχχ

1/2
0 (λ) c(χ−1).

On the other hand,∑
x∈Vλ(y)

T
(χsα )−1χ

1/2
0

x,y ◦ Jαx,χ−11(ω) =
∑

x∈Vλ(y)

T
(χsα )−1χ

1/2
0

x,y (c(χ−1)1)(ω) = c(χ−1)
∑

x∈Vλ(y)

T
(χsα )−1χ

1/2
0

x,y 1(ω)

= c(χ−1)
∑

x∈Vλ(y)

P (χsα )−1χ
−1/2
0 (x, y, ω) = c(χ−1)

∑
x∈Vλ(y)

Pχ
sαχ

1/2
0 (y, x, ω) = c(χ−1)Λχ

sαχ
1/2
0 (λ).

Since c(χ−1) is a real number different from zero, the identity

c(χ−1) Λχχ
1/2
0 (λ) = c(χ−1) Λχ

sαχ
1/2
0 (λ)

implies Λχχ
1/2
0 (λ) = Λχ

sαχ
1/2
0 (λ), for every λ ∈ L̂.

(ii) Assume now |χ(α∨)| < 1. In this case |χsα(α∨)| > 1 and therefore, by (i),

Λχ
sαχ

1/2
0 = Λχ

s2αχ
1/2
0 = Λχχ

1/2
0 .

(iii) Finally, if |χ(α∨)| = 1, the required identity can be proved by a standard argument of continuity,
as the eigenvalue associated with a character χ depends continuously on χ, with respect to the weak
topology on the space Hom(L̂,C); actually, there exists a character χ′, with |χ′(α∨)| < 1, arbitrarily
closed to χ. ut

Since the reflections sα, α = αi, i = 1, . . . , n, generate W, we have the following

Corollary 6.4.2. For every character χ and for every w ∈W,

Λχχ
1/2
0 = Λχ

wχ
1/2
0 .
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6.5. Technical results about the Poisson transform. According to Definition 5.4.7, we denote by
Pχx the generalized Poisson transform of initial point x associated with the character χ. It will be useful
to analyze the relationship between the Poisson transform and the operators defined in Sections 6.3.

Proposition 6.5.1. For every pair x, y ∈ V̂(∆), and for every f ∈ L∞(Ω),

Pχy (Tχx,yf) = Pχx (f).

Proof. For every vertex z ∈ V̂(∆),

Pχy (Tχx,yf)(z) =

∫
Ω

Pχ(y, z, ω)Pχχ
−1
0 (x, y, ω)f(ω)dνy(ω)

=

∫
Ω

χ(ρω(z)− ρω(y)) χ(ρω(y)− ρω(x)) f(ω) χ0(ρω(x)− ρω(y)) dνy(ω)

=

∫
Ω

χ(ρω(z)− ρω(x)) f(ω)
dνx(ω)

dνy(ω)
dνy(ω) =

∫
Ω

Pχ(x, z, ω) f(ω) dνx(ω) = Pχx f(z).

ut

By Corollary 6.2.3, for every f ∈ L∞(Ω), Pχχ
1/2
0

x (f) and Pχ
sαχ

1/2
0

x (f) are eigenfunctions of the algebra

H(∆), associated with eigenvalues Λχχ
1/2
0 and Λχ

sαχ
1/2
0 respectively. On the other hand, by Theorem

6.4.1, Λχχ
1/2
0 = Λχ

sαχ
1/2
0 . Therefore, for every f ∈ L∞(Ω), Pχχ

1/2
0

x (f) and Pχ
sαχ

1/2
0

x (f) are eigenfunctions
associated to the same eigenvalue. If |χ(α∨)| < 1, the following theorem exhibits, for every f ∈ L∞(Ω),
a function g ∈ L∞(Ω) such that

Pχ
sαχ

1/2
0

x (g) = c(χ)Pχχ
1/2
0

x (f),

where c(χ) is the real non zero constant defined in Theorem 6.3.4.

Theorem 6.5.2. Assume that |χ(α∨)| < 1; then, for every x ∈ V̂(∆) and for every f ∈ L∞(Ω),

Pχ
sαχ

1/2
0

x (Jαx,χf) = c(χ)Pχχ
1/2
0

x (f).

Proof. (i) First of all we prove that

(6.5.1) Pχ
sαχ

1/2
0

x (Jαx,χf)(x) = c(χ) Pχχ
1/2
0

x (f)(x).

We notice that, being Pχ
sαχ

1/2
0 (x, x, ω) = 1,

Pχ
sαχ

1/2
0

x (Jαx,χf)(x) =

∫
Ω

Jαx,χf(ω0) dνx(ω0);

so, by Definition 6.3.3,

Pχ
sαχ

1/2
0

x (Jαx,χf)(x) =

∫
Ω

(∫
Ω

jαx,χ(ω0, ω) f(ω) dναx,ω0
(ω)

)
dνx(ω0)

and taking into account that, for every ω, the measure ναx,ω is the restriction of the measure νx to the
subset {ω′ ∈ Ω : ω′ ∈ [ω]α}, we obtain

Pχ
sαχ

1/2
0

x (Jαx,χf)(x) =

∫
Ω

(∫
Ω

jαx,χ(ω0, ω) f(ω) dνx(ω)

)
dνx(ω0),

if we set jαx,χ(ω0, ω) = 0, for ω /∈ [ω0]α. On the other hand,∫
Ω

(∫
Ω

jαx,χ(ω0, ω) f(ω) dνx(ω)

)
dνx(ω0) =

∫
Ω

(∫
Ω

jαx,χ(ω0, ω) dνx(ω0)

)
f(ω) dνx(ω),

since the integral is absolutely convergent. Therefore

Pχ
sαχ

1/2
0

x (Jαx,χf)(x) =

∫
Ω

(∫
Ω

jαx,χ(ω0, ω) dνx(ω0)

)
f(ω) dνx(ω)

=

∫
Ω

(∫
Ω

jαx,χ(ω, ω0) dνx(ω0)

)
f(ω) dνx(ω) =

∫
Ω

Jαx,χ1(ω) f(ω) dνx(ω)

= c(χ)

∫
Ω

f(ω) dνx(ω) = c(χ) Pχχ
1/2
0

x (f)(x).

(ii) Now assume y 6= x; by Proposition 6.5.1, we have

Pχx f(y) = Pχy (Tχx,yf)(y).
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Hence, if we apply (i), replacing x with y and f with Tχx,yf, we obtain

Pχ
sαχ

1/2
0

y (Jαy,χ(T
χχ

1/2
0

x,y f))(y) = c(χ) Pχχ
1/2
0

y (T
χχ

1/2
0

x,y f)(y) = c(χ) Pχχ
1/2
0

x f(y).

On the other hand, by Proposition 6.3.7,

Pχ
sαχ

1/2
0

y (Jαy,χ(T
χχ

1/2
0

x,y f))(y) = Pχ
sαχ

1/2
0

y (T
χsαχ

1/2
0

x,y (Jαx,χf))(y),

and applying again Proposition 6.5.1, we conclude that

Pχ
sαχ

1/2
0

x (Jαx,χf)(y) = c(χ) Pχx f(y).

ut

Remark 6.5.3. Theorem 6.5.2 provides a different proof of the identity Λχ
sαχ

1/2
0 = Λχχ

1/2
0 , when

|χ(α∨)| < 1. Actually, for every f ∈ L∞(Ω), the function Pχ
sαχ

1/2
0

x (f) is an eigenfunction of the algebra

H(∆) associated with the eigenvalue Λχ
sαχ

1/2
0 and, when |χ(α∨)| < 1, Jαx,χf belongs to L∞(Ω). Then

Aλ (Pχ
sαχ

1/2
0

x (Jαx,χf)) = Λχ
sαχ

1/2
0 Pχ

sαχ
1/2
0

x (Jαx,χf), ∀λ ∈ L̂.

On the other hand, for every f ∈ L∞(Ω), Pχχ
1/2
0

x (f) is an eigenfunction of the algebra H(∆) associated

with the eigenvalue Λχχ
1/2
0 , and therefore

Aλ (c(χ) Pχχ
1/2
0

x (f)) = Λχχ
1/2
0 c(χ) Pχχ

1/2
0

x (f), ∀λ ∈ L̂;

hence, by Theorem 6.5.2,

Aλ(Pχ
sαχ

1/2
0

x (Jαx,χf)) = Λχχ
1/2
0 Pχ

sαχ
1/2
0

x (Jαx,χf), ∀λ ∈ L̂.

So we have proved that, if |χ(α∨)| < 1, then, for every f ∈ L∞(Ω), Pχ
sαχ

1/2
0

x (Jαx,χf) belongs to the

eigenspaces associated to both the eigenvalues Λχ
sαχ

1/2
0 and Λχχ

1/2
0 . This implies that Λχ

sαχ
1/2
0 = Λχχ

1/2
0 .

7. Satake isomorphism

7.1. Convolution operators on A. In this section we consider the fundamental apartment A. The set

V̂(A) = L̂ can be identified with Zn, if n = |I0|; actually the Z-span of the vectors {λi, i ∈ I0} coincides

with Zn; then each λ ∈ L̂ can be identified with the element (m1, · · · ,mn) of Zn, if λ =
∑n
i=1 mi λi.

Hence L̂ inherits the structure of finitely generated free abelian group of Zn. We denote by L(L̂) the

C-algebra of all complex-valued functions on L̂, with finite support. Each function h in L(L̂) determines

a convolution operator on all functions on L̂; as usual, we set, for every function on L̂,

τh(F ) = h ? F.

Proposition 7.1.1. Every character χ on A is an eigenfunction of all operators τh, h ∈ L(L̂) :

(τhχ) = Θχ(h) χ, ∀h ∈ L(L̂),

with associated eigenvalue Θχ(h) =
∑
µ∈L̂ h(µ)χ(µ).

Proof. For every λ ∈ L̂, we can write

(τhχ)(λ) =
∑
µ∈L̂

h(µ)χ(λ+ µ) =

∑
µ∈L̂

h(µ)χ(µ)

 χ(λ).

ut

Proposition 7.1.2. Let h ∈ L(L̂); then

h = 0⇐⇒ Θχ(h) = 0 for all χ ∈ Hom(L̂,C×).
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Proof. There is a natural identification of L̂ with the group T of all translations tλ, λ ∈ L̂. Hence L(L̂)
is the algebra L(T ) defined by (1.1) of [8]. Using this identification and following notation of [8], the
mapping

h 7→
∑
λ∈L̂

h(λ) λ,

is a C-algebra isomorphism of L(L̂) onto the group algebra C[L̂] of L̂ over C. Since L̂ is a free abelian
group generated by the finite set {λ1, · · · , λn}, it follows that

C[L̂] = C[±λi, i = 1, · · · , n],

hence it is a commutative integral domain. Consequently C[L̂] is the coordinate ring of an affine algebraic

variety, say S, whose points are the C-algebra homomorphisms s : C[L̂] → C. The restriction of these

homomorphisms to L̂ gives a bijection of S onto X(L̂) = Hom(L̂,C×), and we shall identify X(L̂) with

S in this way. The elements of C[L̂] can therefore be regarded as functions on X(L̂). Hence, by the

Nullstellensatz, if η ∈ C[L̂],

η = 0⇐⇒ χ(η) = 0 for all χ ∈ X(L̂).

Keeping in mind the C-algebra isomorphism of L(L̂) onto C[L̂], each χ defines a homomorphism

L(L̂)→ C, namely

χ(h) =
∑
λ∈L̂

h(λ)χ(λ),

and we have

h = 0⇐⇒ χ(h) = 0, for all χ ∈ X(L̂).

On the other hand, for every h in L(L̂), χ(h) = Θχ(h), according to Proposition 7.1.1; hence

h = 0⇐⇒ Θχ(h) = 0, for all χ ∈ X(L̂).

ut

7.2. The Hecke algebra on A. The group W acts on L(L̂) in the following way: for every h ∈ L(L̂),

hw(λ) = (wh)(λ) = h(w−1(λ)), ∀λ ∈ L̂.

We denote by L(L̂)W the subring of L(L̂), consisting of all W-invariant functions in L(L̂), that is the

functions h in L(L̂) such that hw = h, for every w ∈W.

Proposition 7.2.1. For every h in L(L̂)W, the operator τh is W-invariant, i. e. for every w ∈W, and

for every function F on L̂,

τh(Fw) = (τhF )w.

Proof. Fix any w ∈W. For every function F, and for every λ, we write, using the W-invariance of h,

(τhF )(w−1(λ)) =
∑
µ∈L̂

h(µ) F (w−1(λ) + µ) =
∑
µ∈L̂

h(w(µ)) F (w−1(λ) + µ),

and by setting w(µ) = µ′,

(τhF )(w−1(λ)) =
∑
µ′∈L̂

h(µ′) F (w−1(λ) + w−1(µ′)) =
∑
µ′∈L̂

h(µ′) F (w−1(λ+ µ′))

=
∑
µ′∈L̂

h(µ′) Fw(λ+ µ′) = (τhF
w)(λ).

ut
We set

H(A) = {τh , h ∈ L(L̂)W}.
Obviously, H(A) is a C- algebra; following Humphreys ([6]), we call H(A) the Hecke algebra on A.

Proposition 7.1.1 implies that every character χ on L̂ is an eigenfunction of the whole algebra H(A).
We denote by Θχ the associated eigenvalue, that is the homomorphism from the algebra H(A) to C×
such that, for every operator τh ∈ H(A), Θχ(τh) is the eigenvalue associated to the eigenfunction χ of

the operator τh. Then, for every h ∈ L(L̂)W,

Θχ(τh) = Θχ(h) =
∑
µ∈L̂

h(µ)χ(µ).
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We notice that the restriction to L̂ of Θχ is the character χ. Keeping in mind this fact, we easily obtain
the following proposition.

Proposition 7.2.2. For every eigenvalue Θ of the Hecke algebra of A there exists a character χ on L̂
such that

Θ = Θχ.

Proof. For every λ ∈ L̂, let δλ be the function on L̂ such that δλ(λ) = 1 and δλ(µ) = 0, for every µ 6= λ.

Then each h ∈ L(L̂)W can be written as h =
∑
λ h(λ)δλ. Let Θ be any eigenvalue of H(A) and let χ be

its restriction to L̂, that is

χ(λ) = Θ(δλ), ∀λ ∈ L̂.
It is immediate to observe that χ belongs to X(L̂) and, for every h ∈ L(L̂)W, we have

Θ(h) =
∑
λ

h(λ)Θ(δλ) =
∑
λ

h(λ)χ(λ) = Θχ(h).

This implies that Θ = Θχ. ut

7.3. Operators Ãλ. Assume that ω is a fixed boundary point of the building. For every λ ∈ L̂+ and

for every vertex µ ∈ L̂, the number N(λ, µ), defined in (3.3.2) with respect to ω, does not depend on the
choice of ω.

For every λ ∈ L̂+, let hλ be the following function on L̂ :

hλ(µ) = χ
1/2
0 (µ) N(λ, µ), ∀µ ∈ L̂.

Since N(λ, µ) = 0 but for finitely many µ ∈ L̂, then hλ ∈ L(L̂).

Definition 7.3.1. For every λ ∈ L̂+, we denote by Ãλ the convolution operator associated with the
function hλ, that is

ÃλF (µ) = hλ ? F (µ) =
∑
µ′∈L̂

N(λ, µ′) χ
1/2
0 (µ′) F (µ+ µ′), ∀µ ∈ L̂,

for every function F on L̂.

Proposition 7.1.1 implies that every character χ on L̂ is an eigenfunction of the operator Ãλ, with
associated eigenvalue

Θχ(λ) = Θχ(hλ) =
∑
µ∈L̂

hλ(µ) χ(µ) =
∑
µ∈L̂

N(λ, µ) χ
1/2
0 (µ) χ(µ).

If we recall the expression of the eigenvalue Λχ(λ) of the operator Aλ ∈ H(∆) given in Section 6, it is
obvious that

(7.3.1) Θχ(λ) = Λχχ
1/2
0 (λ).

Now we can prove that, for every λ ∈ L̂+, the function hλ belongs to L(L̂)W.

Proposition 7.3.2. For every w ∈W, then hλ = hwλ .

Proof. Since the Weyl group W is generated by reflections sα, α ∈ B, we only need to prove that

hλ = hsαλ , for every simple root α. Fix any sα and consider, for every µ ∈ L̂, the function

hsαλ (µ) = χ
1/2
0 (sα(µ))N(λ, sα(µ)), ∀µ ∈ L̂.

For every character χ and every µ ∈ L̂, we have

hλ ? χ(µ) = Θχ(hλ) χ(µ), hsαλ ? χ(µ) = Θχ(hsαλ ) χ(µ).

On the other hand, as we have noticed before,

Θχ(hλ) =
∑
µ∈L̂

N(λ, µ) χ
1/2
0 (µ) χ(µ) = Λχχ

1/2
0 (λ)

and, by setting µ′ = sα(µ),

Θχ(hsαλ ) =
∑
µ∈L̂

N(λ, sα(µ)) χ
1/2
0 (sα(µ)) χ(µ) =

∑
µ′∈L̂

N(λ, µ′)χ
1/2
0 (µ′)χsα(µ′) = Λ

(χsα )χ
1/2
0

λ .

Thus, Theorem 6.4.1 implies Θχ(hsαλ ) = Θχ(hλ), for every χ. So hλ = hsαλ , by Proposition 7.1.2. ut
As an obvious consequence of Proposition 7.2.1 and Proposition 7.3.2, we obtain
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Corollary 7.3.3. For every λ ∈ L̂+, the operator Ãλ belongs to the Hecke algebra H(A).

Proposition 7.3.4. The operators Ãλ, λ ∈ L̂+, form a C-basis of H(A).

Proof. We only need to show that the functions hλ, λ ∈ L̂+, form a C-basis of L(L̂)W. For each λ ∈ L̂+,

let ξλ be the characteristic function of the W-orbit of λ. Then the functions ξλ, as λ runs through L̂+,

form a C-basis of L(L̂)W. Hence, we can write, summing on all λ′ in L̂+,

hλ =
∑
λ′

hλ(λ′) ξλ′ .

Since N(λ, λ) = 1, then hλ(λ) = χ
1/2
0 (λ). Consequently the previous sum takes the form

hλ = χ
1/2
0 (λ) ξλ +

∑
λ′ 6=λ

hλ(λ′) ξλ′

and in this sum hλ(λ′) = 0, but for λ′ ∈ Πλ. Since χ
1/2
0 (λ) 6= 0, we conclude that the hλ form a C-basis

of L(L̂)W. ut

Definition 7.3.5. For every λ ∈ L̂+, let gλ be the function of L(L̂), defined as gλ(µ) = N(λ, µ), for

every µ ∈ L̂. We denote by Bλ the following operator acting on the complex-valued functions F on L̂ :

BλF (µ) = gλ ? F (µ) =
∑
µ′∈L̂

N(λ, µ′) F (µ+ µ′), ∀µ ∈ L̂.

We notice that the operator Bλ is linear and invariant with respect to any translation in A, as their
coefficients N(λ, µ′) do not depend on µ. However, Bλ is not W-invariant, because gλ does not belong

to L(L̂)W, as N(λ, µ) 6= N(λ,w−1µ) for w ∈ W different from the identity. The following proposition
relates the operator Bλ to the operator Aλ.

Proposition 7.3.6. For every function F on L̂, let

f(x) = F (ρω(x)), for every x ∈ V̂(∆).

Then, for every λ ∈ L̂+,
Aλf(x) = BλF (µ), if µ = ρω(x).

Proof. By definition of Aλ, we can write, for every function f,

Aλ(f)(x) =
∑

y∈Vλ(x)

f(y) =
∑
ν∈L̂

 ∑
{y:σ(x,y)=λ, ρω(y)=ν}

f(y)

 .

In the case when f(x) = F (ρω(x)), then, for every ν ∈ L̂, f(y) = F (ν), for all y such that ρω(y) = ν.
Hence, by setting µ = ρω(x) and µ+ µ′ = ν, we have

Aλ(f)(x) =
∑
µ′∈L̂

N(λ, µ′)F (µ+ µ′) = BλF (µ).

ut
The operators Bλ and Ãλ are related by simple relations, as the following proposition states.

Proposition 7.3.7. For every λ ∈ L̂+ and every function F,

ÃλF = χ
−1/2
0 Bλ(χ

1/2
0 F ), BλF = χ

1/2
0 Ãλ(χ

−1/2
0 F ).

Proof. For every µ ∈ L̂, we have, by Definitions 7.3.1 and 7.3.5,

(ÃλF )(µ) =
∑
µ′∈L̂

N(λ, µ′) χ
1/2
0 (µ′) F (µ+ µ′) = χ

−1/2
0 (µ)

∑
µ′∈L̂

N(λ, µ′) χ
1/2
0 (µ+ µ′) F (µ+ µ′)

= χ
−1/2
0 (µ) Bλ(χ

1/2
0 F )(µ).

Moreover

(BλF )(µ) =
∑
µ′∈L̂

N(λ, µ′) F (µ+ µ′) = χ
1/2
0 (µ)

∑
µ′∈L̂

N(λ, µ′) χ
1/2
0 (µ′)χ

−1/2
0 (µ+ µ′) F (µ+ µ′)

= χ
1/2
0 (µ)

∑
µ′∈L̂

N(λ, µ′) χ
1/2
0 (µ′)(χ

−1/2
0 F )(µ+ µ′) = χ

1/2
0 (µ) Ãλ(χ

−1/2
0 F )(µ).

ut
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7.4. Satake isomorphism. Consider the mapping

i : Aλ → Ãλ, for all λ ∈ L̂+.

Since {Aλ, λ ∈ L̂+} is a basis for the algebra H(A), we extend this map to the whole Hecke algebra
H(∆) by linearity. We shall prove that i : H(∆)→ H(A) is a C-algebra isomomorphism.

Theorem 7.4.1. The mapping i : Aλ → Ãλ is a C-algebra isomorphism of H(∆) onto H(A).

Proof. First of all, we prove that i is a C-algebra homomorphism from H(∆) to H(A). By definition,

if A =
∑k
j=1 cj Aλj , then

i(A) =

k∑
j=1

cji(Aλj ) =

k∑
j=1

cjÃλj .

Consider now, for any pair λ, λ′ ∈ L̂+, the operator Aλ ◦Aλ′ and prove that

i(Aλ ◦Aλ′) = i(Aλ) ◦ i(Aλ′).

We know that Aλ ◦Aλ′ is a linear combination of operators Aλ1
, · · · , Aλk , for convenient λ1, · · · , λk :

(Aλ ◦Aλ′)f =
k∑
j=1

cjAλjf.

Hence, i(Aλ ◦Aλ′) = τhλ,λ′ , if hλ,λ′ is the W-invariant function on L̂, defined as

hλ,λ′ =

k∑
j=1

cjhλj .

This proves that i(Aλ ◦Aλ′) belongs to the algebra H(A).
Now we prove that, for every pair λ, λ′,

i(Aλ ◦Aλ′) = i(Aλ) ◦ i(Aλ′).

To this end, we consider, for every character χ, the eigenvalue Θχ(hλ,λ′); for ease of notation, we set

Θχ(λ, λ′) = Θχ(hλ,λ′). Since τhλ,λ′ =
∑k
j=1 cjτhλj , we have

Θχ(λ, λ′) =

k∑
j=1

cjΘ
χ(λj).

Therefore, keeping in mind (7.3.1),

Θχ(λ, λ′) =

k∑
j=1

cjΛ
χχ

1/2
0 (λj) = Λχχ

1/2
0 (Aλ ◦Aλ′) = Λχχ

1/2
0 (λ) Λχχ

1/2
0 (λ′) = Θχ(λ) Θχ(λ′).

So we have

Θχ(i(Aλ ◦Aλ′)) = Θχ(i(Aλ))Θχ(i(Aλ′)) = Θχ(i(Aλ) ◦ i(Aλ′)),

for every χ. Thus Proposition 7.1.2 implies that i(Aλ ◦ Aλ′)) = i(Aλ) ◦ i(Aλ′). This proves that i is a
C-algebra homomorphism from H(∆) to H(A).

Since the operators Aλ form a C-basis of H(∆) and, according to Proposition 7.3.4, the operators

Ãλ = i(Aλ) form a C-basis of H(A), it follows immediately that the operator i is a bijection from the
algebra H(∆) onto the algebra H(A). ut

We shall call the operator i the Satake isomorphism between H(∆) and H(A).

7.5. Characterization of the eigenvalues of the algebra H(∆). We proved in Section 7.1 that,
for every eigenvalue Θ of the algebra H(A) there exists a character χ, such that Θ = Θχ. The Satake
isomorphism between H(∆) and H(A) allows us to extend this characterization to the eigenvalues of the
algebra H(∆).

Corollary 7.5.1. For every eigenvalue Λ of the algebra H(∆) there exists a character χ on L̂ such that

Λ = Λχχ
1/2
0 .
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Proof. Let Λ be an eigenvalue of the algebra H(∆). By Theorem 7.4.1, there exists a unique eigenvalue
Θ ∈ Hom(H(A),C), such that

Θ(λ) = Λ(λ), for every λ ∈ L̂+.

Since, by Proposition 7.2.2, there exists a character χ such that Θ = Θχ, and taking in account the

identity (7.3.1), we conclude that Λ = Λχχ
1/2
0 . ut
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