EIGENVALUES OF THE VERTEX SET HECKE ALGEBRA OF AN AFFINE
BUILDING
A. M. MANTERO AND A. ZAPPA

ABSTRACT. The aim of this paper is to describe the eigenvalues of the vertex set Hecke algebra of an
affine building. We prove, by a direct approach, the invariance (with respect to the Weyl group) of
any eigenvalue associated to a character. Moreover we construct the Satake isomorphism of the Hecke
algebra and we prove, by this isomorphism, that every eigenvalue arises from a character.

1. INTRODUCTION

The aim of this paper is to discuss the eigenvalues of the vertex set Hecke algebra H(A) of any affine
building A, using only its geometric properties. We avoid making use of the structure of any group acting
on A.

To every multiplicative function y on the fundamental apartment A of the building we associate an
eigenvalue A, that can be expressed in terms of the Poisson kernel relative to the character x. We
prove the invariance of the eigenvalue A, with respect to the action of the finite Weyl group W on the
characters. Moreover we prove that every eigenvalue arises from a character. Following the method used
by Macdonald in his paper [8], the basic tool we use to obtain this characterization is the definition of
the Satake isomorphism between the algebra H(A) and the Hecke algebra of all W-invariant operators
on the fundamental apartment A.

Our approach strongly depends on the definition of an a-boundary €, for every simple root «. Indeed
we associate to every point of € a tree, called tree at infinity, and we define the a-boundary 2, as the
collection of all such isomorphic trees. Thus we can show that the maximal boundary splits as the product
of Q, and the boundary 9T of the tree at infinity, and so any probability measure on 2 decomposes as
the product of a probability measure on €2, and the standard measure on 0T.

Our goal is to present a proof of the results which puts the geometry of the building front and center.
Since we intend to address a non-specialized audience, we make use of a language that reduces to a
minimum the algebraic knowledge required about affine buildings. This makes the paper as self-contained
as possible. Hence we give, without claim of originality except possibly in the presentation, the main
results about buildings and their maximal boundary 2.

In a forthcoming paper we will use our results here to construct the Macdonald formula for the spherical
functions on the building.

For buildings of type EQ, B, and Gs the eigenvalues of the algebra H(A) are described in detail in
[10], [11] and [12] respectively.

We point out that an exhaustive presentation of the features of an affine building and its maxi-
mal boundary can be found in the paper [13] of J. Parkinson. Moreover the same author obtains in
[14] the results about the eigenvalues of the algebra H(A), by expressing all algebra homomorphisms
h @ H(A) — Cin terms of the Macdonald spherical functions.

2. AFFINE BUILDINGS

In this section we collect the fundamental definitions and properties concerning buildings and we fix
notation we shall use in the following. Our presentation is based on [3], [15] and [16] and we refer the
reader to these books for more details about the argument. We also point out the paper [13] for a similar
presentation about buildings.
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2.1. Labelled chamber complexes. A simplicial complex (with vertex set V) is a collection A of finite
subsets of V (called simplices) such that every singleton {v} is a simplex and every subset of a simplex
A is a simplex (called a face of A).The cardinality r of A is called the rank of A, and r — 1 is called the
dimension of A. Moreover a simplicial complex is said to be a chamber complex if all maximal simplices
have the same dimension d and any two can be connected by a gallery, that is by a sequence of maximal
simplices in which any two consecutive ones are adjacent, that is have a common codimension 1 face.
The maximal simplices will then be called chambers and the rank d + 1 (respectively the dimension d)
of any chamber is called the rank (respectively the dimension) of A. The chamber complex is said to be
thin (respectively thick) if every codimension 1 simplex is a face of exactly two chambers (respectively at
least three chambers).

A labelling of the chamber complex A by a set [ is a function 7 which assigns to each vertex an element
of I (the type of the vertex), in such a way that the vertices of every chamber are mapped bijectively
onto I. The number of labels or types used is required to be the rank of A (that is the number of vertices
of any chamber), and joinable vertices are required to have different types. When a chamber complex A
is endowed by a labelling 7, we say that A is a labelled chamber complex. For every A € A, we will call
7(A) the type of A, that is the subset of I consisting of the types of the vertices of A; moreover we call
I\ 7(A) the co-type of A.

A chamber system over a set I is a set C, such that each i € I determines a partition of C, two elements
in the same class of this partition being called i-adjacent. The elements of C are called chambers and
we write ¢ ~; d to mean that the chambers ¢ and d are i-adjacent. Then a labelled chamber complex
is a chamber system over the set I of the types and two chambers are i-adjacent if they share a face of
co-type 1.

2.2. Coxeter systems. Let W be a group (possibly infinite) and S be a set of generators of W of order
2. Then W is called a Cozeter group and the pair (W,S) is called a Coxeter system, if W admits the
presentation

(S5 (sty™ ) = 1),

where m(s,t) is the order of st and there is one relation for each pair s,t, with m(s,t) < co. We shall
assume that S is finite, and denote by IV the cardinality of S; then, if I is an arbitrary index set with
|I| = N, we can write S = (s;);er and

W = ((si)ier ; (sis;)™7 = 1),

where m(s;s;) = m;;. When w € W is written as w = s;,8;, - - - Si,,, with 4; € I and &k minimal, we say
that the expression is reduced and we call length |w| of w the number k. The matrix M = (m;;); jer, with
entries m;; € Z U {oo}, is called the Cozeter matriz of W. We shall represent M by its diagram D : the
nodes of D are the elements of I (or of ) and between two nodes there is a bond if m;; > 3, with the
label m;; over the bond if m;; > 4. We call D the Cozeter diagram or the Cozeter graph of W. We often
say that W has type M, if M is its Coxeter matrix.

2.3. Coxeter complexes. Let (W, S) be a Coxeter system, with S = (s;);e; finite. We define a special
coset to be a coset w(S’), with w € W and S’ C S, and we define ¥ = X(W, S) to be the set of special
cosets, partially ordered by the opposite of the inclusion relation: B < A in ¥ if and only if B D A as
subsets of W, in which case we say that B is a face of A. The set X is a simplicial complex; moreover it
is a thin, labellable chamber complex of rank N = card S and the W-action on ¥ is type-preserving. We
remark that the chambers of ¥ are the elements of W and, for each ¢ € I, w ~; w’ means that w’ = ws; or
w’ = w. Following Tits, we shall call ¥ the Cozeter complex associated to (W, S), or the Cozeter complex
of type M, if M is the Coxeter matrix of W.

2.4. Buildings. Let (W, S) be a Coxeter system, and let M = (m;;); jer its Coxeter matrix. A building
of type M (see Tits [16]) is a simplicial complex A, which can be expressed as the union of subcomplexes
A (called apartments) satisfying the following axioms:

(Bp) each apartment A is isomorphic to the Coxeter complex (W, S) of type M of W;

(B;) for any two simplices A, B € A, there is an apartment A(A, B) containing both of them;

(Bs2) if A and A’ are two apartments containing A and B, there is an isomorphism 4 — A’ fixing A

and B point-wise.

Hence each apartment of A is a thin, labelled chamber complex over I of rank N = |I|. It can be proved
that a building of type M is a chamber system over the set I with the properties:

(i) for each chamber ¢ € A and i € I, there is a chamber d # ¢ in A such that d ~; ¢;
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(ii) there exists a W-distance function
0: AXA—->W
such that, if f=14; - - -4 is a reduced word in the free monoid on I and wr = s;, - --s;, € W, then
0(e,d) = wr
when ¢ and d can be joined by a gallery of type f. We write d = ¢ - d(c,d).

Actually it can be proved that each chamber system over a set I satisfying these properties is in fact
a building.

To ensure that the labelling of A and (W, S) are compatible, we assume that the isomorphisms in
(Bo) and (Bz) are type-preserving; this implies that the isomorphism in (Bz) is unique. We write C(A)
for the chamber set of A. We call rank of A the cardinality N of the index set I.

We always assume that A is irreducible, that is the associated Coxeter group W is irreducible (that is
its Coxeter graph is connected). Moreover we confine ourselves to consider thick buildings.

2.5. Regularity and parameter system. Let A be a (irreducible) building of type M, with associated
Coxeter group W over index set I, with |I| = N. We say that A is locally finite if
Hd € C(A), c~; d}| < oo, Viel, VeeC(A).
Moreover we say that A is regular if this number does not depend on the chamber ¢. We shall assume
that A is locally finite and regular. Since, for every i € I, the set
Ci(c) ={d eC(A), c~;d}
has a cardinality which does not depend on the choice of the chamber ¢, we put
q; = |Cl(c)|; Ve € C(A)
The set {g; }ier is called the parameter system of the building. We notice that the parameter system has
the following properties (see for instance [13] for the proof):
(1) ¢ = q;, whenever m,; ; < oo is odd;
(i) if s; = ws;w™?!, for some w € W, then ¢; = ¢;.
The property (ii) implies (see [2]) that, for w € W, the monomial ¢;, - - - ¢;,, is independent of the particular
reduced decomposition w = s;, - - - s;, of w. So we define, for every w € W,
Guw = iy~ iy,
is any reduced expression for w. If we set, for every ¢ € C(A) and every w € W,

Cw(c) = {d € C(A)’ 6(05 d) = w},

if Siq 0 Siy,

it can be proved that
|Cw<C)| =qw = qil o 'Qik7
whenever w = s;, - -+ s;, is a reduced expression for w. Hence the cardinality of the set Cy(c) does not
depend on the choice of the chamber ¢. Obviously, ¢, = q,-1.
If U is any finite subset of W, we define

U(Q) = Z Qu

welU

and we call it the Poincaré polynomial of U.

2.6. Affine buildings. According to [2], W is called an affine reflection group if W is a group of affine
isometries of a Euclidean space V (of dimension n > 1) generated by reflections sg, where H ranges over
a set locally finite H of affine hyperplanes of V, which is W-invariant. We also assume W infinite. It is
known that an affine reflection group is in fact a Coxeter group, because it has a finite set S of n + 1
generators and admits the presentation

(85 (sty™t>t) = 1),

A building A (of type M) is said affine if the associated Coxeter group W is an affine reflection group.
It is well known that each affine reflection group can be seen as the affine Weyl group of a root system.
So we can define an affine building as a building associated to the affine Weyl group of a root system.

For the purpose of fixing notation, we shall give a brief discussion of root systems and its affine Weyl
group, and we shall describe the geometric realization of the Coxeter complex associated to this group.
We refer to [2] for an exhaustive reference to this subject.
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2.7. Root systems. Let V be a vector space over R, of dimension n > 1, with the inner product (-, ).
For every v € V\ {0} we define
v 2v

O
Let R be an irreducible, but not necessarily reduced, root system in V ( see [2]). The elements of R
are called roots and the rank of R is n.
Let B ={wy, i € Ip} be a basis of R, where Iy = {1,--- ,n}. Thus B is a subset of R, such that

(i) B is a vector space basis of V;
(ii) each root in R can be written as a linear combination

Z kiai;

i€ly

with integer coefficients k; which are either all nonnegative or all nonpositive.

The roots in B are called simple. We say that o € R is positive (respectively negative) if k; > 0,Vi € I
(respectively k; < 0,Vi € Iy). We denote by RT (respectively R™) the set of all positive (respectively
negative) roots. Thus R~ = —R" and R = R* U R~ (as disjoint union). Define the height (with respect

to B) of a=>"._; k;a; by

i€ly

i€l

There exists a unique root oy € R whose height is maximal, and if we wright ag = >
m; > k; for every root a =}, ki in particular m; > 0, Vi € Io (see [2]).

The set RV = {aV, o € R} is an irreducible root system, which is reduced if and only if R is. We call
RY the dual (or inverse) of R and we call co-roots its elements.

For each o € R, we denote by H, the linear hyperplane of V defined by (v,a) = 0 and we denote
by Ho the family of all linear hyperplanes H,. For every a € R, let s, be the reflection with reflecting
hyperplane H,; we denote by W the subgroup of GL(V) generated by {s., « € R}. W permutes the set
R and is a finite group, called the Weyl group of R. Note that W(R) = W(RY).

The hyperplanes in Hg split up V into finitely many regions; the connected components of V \ U, H,,
are (open) sectors based at 0, called the (open) Weyl chambers of V (with respect to R). The so called
fundamental Weyl chamber or fundamental sector based at 0 (with respect to the basis B) is the Weyl
chamber

ie1, M, then

Qo={veV : (v,a;) >0, i€}
It is known that
(i) W is generated by Syp = {s; = Sa,, ¢ € Ip} and hence (W, .Sp) is a finite Coxeter system;
(ii) W acts simply transitively on Weyl chambers;
(iii) Qp is a fundamental domain for the action of W on V.

Moreover, for every w € W, we have |w| = n(w), if n(w) is the number of positive roots a for which
w(a) < 0. We recall that at most two root lengths occur in R, if R is reduced, and all roots of a given
length are conjugate under W. When there are in R two distinct root lengths, we speak of long and short
roots. In this case, the highest root aq is long.

The root system (or the associated Weyl group) can be characterized by the Dynkin diagram, which
is the usual Coxeter graph Dy of the group W, where we add an arrow pointing to the shorter of the
two roots. We refer to [2] for the classification of (irreducible) root systems. We notice that, for every
n > 1, there is exactly one irreducible non-reduced root system (up to isomorphism) of rank n, denoted
by BC,. If we take V = R", with the usual inner product, the root system BC), is the following:

R = {%ey, £2e;, 1 <k<n}U{te,+e;, 1 <i<j<n}
Hence we can choose B = {«;, 1 <i<n} ifa; =e; —ej41,1 <i<n-1and a, = e,. Moreover
RT = {es, 2es, I1<k<njuU{e;te;, 1<i<j<n}

and ap = 2e;. In this case RY = R and W(BC,,) = W(C,,) = W(B,).
It will be useful to decompose R = R1 U Ry U Ry, as disjoint union, by defining

Ri={a€eR: «/2€ R, 2a¢ R}

Ry={a€eR: «/2¢R,2a € R}

Ry={a€eR: «a/2,2a¢ R}.
Then ap € Ry, ap € Ry, and o; € Ry, Vi=1,--- ,n — 1, and W stabilizes each R;.
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The Z-span L(R) of the root system R is called the root lattice of V and L(RY) is called the co-root
lattice of V associated to R. Notice that L(BC,,) = L(C,) = L(B,/). We simply denote by L the co-root
lattice of V associated to R. Moreover we set

LT ={ Z Na, ng € N}

a€Rt

2.8. Affine Weyl group of a root system. Let R be an irreducible root system, not necessarily
reduced. For every a € R and k € Z, define an affine hyperplane

HF ={veV : (v,a)=k}.
We remark that H* = H=F and H? = H,; moreover H* can be obtained by translating H? by %av.

When R is reduced we define H = Uye g+ H (), where, for every a € RT,
H(a) = {HF, for all k € Z}.

When R is not reduced, we note that, for every o € Ry, H¥ = HZ*; then we define
Hy={HF : acRy, kec2Z+1}
Ho={HF : acRy keZ}
Ho={HE : acRy, keZl,

and H = H; U Ha U Ho, as disjoint union. Since Hi UHa = {HF, a € Ry, k € Z}, we can write
H = Uaer,ur, H(a),

by setting, for every a € Ry or a € Ry, H(a) = {HEF, for all k € Z}, as in the reduced case. Actually,
Ry U Ry is the root system of type C,, and the hyperplanes described before are these associated with
this reduced root system.

Given an affine hyperplane H* € H, the affine reflection with respect to H” is the map s® defined by
sf(w)=v— ((v,a) —k)a¥, YweV.

[e3%

The reflection s* fixes H* and sends 0 to ka; in particular s = s,, Va € R. We denote by S the set of
all affine reflections defined above. We define the affine Weyl group W of R to be the subgroup of Aff(V)
generated by all affine reflections s®, o € R, k € Z. (Here Aff(V) is the set of maps v+ Tv + A, for all
T e GL(V) and A € V).

Let so = ngo and I = Iy U {0}; then it can be proved that W is a Coxeter group over I, generated
by the set S = {s;, i € I'}. Writing ¢, for the translation v — v + A, we can consider V as a subgroup
of Aff(V), by identifying A and ¢x. In this sense we have Aff(V) = GL(V) x V. In the same sense, if we
consider the affine Weyl group W, the co-root lattice L can be seen as a subgroup of W, since ty, A € L,
are the only translations of V belonging to W, and we have

W =W x L.

We point out that W(BC,,) = W(C,,), whereas W(BC,,) D W(B,,). Hence we can write each w € W in
a unique way as w = wty, for some w € W and A € L; moreover, if w; = wity, and wy = wat),, then
Wy Lwy € L if and only if w; = wo. This implies that there is a bijection between the quotient W/L and
W, in the sense that each coset wL determines a unique w € W. So we denote by w the coset whose
representative in W is w, and we shall write w € w to intend that w = wt, for some A\ € L.

It is not difficult to construct, for each irreducible root system R, the Coxeter graph D of the affine
Weyl group W; one just needs to work out the order of s;sq, for each i € I, to see what new bonds and
labels occur when the new node is adjoined to the Coxeter graph Dy of W that is of R. We refer to [6]
for the classification of all affine Weyl groups.

2.9. Co-weight lattice. Following standard notation, we call weight lattice of V associated to the root
system R the Z-span L(R) of the vectors {\}, i € Ip}, defined by (A}, ) = d;; and we call L(R") the

co-weight lattice of V associated to the root system R. We simply set L= E(RV). Then L is the Z-span
of the vectors {)\;, i € Iy}, defined by

<>‘i705j>:5ij7 Vi,5 € l.
It is easy to see that, when R is reduced, L contains L as a subgroup of finite index f, the so called index

of connection, with 1 < f < n + 1. Instead, when R is non reduced, that is when R has type BC,,, then
L(BC,) = L(BC,,); thus, in this case

L(C,) = L(BC,) = L(BC,) € L(C,).
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A co-weight A is said dominant (respectively strongly dominant) if (X, ;) > 0 (respectively (A, a;) > 0)
for every i € Iy. We denote by Lt (resp. E**) the set of all dominant (respectively strongly dominant)
co-weights. Thus A € L if and only if A € Qy and A € L+ if and only if A € Qp. Remark that L* does
not lie on L+ and L+ N L+ consists of all dominant coweights of type 0.

2.10. Geometric realization of an affine Coxeter complex. Let W be the affine Weyl group of a
root system R; let H be the collection of the affine hyperplanes associated to W. The open connected
components of V\U,, ;. H, ¥ are called chambers. Since R is irreducible, each chamber is an open (geometric)
simplex of rank n+1 and dimension n. The extreme points of the closure of any chamber are called vertices
and the 1 codimension faces of any chamber are called panels.

We write A = A(R) for the vector space V equipped with chambers, vertices, panels as defined above.
Hence A is a geometric simplicial complex of rank n + 1 and dimension n, realized as a tessellation of the
vector space V in which all chambers are isomorphic.

It is convenient to single out one chamber, called fundamental chamber of A, in the following way:

Co={veV :0<{va)<l,Vae RT}={veV : (va;) >0, Vi€ ly, (v,ap)<1}.

Define walls of Cy the hyperplanes H,,, ¢ € Ip and H(leQ then the group W is generated by the set of the
reflections with respect to the walls of the fundamental chamber Cj.

We denote by C(A) the set of chambers and by V(A) the set of vertices of A. It can be proved that W
acts simply transitively on C(A) and Cj is a fundamental domain for the action of W on V. Moreover W
acts simply transitively on the set C(0) of all chambers C, such that 0 € C. Hence, we have well-defined
walls for each chamber C € C(A) : the walls of C' are the images of the walls of Cy under w, if C = wCy.
If we declare wCy ~; wCy and wCy ~; ws; Cy, for each w € W and each ¢ € I, then the map

w — wCy

is an isomorphism of the labelled chamber complex of W onto C(A). For every w € W, we set C,, = wCy.
The vertices of Cp are X0, X?, ..., X2, where X§ = 0 and X? = X\;/m,, i € I,.

We declare 7(0) = 0 and 7(X\;/m;) = i, for i € Ip; more generally we declare that a vertex X of A has
type i, i € I, if X = w(X?) for some w € W. This define a unique labelling

T:V(A) =1,

and the action of W on A is type-preserving. We say that a panel of Cy has co-type ¢, for any i € I, if 7 is
the type of the vertex of Cy not lying on the panel; this extends to a unique labelling on the panels of A.

Hence, if we consider the Coxeter complex (W, S) associated to the affine Weyl group W, there is
a unique isomorphism type-preserving of (W, S) onto A; thus A may be regarded as the geometric
realization of X; up to this isomorphism, the co-root lattice L consists of all type 0 vertices of A and
W acts on L. We point out that, for every w € W, the chamber C,, can be joined to Cy by a gallery
¥(Co, Cy) of type f =iy --ig, if w = 84, ---s;,; so, recalling the definition of the W-distance function
given in Section 2.4, we have w = §(Cy, C,,). This suggests to denote by Cj - w, the chamber C,.

According to [2], a vertex X is a special vertez of A if, for every a € R, there exists k € Z such that
X € HF. In particular the vertex 0 is special and hence every vertex of type 0 is special, but in general
not all vertices of A are special. We shall denote by V,(A) the set of all special vertices of A. We point
out that, when R is reduced, Vs, (A) = L. More precisely , if R has type A,, all n + 1 types are special;
furthermore, if R has type D,, Fs and G, occur respectively four, three and only one special type; in
all other cases the special types are two. In particular, if R has type B, or C,,, the special vertices have
type 0 or n. We refer the reader to [6] for more details.

Remark 2.10.1. When R has type C,, and a = «,, then all vertices of type 0 lie on hyperplanes H2*,
for k € Z, whereas all vertices of type n lie on hyperplanes H2k1 for k € Z. Actually, the reflection sq,
fizes each hyperplane H! and the panel of co-type n, containing 0, of the hyperplane Hgo and, for every
7, the reflection with respect to Hg;o fizes its panel and each hyperplane H". The same is true for every
long root. If R has type B,, the previous property holds for each simple root « = «;, i=1,--- ,n—1, and
then for every long root.

When R is non reduced, the Coxeter complex (W, S) associated to the root system of type BC,, has
the same geometric realization as the one associated to the root system of type C,,. Then the special types
are type 0 and type n, and they are arranged according to Remark 2.10.1. Since E(BC’n) = L(BC,,), the
lattice Z(BCn) is a proper subset of V,,(A) and it consists of all type 0 vertices, lying on the hyperplanes
HZ* for k € Z and i = 0,n.
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In general we denote by ﬁ(A) the set of all spec1al vertices of A belonging to L SO V( ) inherits the
group structure of L. If we define I := {’T( )t A€ L}, then V( ) is the set of all special vertices of A
whose type belongs to 1. We remark that I = {i €I : m; =1}. See [13] for a proof of this property.

For every A € LT, we define
W,={weW : wh=\}L
If X, is the special vertex of A associated with A\ and C), is the chamber containing X in the minimal
gallery connecting Cy to X, that is the chamber of Qg containing X and nearest to Cy, then the set W,
is the stabilizer of X in W. Moreover we denote by w) the unique element of W such that Cy = wy(Cp).
Finally, for each i € f, we denote by W; the stabilizer in W of the vertex X? of type i lying on the
fundamental chamber Cy, that is the Weyl group associated with I; = I'\ {i}. Obviously Wy = W.

2.11. Extended affine Weyl group of R. Let us consider in Aff(V) the translation group corresponding
to L; since this group is also normalized by W, we can form the semi-direct product

/W:WME,

called the extended affine Weyl group of R. We notice that W /W is isomorphic to L /L; hence W contains
W as a normal subgroup of finite index f. In particular when R is non reduced, then W\(BC'") = W(BC,),
as in this case L(BC,) = L(BC,); moreover W\(BC") is not isomorphic to W(Cn), since W\(C’n) is
larger than W(C,,). Notice that W permutes the hyperplanes in H and acts transitively, but not simply
transitively, on C(A).

Given any two special vertices X,Y of A, there exists a unique w € W such that w(X) =0 and w(Y)
belongs to Q. We call shape of Y with respect to X the element A = @(Y) of LT and we denoted it by
o(X,Y). For every \ € L+, we set

V(X)) ={Y € V(A) : o(X,Y) = A}

As for W/L, there is a bijection between the quotient W/E and W, in the sense that each coset @L
determines a unique w € W; so we denote by w the coset whose representative in W is w. Hence we
shall write W € w to mean that @w = wt), for some X\ € L.

For every @ € W, let define
L(W) =|{H € H : H separates Cy and w(Cp)}|.
If w € W, then L£(w) = |w|. The subgroup G = {g € W L(g) = 0} is the stabilizer of Cy in W and
W=GxW.

Hence G = E/L and is a finite abelian group. If R is reduced, it can be proved that G = {g;, ¢ € IA}7
where go = 1 and, for every i € Iy, gi = tx, w3 Wo, if wg and w9 denote the longest elements of W and
Wy, ={w € W : w); = \;} respectively. A proof of this property can be found in [13]. Obviously, if
R is non reduced, then G is trivial.

We extend to W the definition of Gw given in Section 2.5, for every w € W, by setting
9o = qu if w = wg,
where w € W and g € G. In particular, for each \ € E, Gty = Qu, if th = ung.

2.12. Automorphisms of A and D. As usual, an automorphism of A is a bijection ¢ on V mapping
chambers to chambers, with the property that ¢(C) and ¢(C”) are adjacent if and only if C' and C’ are
adjacent. If D denotes the Coxeter graph of W, then an automorphism of D is a permutation o of I, such
that m,(;),0(;) = M, Vi,j € I. We denote by Aut(A) and Aut(D) the automorphism group of A and D
respectively. It can be proved (see for instance [13]) that, for every ¢ € Aut(A), there exists o € Aut(D),
such that , for every X € V(A),
Top(X) =0o07(X),

and @(C) ~q() ©(C), if C ~; C'.

Obviously W, W and W can be seen as subgroups of Aut(A) such that W < W < W< Aut(A) (in
some cases W is a proper subgroup). Consider in particular the finite abelian group G and, for every
RS I denote by o; the automorphism of D such that 7o g; = o; o 7; then ¢;(0) = ¢, for every i € 1.
Hence we call type-rotating every o;, @ € I , and denote

Auty (D) = {o;, i € T}.
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In particular g = 1. We note that Aut(D) = Aut(Dg) X Auty.(D), if Dy is the Coxeter graph of W,
and Auttr(D) acts simply transitively on T. Since each w € W is type-preserving, it corresponds to the
element oo = 1 of Auty.(D); actually W is the subgroup of all type-preserving automorphisms of A.
Keeping in mind the formula WG x W, we call type-rotating automorphism of A any element of w.
The group Auts. (D) acts on W as following: for every o € Auty,.(D) and w = s;, - - - 8;, € W, then

o(w) = Sa(ir) " So(ix)-
In particular, for every i € f, we have W, = g;(W).

Consider now the map
Wp) = —wol(p), VpeA.

Since the map p + —p is an automorphism of A, then ¢ € Aut(A); moreover (2 = 1 and t(Qp) = Qo.
Therefore either ¢ is the identity or it permutes the walls of the sector Q. Since the identity is the unique
element of W which fixes the sector QQp, by virtue of the simple transitivity of W on the sectors based
at 0, it follows that ¢ belongs to W only when is the identity. This happens when the map pu — —p
belongs to W, that is when wg = —1. Hence, if we consider the automorphism o, of D induced by ¢,
then in general o, is not an element of Auty (D), but o, € Auty-(D) if and only if o, = 1. Moreover,
when o, # 1, then it belongs to Aut(Dp). On the other hand, Aut(Dy) is non trivial only for a root
system of type A; (I > 2), D; (I > 4) and Es. Hence, apart these three cases, ¢ is always the identity, or
equivalently, the map p — —pu belongs to W.

Simple computations allow to state if ¢ is trivial or not for a Dynkin diagram Dy of type A; (I > 2),
D; (I > 4) and Eg. The results are listed in the following proposition.

Proposition 2.12.1. Let R be an irreducible root system.

(i) If R has type A; (I > 2), then ¢ induces the unique automorphism non trivial of the diagram Doy;
(ii) if R has type Dy (I > 4), then v is the identity for n even and it induces the unique automorphism
non trivial of the diagram Dy for n odd;
(iii) if R has type Eg, then v induces the unique automorphism non trivial of the diagram Dy.

For every p € Vsp(A), we denote u* = ¢(p); then p* € Qq for each p € Q.

2.13. Affine buildings of type X,.. Let A be an affine building; we assume A is irreducible, locally
finite, regular and we denote by {¢; }iecs its parameter system. By definition, there is a Coxeter group W
canonically associated to A and W is an affine reflection group, which can be interpreted as the affine
Weyl group of a (irreducible) root system R. Hence there is a root system R canonically associated to each
(irreducible, locally finite, regular) affine building. The choice of R is in most cases "straightforward”,
since in general different root systems have different affine Weyl group.

The only exceptions to this rule are the root systems of type C,, and BC,, which have the same
affine Weyl group. So, when the group W associated to the building is the affine Weyl group of the root
systems of type C,, and BC,,, we have to choose the root system. We assume to operate this choice
according to the parameter system of the building. Actually, we choose R to ensure that in each case
the group Auty.(D) preserves the parameter system of the building, that is in order to have, for each
o € Auty (D), o) = @i, for all i € I. Actually, in the case R = C,, or BC,,, the Coxeter graph of W is

4
[ S —- [ Y
0 1 2 (n—1) n
Hence ¢ = ¢2 = -+ = @n—1, but in general ¢y # ¢1 # ¢n. On the other hand, if R = C,,, then

Auty, (D) = {1,0}, while, if R = BC,,, then Aut;,(D) = {1}. Thus, if R = C,, the condition g,y = qo
implies ¢, = qg, while, if R = BC,,, qo and ¢,, can have different values.
Keeping in mind the above choice and the classification of root systems, we shall say that
(1) A is an affine building of type X, if R has type X, in the following cases:
Xn :An (’RZ?), Bn (n23)7 Dn (’Il24), En (n:67778)a F47 GZ;
(2) A is an affine building of type
(i) A, associated to a root system of type Ay, if go = ¢1 (homogeneous tree);
(ii) BCq, associated to a root system of type BCq, if g9 # ¢1 (semi-homogeneous tree);
(3) A is an affine building of type
(i) Cpn, n > 2, associated to a root system of type Cp, if go = gn;
(ii) BC,, n > 2, associated to a root system of type BC,,, if gy # ¢p.
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We refer to Appendix of [13] for the classification of all irreducible, locally finite, regular affine buildings,
in terms of diagram and parameter system.
In each case Auts, (D) preserves the parameter system of the building. Actually, if we define

Auty(D) = {0 € Aut(D) : qo@u) = @i, 1 € I},
then in each case Auty,. (D) U {o,} C Auty(D).

2.14. Subgroups of G. We are interested to determine the subsets of the set T of special types corre-
sponding to sublattices of L. In order to solve this problem we have to determine all the subgroups of the
finite group G = E/ L of order f. We only consider buildings of type gn, D,, and Eg, as only in these cases
f is greater than 2 and hence there is the possibility to have proper subgroups of E/ L. Since the order of
a proper subgroup of a finite group must be a divisor of the order of the group, then in the cases Eg, and
An, n = 2k + 1, we have no one proper subgroup of L/L So the only cases to consider are the case Am
if n is an even number, and the case D,,. The following results can be proved by direct computations.

Proposition 2.14.1. Let A be a building of type lN)n; then
(i) if n is even, G has three subgroups of order two: Goi = {(g0,91), Gon-1 = (9o, Gn-1) and
Go.n = (90, gn), corresponding to types {0,1}, {0,n — 1} and {0,n} respectively;
(i) if n is odd, then Go1 = (go,g1) is the unique subgroup of order two of G corresponding to the

types {0,1}.
Proposition 2.14.2. Let A be a building of type ﬁn; assume n = Im, for some l,m € Z,1 < l,m < n.
Then {90, 91, 92, " - - ,g(m,l)l} generate the unique subgroup of order m in G.

Proposition 2.14.1 implies that, for a building of type En, the vertices of A of types 0 and 1 form an
sublattice of E7 for every n; moreover, when n is even, also the vertices of types {0,n—1} and the vertices
of type {0,n} form a sublattice of L. Besides the types {n — 1,n} do not correspond to a subgroup of
order two in Z/ L, but to its complement; this means that the vertices of A of types n — 1 and n form
an affine lattice which does not contain the origin 0. The same is true, when n is even, for the types
{1,n — 1} and {1,n}.

As a consequence of Proposition 2.14.2, the vertices of A of types {0,1,2l,. .., (m—1)l} form a sublattice
of L, whereas the types {4, i+l 7+2l,...,54+(m—1)i}, for 0 < j < I, do not correspond to any subgroup
of order m in E/L, but to a lateral of this subgroup. This means that the vertices of A of types
{j,d+0,7+2l,....,5+ (m—=1)I}, for 0 < j < I, form an affine lattice which does not contain the origin 0.

2.15. Geometric realization of an affine building. Let A be any affine building of type X,. The
affine Coxeter complex A associated to W is called the fundamental apartment of the building. By
definition, each apartment A of A is isomorphic to A and hence it can be regarded as a Euclidean space,
tessellated by a family of affine hyperplanes isomorphic to the family . Moreover every such isomorphism
is type-preserving or type-rotating. If ¢ : A — A is any type-preserving isomorphism, then, for each
w E W ' = Wi is a type-rotating isomorphism and for every vertex x of type i, the type of ¢’'(z) is
0;(i), if W = wg;. Moreover each type-rotating isomorphism ¢’ : A — A is obtained in this way.

For any apartment A, we denote by #(.A) the family of all hyperplanes h of A. If ¥ : A — A is any
type-rotating isomorphism, we set h = h%  if 1»(h) = H. Obviously k and a depend on .

We denote by V(A) the set of all vertices of the building and, for each i € I, we denote by V;(A) the
set of all type ¢ vertices in A.

There is a natural way to extend to A the definition of special vertices given in A; we call special each

vertex 2 of A such that its image on A (under any isomorphism type-preserving between any apartment
containing x and the fundamental apartment) is a special vertex of A. We point out that all types are
special for a building of type A,; furthermore for a building of type D,,, Es and G occur respectively
four, three and only one special type; in all other cases the special types are two. We denote by Vs,(A)
the set of all special vertices of A.

Finally, we denote by lA/(A) the set of all vertices of type i € I, that is the set of all vertices z such
that its image on A (under any isomorphism type-preserving between any apartment containing x and
the fundamental apartment) belongs to L. It is obvious that V(A) = Vep(A), if A is reduced, while
ﬁ(A) = Vo(A), if A is not reduced. We always refer vertices of 9(A)

We recall that, for every pair of chambers ¢, d € C(A), there exists a minimal gallery (¢, d) from ¢ to
d, lying on any apartment containing both chambers; the type of v(¢,d) is f=14y -+ - iy if 6(c,d) = we. If
{¢i}ier is the parameter system of the building, for every ¢ € C(A) and w € W, we have |Cy(c)| = qu, if
Cw(c) ={deC(A) : (c,d) = w}.
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Analogously, given a vertex x € l?(A), and a chamber d, there exists a minimal gallery y(z,d) from x
to d, lying on any apartment containing = and d; if ¢ is the chambers of v(z,d) containing z, then the
type of this gallery is f =4y - - - iy, if 6(¢,d) = wy, and we set d(x,d) = §(c,d). Hence we define, for every
x€V(A)and w e W,

Cw(xz)={deC(A) : i(zx,d) =w}.
If, for every 2 € V(A), we denote by C(x) the set of all chambers containing x, then Cy, (z) = Ucee(a) Cu(c),
as a disjoint union. We notice that, for every = of type i € I , then, fixed any chamber ¢ containing x,
C(x)={c €C(A) : §(c,d) =w, Yw € W;},
if W; = 0;(W) is the stabilizer of the type i vertex of Cy. Hence the cardinality of the set C(x) is the
Poicaré polynomial W;(q) of W;. On the other hand, W;(q) = W, 0)(q) = W(q); so, in each case,
IC(z)| = W(q).
Therefore, for every z € V,,(A) and w € W, the cardinality of the set C,, () does not depend on x and

Cu(@)| = W(9) qu-

For any pair of facets JFi, Fy of the building, there exists an apartment A(Fj, F2) containing them.
We call convex hull of {Fy, Fo} the minimal convex region [Fi, F3] delimited by hyperplanes of A(F, F2)
containing {Fy, F2}.

Given two special vertices x, y, there exists a minimal gallery y(z, y) from z to y, lying on any apartment
A(x,y) containing x and y. If ¢ and d are the chambers of v(x,y) containing x and y respectively, and
d(c, d) = wy, then the type of this gallery is f =iy - - - ig. Moreover, if we denote by ¢ any type-preserving
isomorphism from A(z,y) onto A, we define the shape of y with respect to x as

U(xvy) = 0(X7 Y)7 if X = gD(.’E), Y = @(y)

Hence, by definition of o(X,Y), the shape o(z,y) is an element of I+ and, if o(x,y) = A, there exists a
type-rotating isomorphism ¢ : A(x,y) — A, such that ¥(z) =0 and ¥(y) = \.
For every vertex z € V(A) and every A € LT, we define

V(@) ={y €V(4) : o(z,y) = A}
It is easy to prove that, for every z € V(A), we have V(A) = Uyez+ Va(7) as a disjoint union.

The following proposition provides a formula for the cardinality of the set V) (z).

Proposition 2.15.1. Let z € V(A) and A € L. If 7(z) =i, 7(X)\) = and j = 0:(1), then

_ 1 _ Wi
PO W g, T W

In particular |Vx(z)| = W(q) qu,, if N € LTT.
ProoF. For every chamber ¢ of A and for every i € I, we denote by v;(c) the vertex of type ¢ of ¢. Then
Wa(z) ={y =v;j(d), d € C(A) : d(z,d) = o;(wx)}.
If we define
Ci(z) ={d € C(A) : vj(d) € Vx(x)},
then it is immediate to note that, for each y € Vy(z), there are W(gq) chambers in Cy(z) containing y;

hence |Cy(z)] = W(g)|[Vx(z)|. On the other hand, if ¢ denotes any chamber in the set C(z), it can be
proved that, as disjoint union,

Cx(z) = U Cul(c).
weW o (wx)W
This implies that [Cy(x)| = Zwewwi(wk)wj |Cw(c)|. Since Wi (wx)W; = 0;(WwaWj) and 45, (w) = Gu»

it follows that
a@= Y
wEWw W

So the first formula is proved.

Furthermore we notice that, if £ is the type of the gallery v(Cy, Cy), then , for each ¢ € C(z), the
gallery (e, y) has type o;(£)). Since, for each ¢ € C(x), the number of galleries (¢, y) is qu, /Wa(¢g) and
IC(z)| = W(q), also the last formula is proved. O
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Proposition 2.15.1 shows that |V (z)| does not depend on z; so we can set, for every vertex x € ]7(A),
Ny = [Va(2)].
We notice that, if we set A* = ¢(\), then y € V5(x) if and only if € Vi« (y). Hence Ny = Ny«.

We provide an alternative formula for Ny, in terms of ¢, .

Proposition 2.15.2. Let A € L*; then

In particular, if X\ € LT, we have
Ny =W(g g,

PROOF. For any = € V(A) and y € Vy(z), we denote by ¢, and ¢y the chambers containing  and y
respectively in any minimal gallery connecting x to y. Then, defining

Ciy(2,y) = {d €C(A) : yed, 3(x,d) =},
it is easy to check that
Ciy(z,y) ={d € C(A) : I(cy,d) = wjo»wg’)\}7
if w? and w?VA are the longest elements of W; and W x = {w € W}, : wA = A} respectively. Therefore,
‘CU (33, y)' = (040 N C]w&)q;(_} = qWqu_v%
J g, J JoA A
and
qt>\ = ququqv_V%\

Hence W)
_ q) 1
N>\ — W)\(q) qWqu(; th-

Since W(q) = qw, W (¢ ') and W (q) = qwgwk(q’l), we conclude that
W(g™)

Ny= oM )
A W}\(q_l)qt)\

In particular, if A\ € LT, we have
N}\ = W(q_l)qt)\'
O

2.16. Parameter system of R. Let A be a building of type )Z'n and let {g;}ics the parameter system
of A. As we said in section 2.13, ¢,(;) = ¢;, for every i € I and every o € Auty,.(D). Moreover we notice
that ¢; = g;, if there exists an hyperplane h on any apartment of the building which contains two panels
m; and 7; of co-type ¢ and j respectively. Hence for every hyperplane h of the building we may define
qn = g; if there is a panel of co-type ¢ lying on h. We notice that if h and h’ are two hyperplanes of the
building, lying on A and A’ respectively, and there exists a type-rotating isomorphism 1 : A — A’, such
that h' = 1(h), then g = qp; actually, if 7; is a panel lying on h, then h’ contains a panel of co-type
o(i), for some o € Aut, (D).

Consider any apartment A4 of A and the set H(A) of all the hyperplanes of A. Let ¢ : A — A any
type-rotating isomorphism. According to notation of Section 2.15, we set h = h¥ if ¢»(h) = HE, for any
positive root a and any k € Z. In this case we define

Aok = Gh-
This definition is independent of the particular choice of A and 1. Actually, if ¢’ : A’ — A is another
type-rotating isomorphism and ¢(h) = ¢/(h/) = HF, then qn = qn, since ¢ ~14 is a type-rotating
automorphism mapping h onto h'.

If R is reduced, it is easy to check that go r = g/, if Hﬁi = w(HF), for some W € /V[7; actually
qn = qn, if Y(h) = HF and ¥(h') = Hg:, for any ¢ : A — A. In particular g, 0 = ¢u’ 0, if @ = w(a), for
some w € W and, for every & € R, go. = qa,0, for every k € Z. Moreover go, 0 = gi, ¢ = 1,--- ,n, and
Jao,1 = qo- These properties suggest to define, for every o € RT,

do = Gak, Yk € Z.

Then q,, = ¢, Vi € I, and for every a € R", qo = qa,, if @ = way, for some w € W. Hence ¢4 = qa,,
if |a| = |a;]. It turns out that, if all roots have the same length (as for R of type A,), then ¢; = ¢, for
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every i € I and g, = g, for every o € R. Moreover, if R contains long and short roots, then ¢; = g, if «;
is long, and g¢; = p, if o is short; so ¢, = ¢, for all long «, and gg = p, for all short 5.

Consider now the case of a non reduced root system of type BC,,. Since L=Land W = W, then
every isomorphism of an apartment A onto A is type-preserving and qo r = g’k if HE, = w(HEF), for
some w € W. Hence it is easy to prove that, for all k& € Z,

Go,2k+1 = Qa1 = Qap,1, VO € Ry,
qo,k = 4a,0 = 4a,,0, Va € Rs,
Gak = 90,0 =Ga;,0, =1, ,n—1, ifa€ Ryand o = wa;, for somew € W.
Moreover
Good =1, oo =qo, forevery i=1,-,n—1 and ga, 0= gu.
So, if we define

) 4a,2k+1, Va € Ry, VkeZ,
e Qo ks Vo€ Ry URy, VkeZ,

we have
q, Va € Ry,

do = { qo, Vo € Ry,
Qn, Vo € Rs.

For ease of notation, we set ¢ = p, qo = ¢q, ¢, = r. In each case it is convenient to extend the definition
of qa, by setting g, = 1, if o ¢ R. Thus, g0 = p, qaj2 =7, if @ € R1, o = ¢, qay2 = 1, if @ € Ry, and
Qo =T, QQ/Q = 17 if a € RQ-

It will be useful to give the following alternative characterization of ¢, , for every A € L+.

Proposition 2.16.1. For every A € Z+ then
(A a)
= I ¢ &
a€Rt

PROOF. In order to prove this formula, we recall that ¢,, denotes the number of chambers ¢’ connected
to any chamber ¢ by a gallery of type uy. Moreover ¢, = qu, = @i, - - qi,, if tx = urgr and uy = 8, -+~ 84,

Fix in the building A two chambers ¢, ¢’ such that §(¢, ¢’) = uy; denote by A any apartment containing
¢, ¢ (and hence the gallery (¢, ¢') of type wy), and consider the isomorphism ¢ : A — A such that
¥(c) = Cp. Through this isomorphism, the chamber ¢’ maps to the chamber uy(Cp), lying on Qq. For
every i1,--- i, the panel m;, of the gallery belongs to a hyperplane h of A such that ¢(h) = HJ, for
some a € Rt and j € Z; therefore it follows that

IT &,

a€ERt

if, for each o € RY, k, denotes the number of hyperplanes in H(«) separating Cy and u(Cp). Since
v (ur(Co)) = A, we notice that k, = (A, «), when /2 ¢ R, and ko = (\, /2), otherwise; so we get the
required formula. O

COI’()llaI'y 2.16.2. Let A S E ; then
“7 q —1

In particular, if A € E*"“, we have
Ny = 71 H q()\ Qo —()\,a)'
a€ERTt

2.17. The algebra H(C). We denote by £(C) the space of all finitely supported functions on C = C(A).
Each function f € £(C) can be written uniquely as f =) f(c)1I., where, for each chamber ¢ € C(A),

For each w € W, we define

> 1.

(¢’ c)=w
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The operator Ti, may be extended by linearity to the space £(C), by setting Ty, f = >, f(¢) Ty, if
f=>. f(c)I.. It is easy to prove that, for every c,

> fE@).

(e e’ )=w
Actually
wa() wav Zf Z c”v]I Z f( )
8(c,c")=w é(c,c)=w

since we can choose ¢’ = ¢ in the sum only in the case 6(¢, ') = w and (L., I.) = 0 for ¢’ # c.
We denote by H(C) the linear span of {T,,, w € W}. We shall prove that in fact H(C) is an algebra.
Lemma 2.17.1. Let S be the finite set of generators of W for every s € S,
T? = qsl + (g5 = V)T,
if ¢s = qo, when s = sq.
PROOF. Fix s € S; then, for every chamber c,
Yo Tae= ) > Ie= > I+ o,
§(c!c)=s 5(c!,c)=s8(c'" ' )=s §(c!c)=s S(c! ¢l )=s,c! e

Since g5 is the number of chambers ¢’ such that d(c,¢’) = 6(¢/, ¢) = s, we conclude that

T?=qle+(gs—1) > To=qd+ (g~ )T

6(c’,c)=s
O
Proposition 2.17.2. For every w € W, and s € S, then
[T i Jws| = ful + 1,
qsTws + (qs — )Ty, if |ws|=|w|]—1.
PROOF. For each function f € £(C), and each chamber ¢, we have by definition
(TTof)= > >, f(&) and Tufl= ) f@)
6(c,c’)=w (' ,c")=s §(c,é)=ws
If lws| = |w| + 1, then, for every ¢, there exists ¢/ such that d(c,¢’) = w and §(¢/,é) = s; hence
Cuslc) ={¢ : 6(c,¢) = ws} = Us(c,en=wic” : 0(c/, ") = s}. Therefore (TwT5) f(c) = Tws f(c).
Assume now |ws| = |w|— 1 and define w; = ws. In this case w = wy s, with |w;ys| = |wy| + 1. Therefore
Ty =Ty, s =Tw,Ts and, by Lemma 2.17.1,
T T Tw1T52 quw1 + (qs - 1)Tw1Ts = QSTwl + (qs - 1)Twls = QSTws + (QS - 1)Tw
O

Theorem 2.17.3. Let wy,ws € W; for every w € W there exists Ny, (w1, ws), such that
T, Ty = Z Ny (w1, ws) Ty
wew

Moreover the set {w € W : Ny, (w1, ws) # 0} is finite, for all wy,wy € W.

PROOF. We use induction on |wg|. If |wa| = 1, then we = s, for some s € S, and the identity follows from
Proposition 2.17.2. If |we| = n, for n > 1, we write we = w’s, for some s and w’ such that |w'| =n — 1.
Hence Ty, Thy, = Ty, To Ts. If we assume that the identity is true for each k < n, then

Ty T, = (T, T )T = (Z Ny (wry,w") w) To= > Ny(wy,w') (Ty Ts).

weW weWw

Therefore the identity follows from Proposition 2.17.2. O
Corollary 2.17.4. Let wy,ws € W; if jwrws| = |w1| + |wal, then Ty, Twy = Twyws-



14 A.M. MANTERO, A. ZAPPA

PROOF. If |wy| = 1, the identity follows from Proposition 2.17.2. If |wy| = n, for n > 1, and wy = w's,
for some s and w’ such that |w'| = n — 1, then |wyw'| = |wy| + |w'|, and |wiws| = |wiw’| + |s]. Thus, if
we assume the identity true for each k < n, we have, by Proposition 3.1.2,
TwlTwQ = TwlTw’Ts = Twlw’Ts = Twlw’s = Tw1w2~
O

Theorem 2.17.3 shows that H(C) is an associative algebra, generated by {Ts, s € S}. We refer to the
numbers Ny, (wy,w’) as the structure constants of the algebra H(C). We notice that H(C) is (up to an
isomorphism) the Hecke algebra H(qs, ¢s — 1)associated to W and S (see [6], Chapter 7).

It will be useful to exhibit some particular operators of the algebra H(C). For every i € T and for any

chamber ¢, we set
Ti]Ic = Z ]Ic/v
v (c’)=v;(c)
if, as usual, v;(c) denotes the vertex of type i lying in ¢. We extend T; to the space £(C) by linearity.
Proposition 2.17.5. For every i € f, the operator T; belongs to the algebra H(C). Moreover TF = T;.
PROOF. We observe that T; € H(C), for every i € I, because T; = > wew, Tw; actually

{ 1 vi() = vi(c)} = Uwew, {¢' : §(¢, ) = w}.
To prove that T; is selfadjoint, we consider, for all ¢y, co,
<T I, L. > Z <]IC/7]L32> and <]IC17Ti]IC2> = Z <]IP17]I(‘”>'
vi(c')=v;(c1) v (c'")=vi(c2)

We notice that (I, I.,) # 0 only for ¢/ = ¢y and we can choose ¢’ = ¢y in the set {¢’ : v;(¢') = v;(c1)}
only if vl(cl) = v;(c2). Analogously, (I.,, I.») # 0 only for ¢ = ¢; and we can choose ¢’ = ¢; in the set
{" : vi(") =vi(c2)} only if v;(c1) = v;(c2). Therefore we conclude that
1, if wie) = o
<T ]Icl,]I > <]ICI,T]I > _ ) 1 UZ(Cl) 01(62)7
0, it wi(er) # vi(ea).
O

2.18. Chamber and vertex regularity of the building. For every triple wg,w;, w2 € W and every
pair of chambers ¢y, ¢a, such that d(cq, ca) = wp, consider the set

{ ecC(A) : §(c1,c) = wr, §(ca, ) = wa}.
We say that the building A is chamber regular if the cardinality of this set does not depend on the
choice of the chambers , but only depends on wq, w1, ws.

Proposition 2.18.1. The building A is chamber regular.

PRrOOF. Fix a triple wg, w1, w2 € W and a pair of chambers ¢y, ¢, such that d(¢1, c2) = wg. Consider the
operator T, T S For any chamber c,

(Tun Ty )L = Y Yoo de= > > I

5(6’,6):11)2_1 6((://7(;/):11;1 5((:,()’):11)2 5((:”,(:’):101
Let C1,C2 € C(A) and assume that 6(61, 62) = wy. Then
(T, Ty ) ey, Loy ) = Z Z (Lo, 1)) = |{c" : 6(c1,¢) = wi, (ca, ) = wa}l,
§(ca,c!)=wa 8(c,c')=w;

since (I, I.,) = 1,if ¢ = ¢ and (I.v, I.,) = 0 otherwise. On the other hand, as we have proved in
Section 2.17, there exist constants Ny, (wq, wQ_l)7 w € W, such that

TwlTw—l— Z Ny (w1, wy ) -
weW
Therefore
(Tn Ty ey Tey) = Y No(wi, wy (T Iy, I, )
weWw

= > Ny(wi,wy') Y (Ig, 1) = Ny (wi,wy ),

weW §(d,co)=w
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since (14, I.,) # 0 only if d = ¢; and this equality is possible only in the case w = wy, as we assumed
d(c1,¢2) = wo. So we conclude that

{c : d(er,c) =wy, d(ca, ) = wa}| = Ny, (w1, w5 ).

This prove the required statement. O

Using the operators T;, defined in Section 2.17, we extend the previous result to every set
{ €C(A) : 6(c1,d") = w1, 6(ca,c’) = wa}.
Proposition 2.18.2. Let wg, w1, ws € W. If x € Vs, (A) and ¢ € C(A) satisfy §(x, c) = wo, then
H{d €C(A) : 6(z,c) = w1, §(c,c') = wa}]
does not depend on x and c, but only on woy, w1, ws.

PROOF. Let x be a special vertex and let ¢ be a chamber; assume 6(x,c¢) = wp. This means that
d(cq, €) = wo, if ¢, denotes the chamber containing x in a minimal gallery ~(z, ¢). If 7(x) = 4, we have

(T Ty ) e, Tille,) = Y (T, Ty o) e Teg) = Y {2 6(d, ) = wr, 6(e,¢) = ws}]

clirec) clirec),
=N : 6(x, ) =wy, d(c,d) = wa}|.
On the other hand T; is a selfadjoint operator of the algebra generated by {T3,,w € W}; hence
(T, T, )1 TL,) = (1T, T, )1, L)

w1y w13

and there exist constants n’, (wy,w; ') such that T; T, Tyor = S wew M (wi, w5 )T, Therefore, by the
same argument used in Proposition 2.18.1,

(T, T o) e, T, ) = > nl(wy, wy (T, T, ) = nl, (wr, w3,
weWw

This proves the required statement, as

‘{C/ : 5(1'70/) = Wy, 5(676/) = w2}| = njuo(wlvwgl)'

Corollary 2.18.3. Let \ € L+ and wi,we € W. If x,y € 17(A), and o(x,y) = A, then
{ €C(A) : o(x,¢) = w1, d(y, ) = wa}

does not depend on x and y, but only on X\, w1, ws.

For every triple A\, u,v € L and every pair z,y € ]7(A), such that o(x,y) = A, consider the set

{zeV(A) : o(x,2) = p, o(y,2) =v}.

We say that the building A is vertex regular if the cardinality of this set does not depend on the choice
of the vertices , but only depends on A, u, v.

Proposition 2.18.4. The building is vertex reqular. Moreover
{z V(D) : o(a,2) = oy 2) =} = [{z € V(D) : o(z,2) =", o(y,2) = "},
PROOF. Let A € Lt and o(z,y) = A. Consider in W the elements oi(wy),o5(wy), if i = 7(x),j = 7(y).
By Corollary 2.18.3, the cardinality of the set
A={d €C(A) : é(z,d)=0i(wy), 0(y,c') = cj(w,)}
does not depend on x and y. On the other hand o(z, z) =, o(y,z) = v if and only if z = v(¢), for

some ¢ € A, and some | € I. This proves that the set {z € V(A) : o(z,2) = pu, o(y,z) = v} has a
cardinality independent of  and y. Moreover we notice that, if o(z,y) = A, then o(y,x) = A*; hence

Hz e V(A) : o(x,2) = p, o(y,2) =v}| = [{z/ € V(A) : a(y,2') = pu*, o(z,2') =v*}.
This completes the proof. ]
We set

(2.18.1) N ) =|{z € V(A) : o(z,2) =p, oy, 2) =v} = N v*p*), if o(z,y) = A
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2.19. Partial ordering on A. We define a partial order on 27 by setting
pw=A if X—pelLt.

Since ]A)(A) may be identified with the co-weight lattice E, the partial ordering defined on L applies to
V(A). For every A € L™, we define

Iy = {wu : uef"”,ujA,weW}.

This set is saturated: for every n € I and every a € R, then n—ja" € Iy, for every 0 < j < (n, o). Hence
it is stable under W. Moreover A is the highest co-weight of II. It is easy to prove that IIy +1II,, C IIxy,,
for every A, € L. We recall that W is endowed with the Bruhat ordering, defined as follows (see [7]).
We declare wy < ws if there exists a sequence w; = ug — u1,- -+ ,Up—1 — Up = Wz, where u; — uj4q
means that uj;1 = u;s, for some s € S, and |u;| < |ujy1|. This defines a partial order on W that can be
extended to /W, by setting wy < Ws, if W1 = w1g; and We = wags with w; < wy. We remark that wy < ws
if and only if wy can be obtained as a sub-expression s;, ---s;, =~ of any reduced expression s;, - --s;, for
w,. We notice that, for every A € L*, if @(0) € II, then @'(0) € IL, for cach @' < .

We define also a partial ordering on C(A), in the following way. Given two chambers C, Cs consider all
the hyperplanes H” separating C; and Cy. We declare C; < Cs, if Cy belongs to the positive half-space
determined by each of these hyperplanes. It is clear that the resulting relation C; < (s is a partial
ordering of C(A). We notice that, by definition of Qg, we have Cy < C' if and only if C' C Qq. Moreover,
if C' is any chamber and s = s* is the affine reflection with respect to the hyperplane containing a panel
of C, then C < s(C) or s(C) < C, since C' and s(C) are adjacent. Since C(A) may be identified with W,
the previous definition induces a partial ordering on W. We point out that this ordering is different from
the Bruhat order. Nevertheless, if w;(Cy) and wa(Cp) belong to Qq, then wi(Ch) < wa2(Cp) if and only
if wy < wy. Moreover, on W, we have

w1(Co) < w2 (Cp) if and only if wy > wa.

Proposition 2.19.1. Let C be a chamber of A; let s = s* be the affine reflection with respect to the
hyperplane HE containing a panel of C and s = s%. Assume that C < s(C). Let w € W; if w = wty for
some w € W and A € L, then

(i) if w(C) < ws(C), then w < ws;
(i) if ws(C) < w(C), then ws < w.

PROOF. Since « is positive and C' < s(C), then C' and s(C) belong respectively to the negative and the
positive half-space determined by the affine hyperplane H¥, that is, for every vertex v lying in C,

(v, <k, (s(v), ) 2 k.

The adjacent chambers w(C') and ws(C) share a panel which belongs to the hyperplane w(HEY) = H"f‘;(a);
moreover, for every v € C,

w),w(a)) <k and (ws(v),w(a)) > k.

—~

Actually, if we set k' = k + (), «), then
(w(v), w(a)) = (Wtr(v), w(a)) = (tr(v),a) = (v,a) + (X, @) <&
(ws(v), w(a)) = (wtys(v), w(a)) = {txs(v),a) = (s(v),a) + (A, a) > k.
)

This implies that w(«) is positive in the case (i) and negative in the case (ii).
If w(a) > 0, then, for every v € Qp, we have

(w v, a) = (v,w(a)) >0, ((ws) tv,a) = (v, ws(a)) = —(v,w(a)) <0,

since (v,s(a)) = —(v,a). Therefore Qy and w~!(Qp) belong to the same half-space determined by H,,

while H, separates (ws)~1(Qp) and Qp. So the number of hyperplanes separating Qp and (ws)~1(Qp) is

bigger than the number of hyperplanes separating Qg and (w)~1(Qp), and we conclude that w < ws.
On the contrary, if w(a) < 0, then, for every v € Qp, we have

(w™ v, a) <0, {(ws) tv,a) >0,

and therefore we conclude that w > ws. O
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2.20. Retraction p,. Let x be any special vertex of A (say 7(x) = ). For every ¢ € C(A), we denote by

projz(c) the chamber containing z in any minimal gallery v(x, ¢). In particular we write projo(c) when z

is the fundamental vertex e. We note that proj,(c) does not depend on the minimal gallery we consider.
In the fundamental apartment A, let Q, = w¢(Qp) and C the base chamber of Q; .

Definition 2.20.1. For every c € C(A), the retraction of ¢ with respect to x is defined as
pa(c) = Cy - dilprojz(c), ¢),

if, for every pair ¢,d of chambers, we set §;(c,d) = Wo—1(p when §(c,d) = wr. In particular, if 7(x) =0,

pa(c) = Gy - d(proju(c), c).

Obviously, ps(c) belongs to Qg , for every c¢. We extend the previous definition to all special vertices.
For every y € Vs, (A), say 7(y) = j, we set

pz(y) = vi(pz(c)),

if ¢ is any chamber containing y, and | = o, 1(4). Actually this definition does not depend on the choice of
the chamber containing the vertices y, since v;(c1) = v;(e2) implies v;(p,(c1)) = vi(pz(c2)). In particular,
we denote by pg the retraction with respect to the fundamental vertex e. It will be useful to remark that,
if A € L*, and ty = uxg, then, for every ¢ such that d(projo(c), c) = ux, we have po(c) = woux(Co).
Therefore, if (e, z) = A, then py(z) = wo.

2.21. Extended chambers. We recall that the action of W on the set C (A) is transitive but not simply
transitive; actually, if W; = wg;, then w;(Cp) = w(Cy), for every w € W and for every ¢ € I. Nevertheless,
the action of the elements @w; on the special vertices v;(Cy) of Cy depends on 4, because

w;(v5(Co)) = Vo, (j) (w(Co)).
This suggest to enlarge the set C(A) in the following way. We call extended chamber of A a pair

o~ ~

C = (C,0), for every C € C(A) and for every o € Auty-(D); we denote by C(A) the set of all extended
chambers. A straightforward consequence of this definition is that W acts simply transitively on 5(A) :
for every couple of extended chambers C; = (C1,04,) and Cyr = (Ca,0;,), there exists a unique element
@ € W such that Cy = @(61) Actually, if Cy = w(C1), g = gi2g;1 and o is the automorphism of D
corresponding to g, then @ = wg = go(w). In particular, for every C = (C,0;), then @ = wg; = g;o:(w)
is the unique element of W such that @(Co) = C, if C = w(Cy).

In the same way we enlarge the set C(A) and we define

C(A) = {¢=(c,0), c€C(A), i €T}
We notice that for every ¢ € C(A) and i € I, there exists a unique ¢ such that v;(c) = vo(¢); actually,

this element is ¢ = (¢, 0;). The W-distance on C(A) can be extended to a W-distance on CA(A) in the
following way: for every couple of extended chambers ¢; = (¢1,04,) and ¢ = (co, 04, ), We set

5(817 82) = 5(Cla 62)gi2gi_11'

For every A € LT, with 7(\) = [, consider the translation t = uxg;; then t5(Co) = (ur(Co), ;) and
vo(tA(Co)) = vi(ux(Co))-

3. MAXIMAL BOUNDARY

3.1. Sectors of A. Let R be a root system and let A = A(R). In Section 2.7 we defined a sector of A,
based at 0, as any connected component of V \ U, H,; in particular Qo = {v € V : (v,a) >0, ¢ € Iy}
is the fundamental sector based at 0. For every chamber C' containing 0, we denote by Qo(C) the sector
based at 0, of base chamber C'; in particular, Cj is the base chamber of Q. We notice that Qo(C) = wQy,
for some w € W. R

More generally, for each special vertex X of A, in particular for every X € V(A), we call sector of A,
based at X, any connected component of V\ U Heenx kif Hx denotes the collection of all hyperplanes
of H sharing X. For every chamber C containing X, we denote by Qx(C) the sector based at X, of
base chamber C. We remark that, for every X € 17(A), and every C containing X, there exists a unique

@ € W, such that Qx(C) = @ Qo.
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3.2. Maximal boundary. We extend to any irreducible regular affine building A the definition of sector
given on its fundamental apartment A = A(R), declaring that, for any x € V;,(A), a sector of A, with
base vertex z, is a subcomplex @, of any apartment A of the building, such that 1,,(Q,;) = Qx, if X is
any special vertex such that 7(X) = 7(z), and 9y, : A — A is a type-preserving isomorphism mapping
x to X. We note that, given any apartment A of the building, for every sector @), C A, there exists a
unique type-rotating isomorphism ), : A — A mapping Q. to Qq.

We say that a sector @)y is a subsector of a sector @, if @y C Q. Two sectors @, and @), are said
to be equivalent if they share a subsector @),. Each equivalence class of sectors is called a boundary point
of the building and it is denoted by w; the set of all equivalence classes of sectors is called the mazimal
boundary of the building and it is denoted by Q. As an immediate consequence of definition, for every
special vertex x and w € Q, there is one and only one sector in the class w, based at x, denoted by Q. (w).

For every special vertex « € Vsp(A) and every w € §, there exists an apartment A(z,w) containing
2 and w (in fact containing @, (w)). Analogously, for every chamber ¢ and every w € €, there exists an
apartment A(c, w) containing ¢ and w, that is ¢ and a sector in the class w. On this apartment we denote
by Q.(w) the intersection of all sectors in the class w containing c.

For every = € Vg, (A) and every chamber ¢ € C(A), we define on the maximal boundary € the set
Qz,0) ={weQ : Qz(w) D cl.
Analogously, for every pair of special vertices x,y, we can define the set Q(x,y) of  given by
Qz,y) ={weN : yeQ.(w)}
We note that , for every z,
Qz, ), Qz,2) D Qx,c), forevery ¢,z in the convex hull of {x,c},
Qz, ), Qz,2) D Qx,y), forevery ¢,z in the convex hull of {z,y}.

From now on we shall limit to consider sectors based at a vertex of 17(A)

3.3. Retraction p%. Let w € Q and # € V(A); for every apartment A = A(z,w) containing w and
x, there exists a unique type-rotating isomorphism . : A — A, such that ¥4, (Qz(w)) = Qp. On the
other hand, if A’ contains a subsector Q,(w) of Qz(w), but not z, then there exists a type-preserving
isomorphism ¢ : A" — A(z,w) fixing @Q,(w); hence it is well defined the type-rotating isomorphism
Ui, = Yy ¢+ A — A. Since every facet F of the building lies on an apartment A’ containing a subsector
Qy(w) of Qz(w) (possibly Q(w)), then, according to previous notation, 7 maps uniquely on the facet
F =4}, (F) of A.

Definition 3.3.1. We call retraction of A on A, with respect to w and of center x, the map
pr A = A,
such that , for every apartment A’ and for every facet F € A, p%(F)=F =, (F).

In particular we remark that pZ(x) = 0, and, if we denote by ¢% the base chamber of Q,(w), then
pr(c?) = Cy. Moreover, for every chamber ¢ € Q;(w), and for every special vertex y € Q5 (w), then

Pz(c) = CO . 6(62’ C)y and pf)(y) = XM)

if X, is the special vertex associated with u = o(x,y). For ease of notation, we simply set p7,(z) = p, to
mean that pZ(y) = X,. In the case x = e, we set p,, = pf,.

Proposition 3.3.2. Let 2 € V(A), ¢ € C(A) and w € Q. If d C Qu(w) N Qu(w), then 6(x,d) 5(d,c) is
independent of d. Moreover
pi(e) =Co - 6(x,d) §(d,c).
PROOF. Fix d € Q. (w) N Q.(w); for every d' € Qg4(w), we have
§(x,d) =0(F,d) =6(ck,d) §(d,d') and (c,d’) = d(c,d) 6(d,d"),

if ¢Z is the base chamber of the sector Q. (w). Hence §(cZ,d’) §(c,d’)~t = §(c%,d) 6(c,d)~ . Given d; and
da in Qu(w) NQ¢(w), and chosen d’' € Qq, (w) N Qqg,(w), we conclude that

5(c®,dy) 0(c,dy) ™t = d(c%,d) §(c,d)™t = 6(c%, da) §(c,do) ™t
By definition of pf,, we have

po(d) = pi(cs) - 6(cf, d) = Co - 6(cg, d) and  pi(d) = pig(c) - 6(c, d).
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Actually, since d C Qz(w) NQ.(w), the retraction of a gallery v(c%, d) is a gallery T'(pZ (c7), pZ(d)) of the
same type as y(cZ,d) and the retraction of a gallery y(c,d) is a gallery T'(pZ(c), p%(d)) of the same type
as y(c,d). Therefore

pE(e) = p5(d) - (c.d) ™" = pi(d) - 6(d, ) = Co - 8(cty d) (d, ).

An analogous of Proposition 3.3.2 holds for the retraction pf, of special vertices of the building.
Proposition 3.3.3. Let 7,y € V(A) and w € Q. For every z € Qu(w) N Qy(w), o(x,2) —o(y, z) is
independent of z. Moreover

po(y) =o(z,z) —o(y,2).
PROOF. Fix z € Q,(w) N Qy(w) and assume that o(x,2) = p and o(y, z) = v; for every 2’ € Q.(w), we
have o(x,2') = p+ XN, o(y,2") =v+ X, if 6(2,2’) = X; hence o(z,2’) — o(y,2’) = p — v. Given z; and
Zo in Q(w) N Qy(w), and chosen 2’ € Q., (w) N Q.,(w), we conclude that
J(.’L‘, Zl) - U(y7 Zl) = U($7 Zl) - U(y7 Z/) = O'({E7 22) - U(ya 22)'

This proves that o(z, z) — o(y, z) does not depend on the choice of z in Q,(w) N Qy(w).

In order to prove that pf(y) = o(x,2) — o(y, 2), for every z € Qg(w) N Qy(w), we fix any apartment
A(z,w) containing Q,(w). If y € A(z,w), and z € Q(w) N Qy(w), then pZ(z) =0, p%(z) = w; moreover,
if we set p{,(y) = n, then 7_,,(Q,,) = Qo, and in particular p—n = 7, (p,(2)) = v. If, instead, y ¢ A(z,w),
there is y' € A(x,w), such that p? (y) = p%(y’') and we have o(y,z) = o(y’, z) = p — v; hence, as before,
f— 1 =105 ()) = 1. 0
Corollary 3.3.4. For all x,y,z in lA/(A) and for each w € Q,

P (2) = pis(2) = s (y)-
PROOF. If 2’ € Qu(w) N Qy(w) N Q,(w), then
po(y) =o(x,2') —o(y,2), pi(2) =0(z,2)) —0(z,2), pl(2) =0(y,2) —o(z,2)
and hence
pu(2) = P (y) = oly,2') — o(2,2") = pl(2).
O
We notice that if z =z, then p¥ (x) = —pZ (y). In particular, for all x,y special and for each w € €,
Po(¥) = Pu(y) = pule).
We point out that in fact this formula is independent of the choice of the fundamental vertex e.

We shall prove that, for every A € E+, it is possible to choose u large enough with respect to A, such
that Proposition 3.3.3 holds for every y € Vi (x) and every w € Q. For every chamber ¢ we denote by
L(x,c) the length of the element w = §(x, ¢), that is the number of hyperplanes separating 2 and ¢. On
the fundamental apartment A we define, for every v € Qp,

A(v,0Q) = min{{v,q;), i € Ip}.

We extend this definition to all special vertices of Q. (w), for any z and w, in the following way: for each
special vertex y € Q. (w),

A(y, 0Qq(w)) = A(pi3 (), OQ)-
We define, for k € N,
QQ(W) ={y € Qz(w) : 9(y,0Q:(w)) > k}.
Lemma 3.3.5. Let z € ]7(A) and w € Q; let k > 0. Then

(3.3.1) QR (w) C Qe(w),

for every ¢ € C(A) such that L(z,c) < k.

PROOF. We use induction with respect to k. If K = 0, then x € ¢, and hence Q,(w) C Q.(w). Since
{y € Qz(w) : O(y,0Q(w)) > 0} = Q,(w), we have the required formula. Assume now that (3.3.1) holds

for every ¢ such that L£(z,c) < k; let ¢; such that L(z,¢1) = k+ 1. If y(x, ¢1) is a gallery joining x to ¢1,
we denote by dy the chamber of this gallery adjacent to c¢;; then L(z,d;) = k and then

{y € Qu(w) : 9y, 0Q2(w)) = k} C Qua, (w)-
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Hence, if Q. D Qg4,, the result follows immediately. Otherwise, we have Q., C Qq, and for every
Y € (Qa, \ Qc,) N Qz(w), we have (p%(y), ) = k, for some o € RT, and (p%(y),a’) = k > k, for o’ # a.
On the other hand,

{y € Qu(w) : Ay, 0Qu(w)) = k+1} = {y € Qu(w) : Iy, 0Qx(w)) = k}\{y € Qu(w) : Iy, 0Qx(w)) = k}
and {y € Qz(w) : 0(y,0Q.(w)) = k} is the set of all y € Q. (w) such that (p%(y),«) = k, for some
a € R, and (pf(y),a’) = k' > k, for o' # . Thus (3.3.1) is true also in this case. O

Let z € 17(A) and w € ; for every w € W, we denote by @, (w) the intersection of all sectors in the
class w containing the chamber d,, such that 0(c,(w),dy) = w.

Proposition 3.3.6. Let wy € W; there exists wg € W such that, for every x and ¢ such that §(z, c) = w1,
and for every w € €,
Quy (W) C Qz(w) N Qe(w).
Moreover, for every chamber d of Q. (w),
pi(c) =Cp - d(ce(w),d)d(d, c).

PROOF. Let £k > 0 and Qr = {v € Qy : (v,0o4) > k, Vi € Ip}. Choose a chamber D C Q) and
let wy be the element of W such that D = Cj - wg. For every w, consider the chamber d,, such that
d(cz(w), dy,, ) = wy and the sector @, (w). If k is bigger than the length of wy, that is £(z,¢) < k, then
Lemma 3.3.5 implies that, for every w, the sector @, (w) lies on Q. (w) N Q.(w). Therefore wy = wy, is
the required element of W. Moreover, Proposition 3.3.2 implies that, for every chamber d of @, (w),
Pi(c) =Cp - 5(C$(W), d)é(d’ C).
O
Fix z and w; for every A\ € E*, we denote by zy the unique vertex of @, (w) such that o(z, z)) = X and
by @ (w) the subsector of @, (w) of base vertex z,. Moreover we denote by k) the number of hyperplanes
separating 0 and A.

Proposition 3.3.7. Let A € E“‘; there exists p € L+ (large enough with respect to \) such that, for every
pair x,y € Vi(z) and for every w € Q,

Quw) C Qu(w) N Qy(w).
Moreover, for every v such that v — u € E*’,
pf)(y) =K — U(ya Z,u) =V - U(Q»Zu)

PROOF. Let A\ € E*; consider Qg, = {v € Qo : (v,a;) > kx, Vi € Ip}. Choose a special vertex u € Qk, ;

for every w consider the special vertex z, of Q;(w) such that o(z, z,) = g, and the sector Q,(w) based

at z,. By Proposition 3.3.6, for every w, the sector @, (w) lies on Q,(w) N Q.(w); hence, by Proposition

3.3.3, p5(y) = p — o(y, z,). The same is true for every v such that v — u € L*; actually, if v — p € L+,

we have z, € Q,(w). O
We notice that Proposition 3.3.7 holds if (i, ;) > ky, Vi € Ij.

As a consequence of Proposition 3.3.7 we obtain the following result.

Theorem 3.3.8. Let y € Vi(z) and z € V,(x). If u is large enough with respect to A, then Q(z,z) C
Q(y, 2). Moreover, for allw € Q(z,z), pi(y) =p—v, if oy, z) = v.

PRrROOF. If w € Q(z, 2), then z € Q,(w) and therefore, if y is large enough, z € Q,(w), by Proposition
3.3.7, that is w € Q(y, z). The second part of the theorem follows immediately from Proposition 3.3.3. O

Corollary 3.3.9. Let y € Vi(z) and z € V() NV, (y). If v is large enough with respect to X and v is
large enough with respect to \*, then Q(zx, z) = Q(y, 2).

Let y € Vi (z) and w € Q. We know that pZ(y) = A, if y € @, (w). The following proposition describes
the retraction of the vertices of the set Vy(z).

Proposition 3.3.10. Let w € Q and z special; let X € L. For every y € Vy(z), then p(y) € 1.

PROOF. Let £y be the type of a minimal gallery connecting 0 to A; then each vertex y € V() is connected
to x by a minimal gallery (z, y) of type o;(f\) (see Section 2.12). This implies that pZ(v(z,y)) is a gallery
of type £ (eventually not reduced) on A joining 0 to u = p¥(y); thus there is a reduced gallery from 0
to u, of type, say, f. Let X' = spg;(0); since A = wyg;(0) and sp < wy, then X' € IT. On the other hand,
if ¢ and d are the chambers of v(xz,y) containing x and y respectively, there exists w € W such that
pr(c) = w(Cy) and hence pZ(d) = w(sp(Cp)). This implies that p = w(X\’) belongs to II. O
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It will be useful to determine how many vertices of V) (z) are mapped by p¥ onto an element of II.
We shall prove, using Proposition 2.18.2, that this number actually is independent of = and w.

Theorem 3.3.11. Let x € Vy\(x) and w € Q. For w,w, € W, then
{eceC(A) : d(z,¢) = wi, p(c) = Co- w}

is independent of x and w.
PRrROOF. Fix wy € W; by Proposition 3.3.6, there exists wg € W such that, for every chamber ¢ such that
d(x,c) = wy, and for every w € Q, the set Q,(w) N Q.(w) contains a chamber ¢’ such that §(z, ') = wp.
Moreover, by Proposition 3.3.2, pZ(c) = Cy - 6(cF, ') 6(c',¢) = Co - wo (¢, ¢). Hence, for any w € W,
{c:8(z,¢) = wy, p&(c) = Cow} = {c: 6(x,¢) = wi, wed(c,¢) = w} = {c:5(x,¢c) = wy,d(c,¢) = wy ' w}.
On the other hand, Proposition 2.18.2 implies that |{c : §(x,c) = wy, §(c/,c) = wy > w}| only depends
on 7(x), and wg,w;,wy ' w. This proves that |{c € C(A) : §(z,¢c) = w1, p=(c) = Cp-w}| is independent
of x and w. O

Finally we have

Theorem 3.3.12. Let z € Vi (z) and w € Q. For every A € LT and p € Il,,

{y € Valz) = p5(y) = n}|
is independent of x and w.

PROOF. Let A € LT and p € II,; let w € €. Consider the set

A={y : o(z,y) = A pi(y) = u}-

For any y € Vi(x), we denote by ¢, the chamber containing y in a minimal gallery v(x,y). Then y = v;(ca),
if 7(y) = 4, and d(x, c\) = wy. Thus

A ={v;(c), 6(z,¢) = wn, v;i(p5(c)) = p}.
Let W, be the stabilizer of p in W; for every w € W,,, consider the set of chambers

B, ={c : é(z,c) =wy, pl(c)=Ch-w}
and B = Uyew, By. We notice that, if v;(p%(c)) = p, then p%(c) = Co - w, for some w € W,,. Therefore
A = {vj(c), ¢ € B}, and then [A] = [B| = }_, ¢y, |Buw|- Since Theorem 3.3.11 implies that |By| is
independent of x and w, the same is true for |A|. O

As a consequence of this theorem, we set, for every € V) (z) and w € Q2

(3.3:2) N p) =Ky e Valz) = p5(y) = p}l.

It will be useful to compare, for every x € V) (z) and w € Q, the retraction p® with the retraction p,
with respect to x, defined in Section 2.20.

Lemma 3.3.13. Let ¢ be any chamber and let y be any special vertex of 17(A)
(i) If ¢ (respectively y) lies on the sector @ (w) opposite to the sector Q.(w), in any apartment
A(x,w), then
pu(c) = pa(c), (respectively pg(y) = pu(y))-
(it) If ¢ (respectively y) belongs to the sector (Q%)~ (w), a—adjacent to Q (w), in a convenient apart-
ment containing ¢ and Q(w), then
Pu(c) = sapa(c),  (respectively pi(y) = sapz(y)).
PROOF. First assume 7(z) = 0.
(i) We shall prove that p%(c) = pz(c), for every chamber ¢ of @ (w). Since ¢ lies on the sector @, (w),
then Q.(w) D Q(w), and hence ¢%, belongs to Q.(w). This implies that
po(c) = Cp - 0(c"(w),c).
On the other hand §(c*(w), ¢) = §(c*(w), proj.(c)) d(proj.(c),c) = wo d(proj.(c),c) and therefore
pi(c) = Co - wo 6(proja(c), ¢) = Cy - §(proju(c), c) = p*(c).
If y € Q. (w), we may choose v(z,y) in Q, (w); hence, if ¢ is the chamber of v(z,y) containing y, we have
pe(c) = pz(c) and hence pi(y) = p(y)-

(ii) We shall prove that pZ(c) = sapz(c), for every chamber ¢ of (Q%)™ (w). Since ¢ lies on the
sector (Q%)~ (w), then proj,(c) is the base chamber of the sector (Q%)~ (w), that is the opposite of
the base chamber ¢ (w) of the sector (Q%)(w), which is a-adjacent to (@)~ (w). This implies that
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d(c*(w),projz(c)) = s540(c¥(w),projz(c)) = sawp. From this equality it follows that §(c*(w),c) =
§(c®(w),projz(c)) 6(proj.(c),c) = saWo 6(proj.(c),c), and then

po(c) = Cp - sqWo 0(projz(c), c) = s4(Co - Wod(projg(c), c) = sap”(c).
If y € (Q2); (w), we may choose y(z,y) in (Q%); (w); hence, if ¢ is the chamber of v(z,y) containing v,

we have pZ(c) = sqpz(c) and hence p%(y) = sapz(y)-
If 7(x) = ¢ # 0, we only have to change § with §; and the proof is the same. a

3.4. Topologies on the maximal boundary. The maximal boundary 2 may be endowed with a
totally disconnected compact Hausdorff topology in the following way. Fix a special vertex x € V(A),
say of type i = 7(x); consider the family

B, ={Q(z,¢c), ceC}.
Then B, generates a totally disconnected compact Hausdorff topology on ; for every w € €2, a local base
at w is given by
Byw={Qz,c), cCQz(w)}.
We observe that it suffices to consider, as a local base at w, only the chambers ¢ lying on @, (w), such that,
for some A € LT, §(cy(w), c) = 04(t), if cp(w) is the base chamber of the sector Qq(w), and i = ().

Remark 3.4.1. For every special vertex y € lA)(A), let A\ = o(z,y); we denote by C, the set of all
chambers containing y such that §(x,c) = o;(ty), that is the set of all chambers containing y and opposite
to the chamber containing y in a minimal gallery connecting x and y. It is easy to check that

Qz.y) = |J a.c).

c€Cy
Moreover, for every chamber c choose § € 17(A) such that c lies on [z,7] and let X = o(x,7). Then
Qz,c) = U Qz,y).
yEV(2),cClz,Y]
Hence the family B, = { Qz,y), y € V} generates the same topology on Q as B, and, for every w € ,
a local base at w is given by By, = { Q(z,y), y C Qz(w)}.
Proposition 3.4.2. The topology on ) does not depend on the particular x € ]7(A)

PROOF. Let x,y special vertices and A = o(z,y). Let wy € 2. We prove that, for every neighborhood
Q(y, ) of wy, there exists a neighborhood Q(x, 2’) of wy, such that Q(z,2") C Q(y, 2). Actually, if 2’ is a
vertex of Qz(wo) N Qy(wo), such that z € [y, 2], then wy € Q(y,2") N Q(z, ') and Q(y, 2’) C Q(y,2). On
the other hand, if o(z, 2") = p, then, by Theorem 3.3.8, we can choose p large enough with respect to A,
so that Q(x,2") C Q(y, 2’). O

3.5. Probability measures on the maximal boundary. For each vertex x of )7(A), we denote by v,
the regular Borel probability measure on Q, such that, for every y € V(A),

_ W -1 _ « @ .
@) = Ny = YL T ) o2 ity vita)
a€Rt

We notice that in fact there exists a unique regular Borel probability measure on 2, satisfying this
property; actually v, is the measure such that, for every f € C(f),

ﬂﬂ=4ﬂmmwm,

where J denotes the linear functional on C(£2) obtained as extension of the linear functional on the space
of all locally constant functions on €2, defined as

I =N Y
o(x,y)=\
if, for each y € Vi\(z), we set f, = f(w), Yw € Q(z,y).
The following property of the measure v, is a consequence of Theorem 3.3.6 and Theorem 3.3.11.
Theorem 3.5.1. Let z € ﬁ(A) and w,wy € W. For each ¢ € C(A), such that §(x,c) = wo,
ve({w e Q : pl(c) =Coh-w})

is independent of x and c.



Eigenvalues 23

PRrROOF. Fix wy € W and a chamber ¢ such that d(x, ¢) = wo; by Proposition 3.3.6, there exists wy; € W
such that, for every w, Qu, (w) C Q(w)NQ.(w); moreover pf(c) = Cy-d(x,d)d(d, ), if d is any chamber
of Qu, (w). In particular,

Pz(c) =Co- w16(dw1 (w)v 0)7
if dy,, (w) denotes the chamber of Q,,, (w) such that 6(z, d,, (w)) = w;. Therefore, for any w € W, we have

pZ(c) = Cp - w if and only if w = w1d(dy, (W), ¢), that is if and only if §(c, dy, (w)) = w™lw;. Hence, by
1

setting w™twy = we and C(wy,ws) = {¢ : §(z,¢') = wy, d(c, ') = wa}, we have
{weQ : plc)=Ch-w} = U Qz,c).
c’€C(wy,wa)

This implies that
{weQ s g =Couh= 3 ().
¢’ eC(wy,w2)
On the other hand, v, (Q2(z, ¢')) has the same value for each chamber ¢’ such that §(z, ¢’) = wy; therefore,
by fixing any chamber ¢’ such that §(z, ) = w,
ve({w € Q 1 pZ(c) = Co-w}) = v, (Qz, ) { € C(A) : 6(z,) = w1, §(c, ) = wa}|.
Thus Theorem 3.3.11 implies that v;({w € Q : p%(c) = Cp - w}) is independent of the choice of z and ¢,
but only depends on w, wg. ad
A version of this theorem holds for the set of vertices.

Theorem 3.5.2. Let = be a special vertex of ﬁ(A), let A € LT and w € II\. For each y € 17(A), such
that o(z,y) = A,

ve({we Q= pi(y) = ni)
is independent of x and y.

Proor. Fix y € ]A)(A) such that o(z,y) = A, and consider, for every p € Iy, the set
Qu={w e : py) =pn}
If 7(x) =4, 7(y) = j, then 7(X,) =1 = 0, *(j). Therefore

Q ={weQ : ulpilen) = i,
if ¢, denotes, as usual, the chamber containing the vertex y in a minimal gallery connecting x and y.
Therefore, Q, ={w e Q : pi(y) =Co-w, we W,} = UweW,J,{‘*’ e : pi(y) = Co - w}, if W, is the
stabilizer of p in W. Thus Theorem 3.5.1 ends the proof. a

4. THE a-BOUNDARY (),

4.1. Walls. Let A be an affine building and let R be its root system. Consider on the fundamental
apartment A = A(R) the fundamental sector Qp = Qo(Cp). It is straightforward to call walls of Qg the
walls of C containing 0 (see Section 2.10). Actually, we slightly change this definition and we shall call
wall of Qg the intersection with Qg of any hyperplane H; = H,,, i € Iy. Moreover, we say that a wall of
Qq is the i-type wall of Qq, for each ¢ € Iy, if it lies on H;. This is the case if and only if it contains the
co-type ¢ panel of Cy. For every i € I, we denote by Hy,; the i-type wall of Q.

We extend this definition to each sector of A by declaring that, for every special vertex X, in A, and
for every chamber C sharing X, the walls of the sector Q,(C) based at X are the intersection with

k «a e Rt k € Z, which is a wall of the chamber C. Moreover we say
that a wall of @(C) has type i, for some i € Iy, if there is a type-preserving isomorphism on A mapping
the wall on an affine hyperplane Hf = ng for some ¢ € Iy and k € Z.

The definition of wall can be extended to each sector of the building; actually, if Q. (c) is any sector
of A, and A is any apartment of the building containing Q. (c), then the walls of Q. (c) are the inverse
images of the walls of the sector @ (C) = 1, (Q(c)), under a type-preserving isomorphism ¢, : A — A.
Moreover, for every i € Iy, a wall of Q. (c) has type 4, if its image in A has type i. The previous definition
does not depend on the choice of the apartment A containing the sector and of the type-preserving
isomorphism )y, : A — A. For every sector @, (c) and for every i € Iy, we denote by hy ;(c) = hy i (Qz(c))
the type i wall of the sector. If w is any element of the maximal boundary €, then, for every « € V;,(A)
and for every i € Iy, we simply denote by h; ;(w) the wall of type ¢ of the sector Q. (w). If « is a simple
root, that is a = «, for some i € I, for every special vertex = of A, and for every w € €2, we shall denote
by hyo(w) the wall of Q. (w) of type i and we simply call it the c-wall of Q. (w). In general, for every
simple root «, we shall denote by h, o, the a-wall of any sector based at x.

QA (C) of any affine hyperplane H¥



24 A.M. MANTERO, A. ZAPPA

Definition 4.1.1. Let z,y € Vo, (A), @ # y; let hy o and hy o be a-walls, based at x and y respectively.

(i) The walls hy o and hy o are said to be equivalent if they definitely coincide, i.e. there is h, o such
that h. o C hgo N hy o

(ii) The walls hy o and hy o are said to be parallel if they are not equivalent , but there is an apartment
containing them and, through any type-preserving isomorphism 1y, of this apartment onto A, they
correspond to walls of A, lying on parallel affine a-hyperplanes HE, HJ | for some k, j € Z.

(111) The walls hy o and hy o are said to be definitely parallel if there exist hyr o C hyo and hyr o C hy o
which are parallel. If hy o and hy o are definitely parallel, we call distance between the two
walls the usual distance between the two hyperplanes of A, containing the images of their parallel
subwalls, that is the positive integer number |j — k|, if ¥ip(he.o) = HE and . (hy.o) = HI.

We remark that if h, o, and hy . are definitely parallel, there exists an apartment containing, say, s«
and a subwall of hy 4.

Proposition 4.1.2. For every w € Q and for every pair of special vertices z,y € Vq,(A), the walls
hyo(w) and hy o(w) are equivalent or definitely parallel.

PROOF. Fixw € Q, z # y in V;,(A) and consider the a-walls by o(w) and hy o(w). Assume that by o(w)
and hy o(w) are not equivalent and prove that they are definitely parallel. We point out that, if there
exists an apartment A containing hg o(w) and hy o(w), then the two walls are parallel. Actually, if w’
denotes a boundary point a-equivalent to w and lying onto the apartment A, then p?, is a type-rotating
isomorphism from A onto A, such that p2, (hy o (w)) lies on H, and p%, (hyo(w)) lies on HE, for some
k € Z. Hence, in order to prove that hy o(w) and hy o(w) are definitely parallel, we only have to prove
that there exists an apartment A containing subwalls hy o(w) C hy o(w) and hy o(w) C Ay o(w). To this
end, we shall use induction with respect to the distance between z and y.

We consider at first the case when V,,(A) contains vertices of different types. This happens for every
building of type different from 6’; If d(z,y) = 1, the vertices x and y are adjacent; then there exists a
chamber ¢ such that z,y € ¢; if A is an apartment containing w and ¢, we have Q. (w), @y (w) C A. Thus
hZ (w), h¥ (w) lie on A. Moreover the distance between h%(w) and hY (w) is zero or one. Now assume that,
when d(z,y) < n, then h; o(w) and hy o(w) have subwalls by o (w) and by o(w) lying on an apartment;
hence hys o(w) and hy o(w) are parallel and their distance is less than or equal to n. Actually we may
assume, without loss of generality, that d(2’,y’) < n. Let d(z,y) = n + 1 and choose z such that
d(y,z) =1 and d(z,z) = n. By inductive hypothesis, there exist a’, z’, with d(a’,2") = n, such that the
subwalls hyr (W) C hgo(w) and by o(w) C h, o(w) lie on an apartment A; and are parallel, at distance
less than or equal to n. Without loss of generality, we may assume, for ease of notation, that ' = x and
2 = z. Moreover, if ¢ is a chamber such that y,z € ¢, then there exists an apartment Ay, containing
hy.a(w), hso(w) and c. We shall prove that there exists an apartment A containing hy o (w), b, o(w) and
hy,a(w). If hy o(w) lies on Ay, then Ay = Ay, and the required apartment is A; and, on this apartment,
the distance of the parallel hyperplanes hy o(w), hy o(w) is less than or equal to n. If, on the contrary,
hy.o(w) does not lie on Aj;, we consider two isomorphisms 1 : A; — A and 1, : Ay — A such that
1Z)l(hz,oz(w)) = ¢2(hz,a(w)) = HO,a; then,

wl(hx,a(w)) = Hh,on wQ(hy,a(W)) = Hk,ou
for some h,k € Z. When hk < 0, then Hj , and Hj lie on distinct half-apartments A({Q,A&w say
Hpo C A({a and Hy o C Ag,; in this case consider the apartment A = ¢~'(A), if ¥ = ¢, on Af, and
¥ =19 on Ay ,. On the contrary, when hk > 0, then Hj o and Hy o lie on a same half-apartment Aa"a
or Ag , say Hya, Hio C Af,; in this case consider the apartment A = ¢~1(A), if ¢ = ¢ on Aj, and
Y =128, on Ay . In both cases A is the required apartment, containing h, o(w), b o(w) and hY(w).

Assume now that A has type 52 In this case, all special vertices have type 0 and we can not choose
z,y adjacent. However, if we choose as x and y the vertices of type 0 of two adjacent chambers c, ¢/, it is
a consequence of the geometry of the building that the walls hy o (w), by o (w) are definitely parallel and
have distance 0 or 1. Hence we can use the same inductive argument as before, to conclude. O

We point out that if A has type 5’n or EE’M a wall of type n of any sector of the building contains
special vertices of only one type, that is only of type 0, or only of type n. (The same is true for a wall of
type i, < n, of a building of type En)

From now on we shall limit to consider walls based at special vertices of the set 9(A)

4.2. The a-boundary 2,. Let a be a simple root, that is o = «;, for some i € Iy; for every special
vertex « of V(A), and for every w € Q, we consider the a-wall hy o(w) of Qz(w).



Eigenvalues 25

Lemma 4.2.1. Let wy,ws € Q. If there exists a vertexr x € ]A)(A) such that hy o(w1) = hyo(ws2), then
hy o(w1) = hy o(w2), for every y € V(A).

PROOF. (i) At first assume that there exists an apartment A containing Q,(wi) and Q,(w2). Since
hza(w1) = hy o(w2), there exists a type-rotating isomorphism ¢, : A — A, mapping Q(w1) onto Qg and
Qz(w2) onto s,Qp. Hence the same property holds for each y € A. This proves that hy o(w1) = hy o(w2),
for every y € A. On the other hand, if y ¢ A, the sectors Qy(wi) and Qy(w2) do not lie on A, but
there exists z € A, such that Q.(w1) C Qy(w1), Q:(w2) C Qy(w2) and h. o(w1) = hsq(ws). Hence
Qy(w1) N Qy(w2) contains h, o(w1) = hs o(w2), besides y. This implies that Q(w1) N Qy(w2) contains
the convex hull of y and h, o(w1) = h; o(w2), which includes the wall of type a of the two sectors; thus
hy,a(wi) = hya(w2).

(ii) If there is none apartment containing @, (w1) and Q. (w2), then there exists a vertex z such that
Q:(w1) C Qu(wr) and Q,(w2) C Qu(w2), and Q,(w1) and Q,(w2) lie on some apartment .4; moreover
hzo(w1) = bz o(w2). Hence, using the same argument as in (i), we complete the proof. O

Definition 4.2.2. Let w,w’ € Q. We say that w is a-equivalent to W', and we write w ~q W', if, for
some z, hq (W) = hgeW).

Lemma 4.2.1 implies that the definition of a-equivalence does not depend on the vertex x such that
ha,o(W) = hao(w'). Moreover, if w is a-equivalent to w’, and A = A(w,w’) denotes any apartment having
w and w’ as boundary points, then for every x € A, the sectors @, (w) and Q. (w’) are a-adjacent, that is
there exists a type rotating isomorphism 9y, : A — A, mapping Q. (w) onto Qp and Q. (w’) onto $,Qo.
On the contrary, if  does not lie on any A(w,w’), then Q. (w) N Q. (w’) contains properly their common
a-wall.

Definition 4.2.3. We call a-boundary of the building A the set Q. = Q/~q, consisting of all equivalence
classes [w]q of boundary points and we denote by n, any element of Q. Hence 1y = [W]a, if w belongs to
the equivalence class 1.

Fix w € Q and consider the set Hq(w) = {hya(w), = € V(A If ' ~q w then, for every =,
hgo(W') = hy o(w) and hence Hqo (w) = Hao(w'). Therefore the set Ho(w) only depends on the equivalence
class 1, = [w], represented by w and we shall denote Hy, () = Ha(w), if w € 1. Moreover, if w £, o',
then, for every z € V(A), hy.o(w) # hyo(w') and hence Ho(w) NHeo(w') = 0. This implies that the map

N = Ha(Na)

is a bijection between the a-boundary €, and the set {Hq(74)}. In particular, for every z € V(A),
each element 7, of Q, determines one a-wall based at x; we shall denote this wall by h,(n,). Of course,
hys(Na) = hy,o(w), for every w € n,.

4.3. Trees at infinity. Let us consider the a-boundary €2, corresponding to a simple root « of the
building. We claim that it is possible to construct a graph associated to each element 7, of €, and this
graph is in fact a tree, whose boundary can be canonically identified with the set of all w belonging to
the class 7,. To this end, we shall examine in details, for any class 7, the set H, (1) and we prove that
the set Hn (1) determines a tree. Proposition 4.1.2 implies the following corollary.

Corollary 4.3.1. For every 1, € Qq, the set Ho(na) consists of walls equivalent or definitely parallel.

Let 74 be a fixed element of 2 ; for every = € V(A) consider the wall hy (1) of Ha (7)) and the class
of all walls h,(n,), equivalent to h,(n.), according to Definition 4.1.1, (i). We simply denote by x this
equivalence class, represented by the wall h;(n,). Obviously, x =y if and only if h;(1.) and hy(n.) are
equivalent.

Remark 4.3.2. Consider, on the fundamental apartment A, the a-wall of any sector Qx equivalent to
Qo. Each of these walls lies on an affine hyperplane HE, for some k € Z. For every k € Z, we simply
denote by Xy, the class of all walls lying on H, and we set

I'y = {Xk, ke Z}

For every apartment A of the building we consider, for any 1., the walls of Ha(na) lying on A, and the
equivalence classes x represented by these walls. By a type-preserving isomorphism )y, : A — A, each x
maps to an element Xy, of Iy, for some k € Z.

We recall that if the root system R has type C,, or BC,, and o = av,, then, for every j € Z, H?
only contains special vertices of type 0 and H2I+L only contains special vertices of type n. (The same is
true if R has type B, and o = «y,i < n). Hence in this case it is natural to endow the set Ty with a
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labelling in the following way: we say that Xy has type 0, if k = 2j and has type 1, if k = 25 + 1, for
j € Z. This labelling can be extended to all equivalence classes x represented by walls of Hao(na) lying
on any apartment A, and hence to all walls of the building; we say that x has type 0 if (through any
type-preserving isomorphism) it maps to some Xs;, and has type 1, if it maps to some Xgjy1.

Definition 4.3.3. Let n, € Q.. We denote by Ty (1) the graph having as vertices the classes x of equiv-
alent walls associated to 1., and as edges the pairs [X,y] of equivalence classes represented by (definitely
parallel) walls hy(ne) and hy(na) at distance one.

For every w € 1), we can then associate to w the graph T, (w) = T, (n4) and, for every w € €2, we can
associate to w the graph of the element 7, of the a-boundary, represented by w.

We recall that, according to notation of Section 2.16, the simple root « belongs to Ry if and only if R
is not reduced and a = a,, = e,,. In this particular case, for every k € Z, we have H¥ = H2¥; hence the

parallel hyperplanes of A, orthogonal to o are the hyperplanes HY , for all h € Z. Moreover, for every
keZ,

9202k = ok = 4o =T, 920,2k+1 = 420 = P-
In all other cases, that is for all simple root of a reduced building or for all simple root «;,i # n, for a
building of type BC,,, we always have a € Ry, and hence

dak = o, forevery keZ.

Proposition 4.3.4. For every simple root «, and for every n, € Qq, the graph Ty (1) is a tree.

(i) If o € Ry, the tree is homogeneous, with homogeneity qq .
(i) If a € Ry, the tree is labelled and semi-homogeneous; each vertex of type 0 shares gaq = p edges
and each vertex of type 1 shares qo, =1 edges.

PROOF. We have to prove that T, (1) is connected and has no loops.

Let x, y be two vertices of the graph. If w € 1, and hy o(w), hy o(w) are representatives of x and y
respectively, we may assume, without loss of generality, that the two walls are parallel, and hence they
lie on an apartment 4. Let n be the distance between the two walls on this apartment. We can choose
Zo,&1,...,Zn on A, such that zg € hy (W), Tn € hyo(w) and d(z;—1,2;) = 1, for every i = 1,...,n.
The walls hy, o (W), Aay o), ... ks, o(w) are pairwise adjacent on A and

hgy.a(W) ~ hy (W),  ha, olw) ~ by o(w).

Therefore, if x; is the vertex of the graph represented by hy, o(w), for i =0, ..., n, then d(x;_1,%;) = 1,
fort=0,...,n and x = Xg, ¥ = X,. This proves that x, y are connected by a path of length n.

For every n > 2, let us consider on the graph a path xg,...,X,, such that x; 1 # x;,X;41, for
i = 1,...,n — 1. We shall prove by induction that x¢y # x,. If n = 2, the property holds by def-
inition; assume the property is true for n — 1 and we show that it is true also for n. Actually, if
hao.a(w), «ooy hg, 1 o(W), ha, o(w) are representatives of the vertices xg, ..., Xp—1, X, respectively,
we know that there exists an apartment A containing all the walls hy, o(w), ..., hy, ,.o(w) and on
this apartment the distance between hy, o(w) and hy, , o(w) is n — 1. On the other hand, it is possible
to choose the apartment A in such a way that also the wall hy, o(w) lies on it. On this apartment,
d(hgy,a(w), he, o(w)) =n, as hy, o(W) # hye, ,.o(w). This proves that xg # x,,.

Finally, if R is not reduced and a = «,, = e,, the parallel hyperplanes of A, orthogonal to «, are the
hyperplanes H% , for all k € Z. Moreover, for every j € Z,

420,25 = o,k = qa =T, 920,2j+1 = Q200 = P-
Hence, in this case the number of edges sharing any vertex x of type 0 is r, while the number of edges
sharing the vertex y is p.
In all other cases, that is for all simple roots of a reduced building or for all simple roots «;, i # n, for
a building of type BC),, we always have « € Ry, and hence

Gak = Ga, forevery k¢ Z.

Therefore, each wall h%(w) is adjacent to g, walls h¥(w); hence each vertex x belongs to g, edges. O

Remark 4.3.5. For every apartment A, the walls hy o(w) of H(na), lying on A, determine a geodesic
Y(Nw) of the tree T(n.), consisting of all vertices x associated to these walls and of all edges connecting
each pair of adjacent vertices xX,y.

The set Ty can be seen as the fundamental geodesic of the tree, since each geodesic (1, ) of the building
is isomorphic to L'y through any type-preserving isomorphism ¥y, : A — A, if A denotes any apartment
containing y(Ne)-
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The tree T'(n,,), is labelled and semi-homogeneous only when R is not reduced and o = a,, = e, i.e.

only when the building has type Eén; in this case 17(A) consists only of vertices of type 0. Therefore
for such a tree it is straightforward to restrict to consider only its vertices of type 0. Hence, if x,y are
vertices of type 0, then the geodesic [x,y] has length 2n, for some n € N. Moreover on the fundamental
geodesic 'y we consider only the vertices Xo,, for n € N.

Proposition 4.3.4 shows that, for every element 7, € §2,, we may identify the set H,(n,) with a tree
T (na). Moreover trees To(Na,1), Tw(na,2) associated to any two 1,1, 7)a,2 i {1 are isomorphic. For
every z € V(A), the vertex x can be seen as the projection of z onto the tree Ty (1, ). In this sense we
can refer to T, (14) as to the tree at infinity associated to the element 7, of the a-boundary.

Proposition 4.3.6. For every 1, € Qq, the set
{weQ: wen,}
can be identified with the boundary 0T, (1) of the tree To(nq)-

PROOF. We fix z € V(A). For every w in the class 7jq = [w]a, we consider the sector Q,(w) based at x
and its wall A% (w). Let us denote by hy’ (w), j > 0, a sequence of walls lying on Q. (w) such that

het (W) = hg(w) and  d(hy (W), hg7*H (w)) =1, j = 0.

The sequence x;,j > 0, is a geodesic of the tree Ty, (1,) starting from xo = x and hence it determines, as
usual, a boundary point @ of the tree. The map w — @ is a bijection of 7, = [w], onto 9T, (1), since
each boundary point of the tree can be obtained from a suitable w in the class 7, with the procedure
described before, and @y # wa, if wy # we are two elements of the same class 7. O

Since the trees To(Na,1); Ta(na,2) associated to any two 7q,1, 7a,2 in £, are isomorphic, the same is
true for their boundaries 0T, (1a,1), 0Ta(1q,2). We denote by T, an abstract tree such that

Ta(na) ~ Ton vna S Qa;
moreover we denote by t any element of T, and by b any element of its boundary 07,.

As a consequence of Proposition 4.3.6, the maximal boundary 2 of the building can be decomposed
as a disjoint union of boundaries of trees, one for each equivalence class 1, = [W]q :

Q= U T (Na).
Na €Qa

The previous decomposition implies that each boundary point w of the building can be seen as a pair
(Na, b) € Q4 x 9T, where 7, is the equivalence class [w], containing w and b is the boundary point of
T, corresponding on 07'(7,) to w. In this sense we may write, up to isomorphism,

Q=Q, x IT,.

4.4. Orthogonal decomposition with respect to a root «.
Definition 4.4.1. Let s, be the reflection with respect to the linear hyperplane H, of A. For every vector
v of the Fuclidean space supporting A, we set

UV — S UV + S
Py (v) = 9 ) Qa(v) = 9

By definition, P, (v) + Qu(v) = v and Qu(v) — P (v) = sqv. Moreover
Pa(sav) = _Pa(v) and Qa(sav) = Qa(v)'

We observe that, for every v, Qq(v) lies on H, and P,(v) is the component of the vector v, in the
direction orthogonal to the hyperplane H,, that is in the direction of the vector «.

Proposition 4.4.2. Let wy,ws be a-equivalent. Then, for every x,y € ﬁ(A),
Qa(,%2 (y) ~ Puws (‘T)) = Qa(pwl (y) — Puwy (:L‘))

If x,y belong to an apartment containing both the boundary points wi,ws, then

Pa<pw2 (y) — Pws (CL‘)) = _Pa(pwl (y) — Puwy ({L‘))
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PROOF. Let 2,y € ﬁ(A) and 7, = [w]a, for every w € Q. Consider the tree T, (7,) and let x and y be
the vertices of this tree, associated to x and y respectively.

If x =y, the walls h; o(w) and hy o(w) are equivalent, and hence they intersect in a wall h, o(w). In
this case, Qq(pw(y) — pw(x)) is given by the difference between o(y, z) and o(z, 2).

Assume now x # y. If b is the boundary point of the tree corresponding to w, we consider the geodesics
[x,b], [y,b] from x and from y to b respectively. We denote by z the vertex of the tree such that [z, b] =
[x,b] N [y, b], and by z a vertex of the building corresponding to z, such that Q.(w) C Q(w) N Qy(w).
In the case when [y, b] C [x,b], then z =y, and hence h%(w) C h¥(w). Otherwise, h, o(w) and hy o(w)
are definitely parallel; if h, o(w) is the subwall of hy o(w) parallel to h, o (w), it is easy to check that
Qalpu(y) — pu(x)) is given by the difference between o(y, z) and o(z,z’). In the case when [x, b| C [y, b],
a similar argument shows that Q. (pw.(y) — pu(z)) is given by the difference between o(y,y’) and o(z, 2),
if we denote by hy o(w) the subwall of hy o(w) parallel to h, o(w). Finally, if z # x and z # y, then both
the walls hy o(w) and hy (w) are definitely parallel to h, (w). If we denote by hys o(w) and by hy o(w)
the subwall of hy o(w) and of hy, (w) respectively, which are parallel to h, o(w), then Qu(pw(y) — puw(z))
is given by the difference between o(y,y’) and o(x,z’). In every case Qu(pu (y) — pu(z)) is a vector lying
on the hyperplane H, and it is the same for all boundary points a-equivalent to w. Assume now that
there exists an apartment containing z,y and both the boundary points wi,ws. In this particular case,

Pus () — Pun () = 8a(pPw, (Y) — puw, (2)). Therefore in this case

Po(puws (Y) = Pus (7)) = = Palpuw, (Y) = pu, (7))-
O

4.5. Topologies on 2,. As the maximal boundary, also each a-boundary €, may be endowed with a
totally disconnected compact Hausdorff topology. Let x,y be special vertices in V(A); consider the set
Q(x,y), defined in Section 3. We define a set of €2, in the following way:
Qa(z,y) = {Na = [W]a, w € Az, y)}.
Let z € V(A); the family
By ={Qa(z,y), y € V(A), y € U hg}

generates a (totally disconnected compact Hausdorft) topology on €,; for every 1, € Qq, say 1, = [W]a,
a local base at 7, is given by

B, ={ Qulz,y), ¥ € Qz(w)}.
We observe that there exists a a-wall based at x containing y, if and only if y € Vy(z), with A € Hy 4.
Then, for every pair of vertices z,y € V(A), such that y € V\(z), with A € Hy o, we have

Qa(z,y) ={Na € Qa : y € hi(na)}-
Moreover the family
BE ={ Qalz,y), y € V(A), y € URE}

generates the same topology on €2, as before; hence, for every 7, € 4, a local base at 7, is given by

Bm,na - { Qa(xay)v y C hx(na)}

By the same argument used for the maximal boundary, we can prove that the topology on 2, does not
depend on the particular = € V(A).

4.6. Probability measures on the a- boundary. For every z of 17(A), we define a regular Borel
measure v on {2, in the following way. For every y € V(A), let A = o(x,y); then o(x,y) = P, if x
and y are the projection of x and y on the tree at infinity associated with any w € Q(z,y). Thus define
NE .

Ny
it Ng \ = {z : 0(x,2) = PaA}|. By the same argument used on the maximal boundary we can in fact

prove that there exists a unique regular Borel probability measure v% on {2, satisfying this property. We
notice that if A € Hy o, then y = x and then P, A = A. Therefore in this case

V;X(Qa(xvy)) = Vw(Q(‘T7y))

vy (Qal,y)) =

Define
Rl ={BeR", B+ a,2a};
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then, recalling the formula for N given in Corollary 2.16.2, we have

2 (D _ Wilg™!) —<AB> <A B> i Ne H
x « xay)) - _1 H qﬂ QQ[j ) 1 € 0,y
Wi(g1) sert

Wilg (1 +q! - ,
Vg (Qa(z,y)) = (W()q(l) ) H 4s <Ap> q;ﬂ’\’ﬂ>7 otherwise.

BERE

4.7. Topologies and probability measures on the trees at infinity. Let T;, be the abstract tree
isomorphic to each tree at infinity T, (n,) and let 9T, be its boundary. As usual, we denote by ﬁ(Ta)
the set of all vertices of T, when the tree is homogeneous, or the set of all vertices of type 0, when the
tree is semi-homogeneous. For every t € V(T,,) and every b € 0T, we denote by y(t,b) the geodesic
from t to b. It is well known that, for every t € V(T,), the family

By = { B<t7t/), t' e 9(Ta)}7

where, for every t,t' € V(Ty), B(t,t') = {b € 8T, : t' € y(t,b)}, generates a totally disconnected
compact Hausdorff topology on 0T, ; moreover for every element b, a local base at b is given by

Bt,b = { B(t7t/)7 t' e ’Vt(b)}'

We shall denote by pt the usual probability measure on 0T, associated with the isotropic random walk
on T, starting from the vertex t. We refer the reader to [5] and to [1] for the definition of this measure.
We recall that, in the homogeneous case, with homogeneity q,, we have, for every vertex t’,

1
B(t,t")) = 1
pe(B(t,t)) i1

if n is the length of the finite geodesic [t, t']. Otherwise, in the semi-homogeneous case, with homogeneities
p,r, we have, for every vertex t’, at distance 2n from t,

pe(B(t,t7)) =

(1 +7) (pr)' ="

Since, for every element 71, € ,, the tree T'(7,) is isomorphic to the abstract tree T,, all previous
arguments apply to 97(n,), if t is replaced by the projection x on T'(1,) of some = € l?(A), and in
particular e is the projection on T'(n,) of the fundamental vertex e of the building. We point out that,
for every z € ﬁ, the measure pyx on 07, (7,) defined before can be seen as a measure on €2, supported
on [wla, if N4 = [w]a. Actually, it is easy to check that, if 1, = [w]., then, through the identification of
0T (o) with the subset [w], of the maximal boundary, the measure jix coincides with the measure vg
on (2, obtained as restriction to [w], of the probability measure v, on €.

4.8. Decomposition of the measure v,. Let z € V(A); let x be its projection on the tree T(1q)
associated with an assigned w €  and let t be the element of the abstract tree T,, which corresponds
to the vertex x. For ease of notation, from now on, we identify t with x. If we identify the maximal
boundary €2 with Q, x dT,, according to Section 4.3, we claim that each probability measure v, splits
as product of the probability measure v on the a-boundary 2, and the canonical probability measure
tx on the boundary of the tree T,. In order to prove this decomposition we consider, for z,y € 17(A),
the set Q(z,y). f w € Q(z,y) and w = (94, b), then n, € Qu(z,y) and b € B(x,y). Hence

Uz, y) = Qu(z,y) x B(x,y).
Proposition 4.8.1. For every © € V(A), then vy = v X [ix.

PROOF. Let 2,y € ﬁ(A) and y € V) (z). Let x and y be the projection of x and y on the tree at infinity
associated with any w € Q(z,y). We prove that

ve(Qz,y)) = v (Qa(z,9)) px(B(x,y))-

If X € Hyqo, we proved that v,(Q(z,y)) = v (Qa(x,y)); on the other hand, in this case y = x, and
therefore B(x,y) = 0T,. Hence ux(B(x,y)) = 1 and the required statement is proved. Assume now
A & Ho,a; in this case ux(B(x,y)) = Np_ . Then the required formula is a direct consequence of the
definition of v (Qu(z,v)). O
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5. CHARACTERS AND POISSON KERNELS

5.1. Characters of A. Consider in the fundamental apartment A the co-weight lattice L. We call char-
acter of A any multiplicative complex-valued function x acting on L :

YA+ A2) = x(A1) x(X2), VAL, Ag € L.

We assume, without loss of generality, that a character of A is the restriction to L of a multiplicative
complex valued function acting on V. We denote by X(L ) the group of all characters of A. If n =dimV,
then X(L) = (C*)", and the group X(L) can be endowed with the weak topology and also with the
usual measure of C™.

The Weyl group W acts on X(Z) in the following way: for every w € W and for every x € X(Z),

(wx)(A) = x(w()), forall AelL.
It is immediate to observe that wy is a character and we simply denote xyV = wy.

5.2. The fundamental character y, of A. We shall be interested in a particular character of A.

Definition 5.2.1. We denote by xo the following function on L:
= [T ™ e, vael.
a€ERT

Being « a linear functional on the vector space V supporting A, the function yg is a character of A, called
the fundamental character of A. Since each « in the previous formula is a positive root (with respect to

Qq) then xo(A) > 1, for all A € +.
If R is reduced, then 2« ¢ R and therefore ¢o, = 1, for every o € R; hence

I o

a€ERT

In particular if R is reduced and all roots have the same length, that is for buildings of type IZIW ﬁn, EG, E7
and Eg, then q, = g, for every o € RT and

Xo(A) = qZaert (M) = g2A8)

if 0 = %(ZaeR* «). Instead, if R is reduced but it contains long and short roots, then, denoting by «
any long root and by 3 any short root and setting 6; = (3" a), 6, = (3 ), it follows that

xo(A) = q2<A,6z> p2<k,65>.
This happens for buildings of type En, én, Fy and Gs.

Assume now that R is not reduced, that is the building is of type (BC),,. In this case R = Ry U
Ry U Rs. We denote by «a, 8 and v any root of Ry, Ry and Ry respectively. Then, keeping in mind that
= {B/2, B € Rl} it follows that

H q H qAB H qu (SO H q H qAB H q<AB/2 —{X\.8/2)

a€RJ BERT YERY a€ERY BERT BERT
H q<’\ NeY: (m/z qﬂ)wﬂ/?) _ q2<>\,50>(pr)</\751>
a€ERY BERT

1f(50 = %(ZOZ), (51 = %Zﬂ
‘We notice that, by Proposition 2.16.1, then, for every \ € f"’,
XO()‘) = th

More generally, if A is any element of E, and ty = uxg;, with uy = s, -+ - 5;,, then the same argument
used in Proposition 2.16.1 shows that,
-1
= o 11 «*

jeJt JEJ—

where
Jt = {.7 P80yt .Sij—l(co) = 8iy - * Sy (CO)}

Jm =14 ¢ si,8i;(Co) < sy 50, (Co)}-

Actually, we notice that, when X is dominant, then J~ = @ and thus J* = {1,--- ,7}; so we get the
previous formula for yo(\).
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We can easily compute the fundamental character in each simple co-root «V. We consider separately
the reduced and non-reduced case.
Proposition 5.2.2. Let R be a reduced root system; for every simple root v, then
xo(a”) = gz
PROOF. We notice that, for every simple o, we have (", §) = 1. This is a consequence of (13.3) in [6]. O

Proposition 5.2.3. Let R be a non-reduced root system; then
(7’) XO(av) = q23 fOT EVETY 0¥ = €; — €441, i= 13 N — ]-7

(27’) XO(ﬂv) =pr, fOT' ﬁ = 2ep.
PROOF. We compute xo(a) and xo(8Y) by using the formula of xo(A) given above.

(i) fa=a; =e; —ej41, for some i =1,...,n— 1, then o = «;, and, by definition,
r (ai,8/2)
XO(OL;/) = XO(ai) = H q<(¥i,a> H p<ai7ﬁ> <p>
a€RY BeR}
WmZ B/2>
p

‘We notice that

Z a=2[n—1)es+(n—2)ea+---+ep_1] and Z BzZZek.
k=1

ozERar BeRT
Hence, for every i =1,--- ,n—1,
(o, Z a)=2[(n—4i)—(n—i—1]=2 and (a Z B) =0,
ozERO+ QGRT

since (e; — €;41,2e,) =2,—-2,0,if k =4,k =i+ 1 or k # 4,7+ 1 respectively. Therefore

(00 _ 2 (0i8) _ r\ e
[T d=¢ and [ »?=1] —1

p
a€RT BERT BeERT

and we conclude that xo(a)) = ¢2, for every i.
(i) If B = B, = 2ey,, then BY = e,; therefore

’ RN
wi) = [ ¢ I »@ ()

p
a€ERY BERT

WXQLwR$“>pWX§l%RT5> <T)<&w2%eafﬁm>
p

On the other hand

<7\L/7 ZOL>:O and <7\L/7 Zﬁ>:2’

a€ERY BeRT
since (BY,ex) = (en,2ex) = 2 or 0, according if k = n or k # n. Therefore
(8,5
Y \ T r
IT %=1, II »*7=» ]I (p) "
aERY BERT BeRY

and we conclude that yo(8Y) = pr.

For every simple root o we define, for every A € E,
ABY —(AB
xe) =11 g a7,
BeR

Obviously x§ is a character on A; moreover it is easy to check that, if A\ € Hy o, then

X0 (A) = xo(A),
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since for every A € Hy o, we have (A, o) = (A, 2a) = 0 and therefore
IT " e = 11 &5 6™ = xo.
BeRE BERT

Let T, be the abstract tree isomorphic to each tree at infinity T, (7, ). We denote by I'g the fundamental
geodesic of the tree and by I‘a' the fundamental geodesic based at 0. We define a character X, on I'y in
the following way:

Xo(Xn) = ¢7, if X,, is the vertex of I'{" at distance n from 0, in the homogeneous case;

Xo(X2n) = (pr)™, if Xa, is the vertex of T'j at distance 2n from 0, otherwise.

The characters xo, x§ and X, are related through the operators P, and (), defined in Section 4.4, as
the following lemma shows.

Lemma 5.2.4. Let \ € Z; assume A € Hy, o, if @ € Ry, and X € Hoy, o, if € Ry. Then

(i) x0(Qa(N) = x5 (Qa(N) = x§(N),
i _ YO(XH) = Qg if o € Ry,
(i) xo(Pa(N)) YXo(Xan) = (pr)", if a € Ry.

PROOF. (i) We notice at first that (Q,()\), @) = 0, for every «. Hence
a(A a(A o )\ a(A
H qQ()B Q()ﬁ H q(Q( B) (Q()ﬂ) = x0(Qa(\)).
BeRY BeR*t
Moreover it is easy to prove that
HqP(A < a(N)B) _
BeRrY
Actually, for every 3 € R} the root s, belongs to R}, and (P, (\), 8) = —(Pa()),043). Therefore,
A A aO),B)  —(Qa(N), Pa(M\),B)  —(Pa(N), o
Hq< /3> ( B) _ HqéQ()@qgﬂ(Q()@ Hqé ()ﬁ>q26( ()B>:X0(Qa()\))-
BERE BERY BERZ
(ii) By the same argument of (i), we have
Xo(Pa(N) = (P ), a) - P A, H q A)ﬁ Po (X)) _ q<P o (A), >q;O§Pa(A),a> _ qéxmq;of&w;
BERE

therefore (ii) is proved, because

g™ —(na) _ {Xo(xn) if o€ Ry,

Q2 YO(X2") if « € Rs.
O

Corollary 5.2.5. For every A € Z, Xo(A) = x5 (Qa (X)) Xo(Xn), if X is the vertex of I'g corresponding
to Py ().

Let pp be the retraction of the tree on I'g, with respect to the boundary point b, such that pp(y(e, b)) =
I'y. (Here e denotes the fundamental vertex of the tree). An immediate consequence of Lemma 5.2.4 is
the following proposition.

Proposition 5.2.6. Let z,y € ﬁ(A) and w € Q. Let x and y be the projection of x and y on the tree at
infinity T, (Ne) associated with w. Then

(1) X0(Qalpw(¥y) — pu(®)) = X§ (Pu(y) — pu(T)),
(i3) Xo(Pa(puw(y) — pu(z)) = Xo(pb(y) — po(X)).

PROOF. Let z,y € V(A) and w € Q. If A = p,,(y) — pw(z), (i) follows from Lemma 5.2.4, (i).

Let 1o = [w]a, and consider the vertices x,y of the tree T(1,), corresponding to z,y. If b is the
boundary point of this tree, corresponding to w, then b € B(x,y); this implies that pp(y) — pb(x) = n,
if (A, @) =n. Hence (ii) follows from Lemma 5.2.4, (ii). O
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5.3. Probability measures on the boundaries. The measure v, defined, for any x € 17(A), on the
maximal boundary €2 can be characterized in terms of the character yq.

Proposition 5.3.1. Let x and y be vertices of ]7(A); then, for every w € Q(z,y),

2 () = N X ) = N X () o)

PROOF. Since xo(\) = g, , for every A € L, then, by definition of v, we have, for each y € Vi (),

-1
(o) = g i )

On the other hand, in Section 3.3 we have proved that, if y € Q,(w), then p%(y) = o(x,y), and that
P2 (y) = pw(y) — pw(x). Therefore the required formula is proved. O

Let o be any simple root of the root system R associated with A. The measure v$ defined in Section
4.6 on the a-boundary can be characterized in terms of the character x§.

Proposition 5.3.2. Let A € LT, and y € Vx(z); then, for every na € Qa(z,y) and for every w in the
class 1q,

Wi(g™")

2 @alr.0) = ) (08) (o) — ) A€ Ho,
0 @ali)) = TRLOL D (061725 0) - pu(e)), otheruise
PROOF. Recalling the definition of the character y§ we have
2 @ale) = S (1) ) it X Ho,
vy (Qa(z,y)) = WA(Q{V‘;()(](ES ) (xg)~t(N), otherwise.

On the other hand, for every 7, € Q4 (z,y) and for every w in the class 7,,
Pu(y) — pu(z) = A, ifo(z,y) = A

In particular, if we assume y € Vy(x), with A € Hy , then the vector p,(y) — pw(z) belongs to Hy o. O

Taking in account Proposition 5.2.6, we can express the measures v and px in terms of the character
xo and the operators P, and Q-

Corollary 5.3.3. Let x,y € 9(A) and y € V\(x). Let x and 'y be the projection of x and y on the tree
at infinity T, (Ne) associated with any w € Q(x,y). Then

V\:,\fk((z;q;)) (x0) ™M (P (y) = pus()), A€ Hpa,
Vg (Qal(z,y)) =
% (x0) N Qalpu(y) — pu())) otherwise.

Moreover

1’ ’Lf A€ HO as
«(Bxy)) = se.
px(B(x,y)) {112(! (x0) " H(Pa(pw(y) — pw(x))), otherwise.

Therefore, in view of Corollaries 5.3.3, the decomposition of the measure v, for the maximal boundary,
stated in Section 4.8, is a direct consequence of the orthogonal decomposition xo(A) = x0(Pa(N)) X0(Qa(N)).

5.4. Poisson kernel and Poisson transform.

Proposition 5.4.1. For x,y € IA/(A) the measures vz,v, are mutually absolutely continuous and the
Radon-Nikodym derivative of v, with respect to v, is given by

dvy

T ) = x0(p50)) = Xo(pu®) = pul@), Ve €.
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PRrOOF. We fix x,y and w; by Corollary 3.3.9, we can choose a special vertex z lying into @, (w) N Q(w),
so that Q(z,z) = Qy,z). We set Q, = Q(z,2) = Qy, z). Of course w belongs to Q.. We have, by
Proposition 5.3.1,

12(622) = 122, 2) = YLD 3 () — o)

-1
(92) = (002D = Y G 0u) - )

So we conclude that
vy () _ X0 (Pu(2) = pu(®))
va(Q:) X0 (pu(2) = pul))

This proves that v, is absolutely continuous with respect to v, and shows the required formula for the
Radon-Nikodym derivative of v, with respect to v;. ]

= Xo0(pw(¥) = pu(T)).

Definition 5.4.2. We call Poisson kernel of the building A the function
P(z,y,w) = Xo(pw(y) = pu(@)) = x0(pl (), ¥,y € V(A) and Yo € Q.

This definition does not depend on the choice of the special vertex e. By Proposition 5.4.1, for every
choice of z,y in V(A), the function P(z,y,-) is the Radon-Nikodym derivative of v, with respect to v, :
dvy

dv,

(w) =P(z,y,w), Ywel.

Using the same argument of Proposition 5.4.1, we can prove the following proposition.

(03

y are mutually absolutely continuous and

Proposition 5.4.3. For x,y € ]7(A), the measures v, v,

dvy
Jpa Ma) = X5 (po(y) = pu(@)), V@ € nay Vo € Q.

We shall denote, for every z,y € ]7(A) and for every 1, € Q,

av®

P (2,y,m0) = 2% (Ma) = X5 (p(y) = pu(@), Vo € o

It is known that, for every pair of vertices t,t’ in ]7(T w), the measure ug: is absolutely continuous with
respect to pg, and the Radon-Nikodym derivative dug /dug(b) is the Poisson kernel P(t,t’, b), where

P(t,t/,b) = ¢»71, if d(t,t’) = n, in the homogeneous case

P(t,t',b) = (pr)"~1, if d(t,t’) = 2n, in the semi-homogeneous case.

In both cases, as a straightforward consequence of the definition,

P(t,t',b) = Xo(pn(t') — pu(t)), Vb € ITa.

Since , for every pair of vertices x,y € ﬁ(A), the measure v, on {2 is absolutely continuous with respect
to v, the measure v’ on ), is absolutely continuous with respect to vg and the measure py on 97, is
absolutely continuous with respect to ux; actually we have the following result.

Corollary 5.4.4. Let z,y € IA/(A), and w € Q. If w = (Na, b), and x and y are the projection of x and
y on the tree at infinity T (na), then
P(z,y,w) = P*(z,y,na) P(x,y,b).
ProOF. By Proposition 5.2.6, for every z,y € 9(A), and every w € €,
P, y,m0) = X0(Qalpu(y) = pu(z)) and  P(x,y,b) = xo(Palpu(y) = pu()).

Therefore, the decomposition of the Poisson kernel P(z,y,w) is a direct consequence of the orthogonal

decomposition xo(A) = xo0(Pa(A)) Xxo(Qa(N)).
O

Definition 5.4.2 can be generalized, if the character o is replaced by any character x.

Definition 5.4.5. We call generalized Poisson kernel of the building A associated with the character x
the function

PX(z,y,w) = x(pu(y) — pu(2)), Va,y € V(A) and Yw € Q.
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It is obvious that also this definition does not depend on the choice of the vertex e. According to this
definition, P(z,y,w) = PX°(z,y,w).

The following proposition shows the properties of any function PX(x,y,w).
Proposition 5.4.6. Let x be a character on A; then,
(i) PX(x,z,w) =1, for every x and every w; moreover, for every x,y and every w,
PX(y,z,w) = (PX(z,y,w)) ™" = P (2,y,w);
(ii) for every x and every w, the function PX(x,-,w) is constant on the set of vertices
{y € V() : ala,y) = A pl(y) = ub,

for any A € L+ and p € T1,.
(iii) for every x,y, the function PX(x,y,-) is locally constant on Q, and, if o(x,y) = A, then
PX(z,y,w) = x(A), for allw € Q(z,y).

PROOF. (i) and (ii) follow immediately from the definition. Moreover (iii) is a consequence of the prop-
erties of the retraction pZ, proved in Section 3.3. Actually, if o(x,y) = A, and we choose p big enough
with respect to A, then Q = U.cy, (,)Q(z,2) and p(y) does not depend on the choice of w in each set
Q(x, z). In particular, pZ(y) = A, for all w € Q(z,y). O

Definition 5.4.7. Let xg € 17(A) and let x be a character on A. For any complex valued function f on
Q, we call generalized Poisson transform of f of initial point xy, associated with the character x, the
function on V(A) defined by

P (x):/Px(xo,x,W)f(W)dvz(w)=/x(pw(fﬂ)—pw(xo))f(W)dvmo(W), Vr € V(A),
Q Q
whenever the integral exists.

In particular, we set Py, = Px° and P = P..

6. THE ALGEBRA H(A) AND ITS EIGENVALUES

6.1. The algebra H(A). For every \ € E*, we define an operator Ay, acting on the space of complex
valued functions f on V(A) by

(AN = > fw)= > Tuw®fly), foral zeV(A).
yEVi () yeV(A)
The operators Ay are linear; moreover, for each y, the coefficient 1y, (,)(y) only depends on A\. We notice
that the operators {Ax, A € E+} are linearly independent. Actually, if assume ), 7, axAx = 0, then

37 aa(Axd,)(z) =0, Vr,y e V(A).
AeLT
On the other hand ), 7, ax(Axdy)(z) = ay, if o(z,y) = p. Hence we get a,, = 0, for every u € Lt
We denote by #(A) the linear span of {Ax, A € LT} over C.
Proposition 6.1.1. The space H(A) is a commutative C-algebra.

PROOF. We shall prove that, for every A, i the operator AyoA,, is a finite linear combination of operators
A, for convenient v. Actually, recalling (2.18.1) for every function f and for every z € V(A),

Ayo Auf(x) = Z ]IVA ac) Z ]IV)\ 1) Z ]IV y) )

yeV(A) yeV(A) 2eV(A)

= > | 3 oWk | f(2)

zeV(A) \yeV(A)

= Z ‘{y eV(A) : alz,y) = A, o(y,2) = V}‘ f(z)
zeV(A)

=3 > NwAu)f(z)= > N p)(Af)(@)

vel+ 2€Vy(z) vel+
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and N (v, A, p*) is different from zero only for finitely many v. Moreover
Ao Anf(@) = D N(vm M)A f) (@) = D N A ut) (A f)(@) = Axo A, f (@)
U€E+ uef+

and this complete the proof. O
We refer to the numbers N (v, A, *) in Proposition 6.1.1 as the structure constants of H(A).

6.2. Eigenvalue of the algebra #(A) associated with a character x. In this section we study the
eigenvalues of the algebra H(A).
Let x be a character on A; consider the generalized Poisson kernel PX(x,y,w) associated with x.

Lemma 6.2.1. Let z € 17(A) and w € Q. For every A\ € L', the sum 2 yevi(2) X(Pw(Y) = pu(2)) is
independent of z and

D x(po(y) = pu(2)) = D N pwx(n),

yEVA(2) HEITN
where N(\, 1) = {y : o(e,y) = A, pu(y) = p}l.
PROOF. For every z € V(A), w € Q and A € L+, we have
> ) = pu(2) = D € VA) 5 0(29) = A puly) = pulz) = 1| x(10):
yeVA(2) pnelly

By Theorem 3.3.12, for every p € Ily,
{y € V(@A) : o) =\ puly) = pul2) = 1} = [y € V(A) + ale,y) =X puly) = u}| = N\ ),

Hence the lemma is proved. O

For every A € LT, we define

AXA) = D N w)x(w).

HETTN

Proposition 6.2.2. For every \ € E*, AX(X) is an eigenvalue of the operator Ay and, for every x € ﬁ(A)
and w € Q, the function PX(x,-,w) is an eigenfunction of Ay, associated with the eigenvalue AX(\) :

A\PX(z,-,w) = AX(N\) PX(z, -, w).
PROOF. For every z € V(A), we can write

APX(z,w)(z) = ) PXayw)= Y x(puy) —pu@) = D X(pu)x(—pu(2))

yEVA(2) yEVA(2) yEVA(2)
= X(pu(2) = pu(@) D X(puy) = pul2)) = PX(z,2,0) Y x(puly) — pul2))-
yEVA(2) yEVa(2)

Hence, by Lemma 6.2.1, we conclude that
AyPX(z,-,w) = AX(A) PX(z, -, w).
O

Since {Ax, A € L*} generates H(A), then {AX()), A € LT} generates an algebra homomorphism AX
from H(A) to C, such that AX(A4,) = AX()), for every A € L*. Moreover, for every x € V(A) and w € Q,
the function PX(z,-,w) is an eigenfunction of H(A), associated with the eigenvalue AX.

In the particular case when y = xg, then, for every = € lA/(A) and for every w € €2, the Poisson kernel
P(z,-,w) is an eigenfunction of all operators Ay, with associated eigenvalue AX°()). Since P(z,y,w) is
the Radon-Nikodym derivative of the measure v, with respect to the measure v,, this implies that

Z vy = AXO(N) vy
yEVA(z)
On the other hand, since v, and v, are probability measures on §2, then
Z vy = ‘{y eV(A) : o(z,y) = )\}’ Vy.
yEVa ()
This implies that
Ao = |{y € V(A) 5 ole,y) = A}

)
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and hence

> N xo(w) = |{y €V(A) : o(z,y) = A} = Ny.

JUSIIN

Corollary 6.2.3. For every f € L*(Q,v,), the Poisson transform PX(f) of f, of initial point , associated
with the character x, is an eigenfunction of the algebra H(A), associated with the eigenvalue AX.

PROOF. Actually, for every A € L,

APXNE = X PN = X [ Pey) ) dulw)
)

yEVA(I) yEV)\(z

= /Q Z PX(z,y,w) | f(w) dvg(w) = /QAX()\) PX(x,2,w) f(w) dvy(w) = AX(A) PX(f)(2).

yeVa(z)
O
Since the Weyl group W acts on the characters x, according to definition given in Section 5.1, then

W acts also on the eigenvalues AX of the algebra H(A). We shall prove that in fact these eigenvalues are
invariant with respect to the action of W, in the sense that, for every character x,

/2 w.1/2
= A% Yw e WL

1
AXXo

6.3. Preliminary results. Let y be a fixed character on A; let a be a fixed simple root and let 7, be
an element of the a-boundary €.

Definition 6.3.1. Let x € )7(A); for each pair wy,ws in the class 1y € Qq, we fix a vertex of 17(A), say
€ = €y, wys I any apartment A(wy,ws) containing both the boundary points. We set

5 (@1,02) = XX (Papon (€) + Py (€) — puoy (%) — puoy (2)))-

Remark 6.3.2. The function jg, (w1,ws2) does not depend on the choice of the vertex e, ., on any
apartment A(wy,ws). Actually, if e and €' are two vertices on this apartment, then, for every x € ]A/(A),

Po(Puoy () = puon (€) + Pos () = pun (€)) = Polpur (%) = puoy (') + Py () — puy (€7))

= Po((pur (€") = pur (€)) + (Pus (€') = pua(€))) = Pa((pur (€) = pusy (€))) + Pal(puws(€) — pusy (€))) = 0,
since Po((pu, (€') = pu, (€))) = —Pa((pu, (€') = puy(€))), as we proved in Proposition 4.4.2,

For every w € €, let 1, be the element of the a-boundary 2, such that w € n,. We denote by v,

the restriction of the measure v, to the set {w’' € Q : w’ € n,}. Since the set {w' € N : W' € 1y} can be
identified with the boundary of the tree T'(1,), then v, can be seen as the usual measure jix on 97'(7q)-

Definition 6.3.3. Let x € ]A/(A); we denote by J7', the following operator acting on the complex valued
functions f defined on € :

J2 (F) o) = / 52 (w0 w) () dio, (@), Vo €

Theorem 6.3.4. Assume that |x(aV)| < 1; then
(i) Jg 1 = c(x)1, where c(x) is a non zero complex number.
(i) Jg'\ + L(Q) — L>(2) is a bounded operator.

PROOF. (i) Fix wp in Q and let 4 = [wo]o. By Definitions 6.3.1 and 6.3.3, we have
Iz den) = [0 e, @)= [0 Pl €) 4 pule) = p0) — pule)) i, ),
Wo o

if e is a vertex in any apartment containing wy and w.
Consider the tree T'(n,) and its boundary 90T'(n,). According to notation of Section 5.2, we simply
denote by X the character on the fundamental geodesic I'y of the tree, such that, for every n € Z,

Y(Xn) = X(PQ(A))v if a € Ry,
Y(Xgn) = X(Pa(/\))7 if € Ry,
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if A € L satisfies (A, &) = n. Since we can identify the set [wo], with the boundary of the tree T'(n,) and

the measure vy, can be seen as the usual measure jix on 9T (1), we can write

T (wo) = /3 . )mé/%pbo(e)m(e)—pbo<x>—pb(x>> dpix(b),

if by is the boundary point of the tree corresponding to wg, b is the boundary point of the tree corre-
sponding to w, for every w € [wpla, and e is the vertex of the geodesic v(bg, b) obtained as projection of
e on the tree T'(n,). For every x € ﬁ(A), let x be the vertex of the tree corresponding to x and denote
by Nx(bg,b) the distance of x from the geodesic [bg, b], that is the minimal distance of x from the set
{y e V(T'(na)) : y € [bo,b]}. For every j > 0, we set

Bj(x,bg) = {b € 0T (1) : Nx(bo,b) = j}.
Then, we can decompose 9T'(7,), as a disjoint union, in the following way
9T (1a) = U; Bj(x,bo).
We can easily compute pix(B;(x,bg)), for every j > 0. If o € Ry, the tree T'(n,) is homogeneous and

[e] a T 1 —q .
px( B bo)) = o and (B bo)) = T ag? forall j >0,
Otherwise, if a € Ry, the tree T'(1,) is semi-homogeneous and we have
T
x(Bo(x,bg)) =
#se(Bo(x, o)) = ———
r—1 s .
:U’X(BQj(XabO)) = (T i 1) (p?") Jv for all j >0
e (Baye1 (o)) = 2= (pr) 7, forall j > 0
x 7+ s K0 p(r+ 1) 5 = U.

It is easy to see that, for every j > 0,
Pb,(€) + pu(€) — pb, (X) — pp(x) = Xa;, for all b € Bj(x, bo).
Thus

o — 12
T2 wo) = > px(Bj(x,bo) X Yo' (Xay)-
j=0
Therefore, if o € Ry, then

@ o _ _1/2 Qa_l —1/2
J 1(wo) = 0 Xy,
o L(wo) 1 XX ( )+j§>1 o1l TX X" (Xay)

o
S +1

do Go — 1 — 2
x(25X + X 7,
Sl X(25Xq) = P R j§>1(X( 1))

Analogously, if a € Ry, then

1 i
JEtlen) = 7 TR0+ 1 ) YR 0k) +ZT1)<W> X T (Kuy2)

_ r r—1 j (p - 1) 1 —j G .
“rrD T ;(p?") ()X (2jXs) + = N Z(pr) (pr)’x((25 = 1)X2)
o r—1 rip—1) 1 - 2

NCESY [r+1 T X(= XQ)] 2 (X(X2))

j>1

Since Y(Xz) = x(a), and X(X1) = x/2(a), then, if we assume |y(a")| < 1, it follows that [x(X1)| < 1,
if @ € Ro, and that [¥(X2)| < 1,if a € Ro; hence the geometric series .-, (X (Xl))zj and )., (X(X 9))%
converge. Since the sum of these series does not depend on the choice of z and wp, we have proved (i) by
setting

o o —1 _ 2i .
c(x) = + E X1)¥, fa€ Ry,
(x) ot 1l ol j>1(X( 1)) 0

7‘71+7’(p71) 1
el L

r

<) = (T+1)+|:

X?(_xg)] D (x(X2)¥, ifa€ Ry .

i>1
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(ii) The same argument, applied to the real character |x|, shows that

/ 178 (w0, w)| dv2 (@) = k(x),
Q

being k(x) a real positive number. Hence, for any f € L*°(Q2), and for every wg € Q,

172 (wo) <\|f||oo/ 178 (@o0rw)| i (@) = kOO [1f]]oc.

This proves that J7', f belongs to L™ (©2) and that J . is a bounded operator. O

Remark 6.3.5. The constant c(x) is different from 1 except in the case when x = Xal.

Definition 6.3.6. Let x,y € IA/(A); we denote by TX, the following operator acting on the complex valued
functions f defined on € :

T, ()W) = PO (2,y,0) fw), YweQ.

For every z,y € V(A), the operator T, is bounded on the space L>((2), because PXXEl(x,y, Jisa
locally constant function on §2.

Proposition 6.3.7. Assume |x(aV)| < 1. For every pair of vertices x,y € ﬁ(A),

PROOF. By Theorem 6.3.4, the assumption |y(a¥)| < 1 assures that, for every pair z,y € V(A), the

operators Ji'\, Ji*, are bounded on the space L>°(f2). By Definitions 6.3.1, 6.3.3 and 6.3.6, for every

function f and for every boundary point wgy, we have
X5 X(l]/2 a ey 2 ey o
Tw,y o JI,X f(w()) =P 0 (ZL', Y, OJ()) ]z,x(wovw) f(w) dyz,wg (w)
Q

- / 7% (wow) P @y wo) flw) i, ()
:/ ]mX(WOa ) say,—1/2 dy(mlwo(w)
0 )

jyx(w07 .7 X(WOa )PX Xo (xayawﬂ) f(W) mdl/;wo(w),

Y,wo

Definition 6.3.1 implies that, for any vertex e lying on any apartment containing wg and w,

I (w0, w) Xxo/ (Pa (o (€) + pus(€) = (@) = (@) _ 060" (PP (7) = pu(@))
350 (@0,9) 2 (Pa(pa (€) + €)= s (1) = Po®) X0 (Pa(—puo (9) — p()
Moreover, according to definition of measure vy,
e = ol Palont) )
Therefore
Jea(@o,w) A2, @) o0 (Pal—pu(@) = pul@) o
T @0:2) 050 @) (P p) —ptyy) P )
_ X(Palpo(y) = pu(@)) 172 EURNESYE s
= P (o) = pon o)) 0 (Pa(poo (¥) = puo (@)X " (Palpu(y) — pu(2))
_ 00 P Palpuly) — pu@)
XX 2 (Papg (4) = puy (2)))

Moreover, if we recall that Qu(puw,(Y) — Pue (X)) = Qa(pw(y) — pw(x)) (see Proposition 4.4.2), we have

. _ —1/2
]g,x(wo’w) dvy ,wo (w) _ XXo 1/2(pw(y) — pu(T)) _ PXXo (1, y,w)
o (wo,w) dve, (W) ysay—1/2 _  pxtexg '
Jyx(wos Vo X5 Xo ' (Puwo (Y) = Puo () PX X0 " (z,y, W)
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So we can conclude that
XSQX(I)/2 a e
Tﬂ?yy 0 ‘]ac,x f(wo) = 0 .]y,x(woﬁ w)
2

e —1/ o ¥ (1)/2 o
:/Q ]y7x(w07w) PXXo (Jf,y,W) f(LU) dyy,wo(w) = /{; ]y7x(w07w) me,)lj (f)(W) dl/y,wo (LU)
1/2
— <J1?,x oTfoy<0 >f(o.}o).

P (2, y,w)

szaxglﬂ (ZL’, Y, wO)

P (3 wo) flw) due, ()

Y,wo

6.4. W-invariance of the eigenvalues.

Theorem 6.4.1. For every character x and for for every simple root «,
1/2 1/2

(6.4.1) AXX0TT = AXTXo

PROOF. (i) At first assume |x(a")| > 1. Then |x~!(a")| < 1 and hence Theorem 6.3.4 implies that, for
every z,y € V(A), J' _i and Ji' _, are bounded operators on L*°(€). Therefore, applying Proposition

6.3.7, we get, for every x,y € V(A),
o X~ 'xo’? O T
Ty -1 0 Tay 1(w) =Ty oJy —1l(w), YweQ,

since ()~ = (x~!)**. Thus if we fix y € V(A) and, for every A € L, sum on all z such that o(y, z) = A,
we get, by linearity,

1/2 -1,1/2 —1_—1/2
S Jer 0T ey =g e ST @) =g [ PO wy) | w)

z€Va(y) z€V(y) z€Va(y)

and, if we recall that ZmEV,\(y) PX71X51/2 (x,y,w) = ZIEV)\(:’J) PXX:A)M (y,x,w) = AXX(l)/Q ()‘)7 ) for every
w € (Q, then
« X71X1/2 « 1/2 1/2 e} 1/2 —1
S o T 1) = g (0 D) = 4087 () 1) = A7 () e,

Y,x
z€Vi(y)

On the other hand,

say—1.1/2 say—1 sa)=ly
Z TJ% )Xo OJ;V’X? Z T(X ) xe! (c(x_l)l)( —1 Z T(x ) 1(w)
z€Va(y) z€Vx(y) z€VA(y)
1/2

> PN gy w) = e ) 3 PO (g ) = el AT (),

€V (y) €V (y)

Since ¢(x™1) is a real number different from zero, the identity

1/2 1/2

e(x 71 AT () = e(x ) AT ()

implies Ao’ (A) = AX™ th)/2()\), for every A € L.

(i) Assume now |x(a)| < 1. In this case |x** ()| > 1 and therefore, by (i),

1/2 2 1/2 1/2
AXSQXO/ :AXSQXO/ :AXXO/

(iii) Finally, if |x(a)| = 1, the required identity can be proved by a standard argument of continuity,
as the eigenvalue associated with a character y depends continuously on y, with respect to the weak
topology on the space Hom(L,C); actually, there exists a character ', with |x/(«¥)| < 1, arbitrarily
closed to y. a

Since the reflections s, a = a;, i =1,...,n, generate W, we have the following

Corollary 6.4.2. For every character x and for every w € W,

1/2 w. 1/2

AXX0"T = AX™Xo
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6.5. Technical results about the Poisson transform. According to Definition 5.4.7, we denote by
PX the generalized Poisson transform of initial point x associated with the character . It will be useful
to analyze the relationship between the Poisson transform and the operators defined in Sections 6.3.

Proposition 6.5.1. For every pair x,y € ﬁ(A), and for every f € L>(Q),
Py(TX, f) = Px(f)-
PrOOF. For every vertex z € ﬁ(A),

PHELNE = [ PX) PO5 0,0 (@) ()
=Ax<pw<z>—pw<y>>x<pw<y> Pu(@)) F(@) Xo(pul) — pu(y)) diy(w)

- / (pul2) — pul@)) Flw) D=l duy / PX(z, 2,0) [(w) dva(w) = PX(2).
Q

dvy(w
O

1/2 1/2
By Corollary 6.2.3, for every f € L>®(Q), Px*° (f) and PX X0 (f) are eigenfunctions of the algebra
H(A), associated with eigenvalues A" and AX* X0’ respectively. On the other hand, by Theorem

sar 1/2 1/2 . .
6.4.1, A’ = Ao’ Therefore, for every f € L>(Q), Px*° (f) and pX X0 (f) are eigenfunctions
associated to the same eigenvalue. If |y(a")| < 1, the following theorem exhibits, for every f € L(§),
a function g € L*°(Q) such that

X () = e (),

where ¢(x) is the real non zero constant defined in Theorem 6.3.4.

Theorem 6.5.2. Assume that |y(a¥)| < 1; then, for every z € V(A) and for every f € L>®(1),
sa1/2 1/2
w0 (o) = )P (f)
PROOF. (i) First of all we prove that
say 1/2
(6.5.1) a0 (2 N@) = cx) P ().
We notice that, being PX™* xo'? (z,z,w) =1,
sa1/2
X D) = [ 2 ) do(en)s
80, by Definition 6.3.3,

X (e fy () = /

Q

</Q Tz (wo,w) F(w) dvie, (w)) vy (wo)

and taking into account that, for every w, the measure v is the restriction of the measure v, to the

subset {w' € Q : W € [w]a}, we obtain ,
sa 172 o
X o) = [ ([ 2w 1) dnle)) dvaeo)
if we set jg' | (wo,w) = 0, for w & [wo]a- On the other hand,

/Q(/Q Jox (wo,w) f(w) duw(w>> clvgc(wo)=/9(/Q g (w0, ) dux(w0)> f(w) dvg(w),

since the integral is absolutely convergent. Therefore

£ e = [ ( [ 2t s wo) £() dva(w
-/ ( RN duz(w())) F@) dra) = [ J2,10) 1) i)

= c(x) /Qf(w) dvz(w) = ¢(x) Xxém(f)(w)-

(ii) Now assume y # z; by Proposition 6.5.1, we have

Pxfly) =Py (T, f)(y).
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Hence, if we apply (i), replacing = with y and f with T)X, f, we obtain

Xxo’? o xxe’” xxo!? rrxxe’? xxo'*
Py (Jyx Ty F))y) = clx) Py @ ) = ) P ().
On the other hand, by Proposition 6.3.7,

P (o (e ) ) = PY T (@ e ) ),

and applying again Proposition 6.5.1, we conclude that

X e 1) = e() PXW).
O

Remark 6.5.3. Theorem 6.5.2 provides a different proof of the identity A = AXX(ll/Z, when

1/2
Ix(a¥)| < 1. Actually, for every f € L*°(Q), the function pX X0 (f) is an eigenfunction of the algebra
H(A) associated with the eigenvalue AX” “xo”? and, when |x(a¥)| <1, Jg, f belongs to L>(2). Then

/2

sa1/2 sal sa1/2 R
Ay (Pe X0 (Jg,f)) = AT Py X0 (2 f), YA€ L.

o 1/2
On the other hand, for every f € L>®(Q), PaX° (f) is an eigenfunction of the algebra H(A) associated
with the eigenvalue AXX(ll/z, and therefore
ol 172 ol ~
Ax (c(x) Pe™ (f) = A0 c(x) Pz (f), VAel;
hence, by Theorem 6.5.2,

AP (e py) = pod px g Vael
AT ( @Xf)) - r ( Iva)’ € L.

sa 1/2
So we have proved that, if |x(aV)| < 1, then, for every f € L¥(Q), Px *° (J ey f) belongs to the

. . . sy 1/ s /
eigenspaces associated to both the eigenvalues AX xo'* and A", This implies that AX xo'* = Ao’

7. SATAKE ISOMORPHISM

7.1. Convolution operators on A. In this section we consider the fundamental apartment A. The set
9(A) = T can be identified with Z", if n = |Iy|; actually the Z-span of the vectors {\;, i € Iy} coincides
with Z™; then each \ € L can be identified with the element (my, -+ ,my) of Z", if X=3"0" m; A
Hence L inherits the structure of finitely generated free abelian group of Z". We denote by L(L ) the
C-algebra of all complex-valued functions on Z, with finite support. Each function A in E(Z) determines
a convolution operator on all functions on E; as usual, we set, for every function on E7

Th(F) = h*F.
Proposition 7.1.1. Every character x on A is an eigenfunction of all operators t,, h € E(Z) :
(mx) = ©X(h) x, Vh e L(L),

with associated eigenvalue ©X(h) =3 7 h(1)x(1)-

PROOF. For every A € L, we can write

(T x)( Zh XA+ p) = Zh xX(A).

,uEL [LEL

Proposition 7.1.2. Let h € £(L); then

h =0+« OX(h) =0 for allx € Hom(L,C*).
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PROOF. There is a natural identification of L with the group T of all translations ty, A € L. Hence E(f)
is the algebra L£(T') defined by (1.1) of [8]. Using this identification and following notation of [8], the

mapping
h= Y h(A) A
A€l
is a C-algebra isomorphism of £(L) onto the group algebra C[L] of L over C. Since L is a free abelian
group generated by the finite set {A1,---, A, }, it follows that
C[L] = Cl£A;,i=1,--- ,n],

hence it is a commutative integral domain. Consequently (C[E] is the coordinate ring of an affine algebraic
variety, say S, whose points are the C-algebra homomorphisms s : (C[z] — C. The restriction of these
homomorphisms to L gives a bijection of S onto X(f) = Hom(f, C*), and we shall identify X(E) with
S in this way. The elements of C[L] can therefore be regarded as functions on X(Z) Hence, by the
Nullstellensatz, if n € C[L],

n=0<= x(n) =0for all xy € X(E)

Keeping in mind the C-algebra isomorphism of E(E) onto (C[E], each x defines a homomorphism

E(Z) — C, namely
= X
AeL

and we have R

h=0<= x(h) =0, for all x € X(L).
On the other hand, for every h in £(L), x(h) = ©X(h), according to Proposition 7.1.1; hence

h=0<= ©X(h) =0, for all y € X(L).

O

7.2. The Hecke algebra on A. The group W acts on E(E) in the following way: for every h € E(E),
RV (\) = (wh)(A) = h(w~*()\)), VA€ L.

We denote by £( )W the subring of L(L ), consisting of all W-invariant functions in E(E), that is the
functions h in £(L ) such that A" = h, for every w € W.

Proposition 7.2.1. For every h in L(L )W the operator 1, is W -invariant, i. e. for every w € W, and
for every function F on L
Th(F™Y) = (T F)Y

PrOOF. Fix any w € W. For every function F, and for every A, we write, using the W-invariance of h,

(Tn F')(w = h(u) (N) 4 p) = D h(w(p)) F(wH(N) + p),

MEL uef
/

and by setting w(u) = 1/,

() (W™ (A) = > hlp TN W) = D A FwT A+ )
© el ,u’ei
=Y h() FY(A+ 1) = (mFY)(N).
© el

We set
H(A) = {m .h e LIL)V).
Obviously, H(A) is a C- algebra; following Humphreys ([6]), we call H(A) the Hecke algebra on A.

Proposition 7.1.1 implies that every character x on Lis an eigenfunction of the whole algebra H(A).
We denote by ©X the associated eigenvalue, that is the homomorphism from the algebra H(A) to C*
such that, for every operator 7, € H(A), ©X(7,) is the eigenvalue associated to the eigenfunction y of
the operator 75,. Then, for every h € E(E)W

@X(Th Zh

,uEL
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We notice that the restriction to L of ©X is the character x- Keeping in mind this fact, we easily obtain
the following proposition.

Proposition 7.2.2. For every eigenvalue © of the Hecke algebra of A there exists a character x on L
such that
0 = 60X.

PROOF. For every A € L, let 6 be the function on L such that dx(A) =1 and 0x(u) =0, for every pu # .
Then each h € C(E)W can be written as h =), h(A)dy. Let © be any eigenvalue of 7 (A) and let x be
its restriction to E, that is

X(N) = O(8), VA€ L.

It is immediate to observe that x belongs to X (L) and, for every h € £L(L)W, we have

= BN = D hAX(A) = OX(h),
A A
This implies that © = ©X, -

7.3. Operators /Nl,\. Assume that w is a fixed boundary point of the building. For every A\ € Lt and
for every vertex y € L, the number N (A, p), defined in (3.3.2) with respect to w, does not depend on the
choice of w. R R

For every A € LT, let hy be the following function on L :

() = xo* () N r), Ve L.
Since N(\, 1) = 0 but for finitely many p € L, then hy € E(E)

Definition 7.3.1. For every \ € EJF, we denote by AA the convolution operator associated with the
function hy, that is

ANF () = hax F(p) = 3" NOL!) xo (') F(p+p'), VpelL,
;LGL

for every function F' on L.

Proposition 7.1.1 implies that every character y on L is an eigenfunction of the operator A,\, with
associated eigenvalue

OX(N) = O%(ha) = Y i) x(1) = 3 N ) x> (1) x(w)-
MEL HEL

If we recall the expression of the eigenvalue AX(X) of the operator Ay € H(A) given in Section 6, it is
obvious that

(7.3.1) OX(A) = A¥x” ().
Now we can prove that, for every \ € f*, the function h) belongs to [,(Z)W
Proposition 7.3.2. For every w € W, then hy = hY.

PROOF. Since the Weyl group W is generated by reflections s,, a € B, we only need to prove that
hy = h3®, for every simple root «. Fix any s, and consider, for every p € L, the function

B3 (1) = 0 (sa ()N (A sa(n),  Vu e L.
For every character x and every p € L, we have
hoax x(p) = ©X(ha) x (i), B3 x (1) = ©X(h5*) x (k).

On the other hand, as we have noticed before,

= 3TN X2 (0) x(m) = 297 ()

MEL
and, by setting ' = sqo (1),
sayL1/2
X(h3e) = 3 N sa(1) x0/* (sal = N NP (i) = AT
uEL “w reL
Thus, Theorem 6.4.1 implies ©X(h3*) = ©X(hy), for every x. So hy = h}*, by Proposition 7.1.2. O

As an obvious consequence of Proposition 7.2.1 and Proposition 7.3.2, we obtain
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Corollary 7.3.3. For every \ € E*, the operator Av)\ belongs to the Hecke algebra H(A).
Proposition 7.3.4. The operators Ay, A€ E"‘ form a C-basis of H(A).

PROOF. We only need to show that the functions hy, A € LT, form a C-basis of L(L )W For cach A € L+,
let &\ be the characteristic function of the W-orbit of A. Then the functions &, as A runs through L‘”‘,
form a C-basis of £(L)W. Hence, we can write, summing on all ' in L+,

hx = Z ha(X) Ex.

Since N(A, A) =1, then hy(\) = 1/ (N). Consequently the previous sum takes the form
hx = A&+ D ha(Y) &x
N A
and in this sum ha(N) =0, but for X € II,. Since X1/2( A) # 0, we conclude that the hy form a C-basis
of L(L)W. O

Definition 7.3.5. For every A € LT, let gy be the function of L'(A) defined as gx(n) = N(\, ) for
every [ € L. We denote by By the followmg operator acting on the complex-valued functions F on L:

ByF(p) =g F(p) =Y N\ ') F(u+4'), VpeL
MEL

We notice that the operator B) is linear and invariant with respect to any translation in A, as their
coefficients N(\, u') do not depend on . However, B) is not W-invariant, because gy does not belong
to L(L)W, as N(\, p) # N(\, w~'u) for w € W different from the identity. The following proposition
relates the operator B) to the operator Aj.

Proposition 7.3.6. For every function F' on E, let
f(@) = F(pu(x)), for every z€V(A).

Then, for every X\ € EJF,
Axf(x) = BaF(p), if p=po().

PROOF. By definition of Ay, we can write, for every function f,

Yo fw=> > fy)

yEVa(z) vel \{v:io(z,y)=X, pu(y)=v}

In the case when f(z) = F(p,(z)), then, for every v € L, f(y) = F(v), for all y such that p,(y) = v.
Hence, by setting u = p,,(x) and p+ ¢/ = v, we have

=Y N W)F(u+ ') = ByF(p).
;J,’GZ
The operators B) and Z,\ are related by simple relations, as the following proposition states.

Proposition 7.3.7. For every A\ € L+ and every function F,

AVAF:X(;UQ B)\(X(l)/2F), B,\F X/ A)\( 1/2 )
PrROOF. For every p € E we have, by Definitions 7.3.1 and 7.3.5,
(ANF) () = > NG xo (W) Flu+ ) W S NG xo P (i) Flu+ )
MEL MEL

= xo (1) Ba(xg/* F)(w).

Moreover
(BAF)() = D NOW) Flut ') =xg* () D2 N 6 0xo ') Flut i)
weL wel
=x0' (1) D N xo” 1) 0o PE) (et 1) = xo" (1) AxCxg V) ()
w'eL
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7.4. Satake isomorphism. Consider the mapping
1: Ay — g)\, for all A € LT.

Since {Ax, X € f*‘} is a basis for the algebra H(A), we extend this map to the whole Hecke algebra
H(A) by linearity. We shall prove that i : H(A) — H(A) is a C-algebra isomomorphism.

Theorem 7.4.1. The mapping i : Ay — Ay isa C-algebra isomorphism of H(A) onto H(A).

Proor. First of all, we prove that ¢ is a C-algebra homomorphism from H(A) to H(A). By definition,
. k
ifA=3""_ ¢ Ay, then

k k
Z(A) = ZCji(A)\j) = chA)‘j'
j=1 j=1

Consider now, for any pair A\, \ € Z+, the operator Ay o Ay, and prove that
Z(A)\ o A)\/) = ’L(A)\) o Z(A/\/)

We know that Ay o Ay is a linear combination of operators Ay,,--- , Ay,, for convenient Ay, - -, Ag :

k
(AA o A)\/)f = Z CjA)\]. f

=1

Hence, i(Ax 0 Ax') =T, ,,, if hy v is the W-invariant function on Z, defined as

k
hay =Y cjha,.
i=1

This proves that i(Ay o Ay/) belongs to the algebra H(A).
Now we prove that, for every pair A, \,

Z(A)\ 9] A)\/) = Z(A)\) o Z(A)\/)
To this end, we consider, for every character x, the eigenvalue ©X(hy x/); for ease of notation, we set
OX(A, ) = OX(hy x). Since 7, ,, =S5 CjThy, » We have

k
OX(AN) =) ¢OX(\).

j=1
Therefore, keeping in mind (7.3.1),

k
OX(AN) =Y AN

j=1

/2 /2 /2

() = A6 (A 0 Ay ) = A0 (1) A’ (V) = 9X(\) ©x ().

So we have
OX(i(Ax 0 Ax)) = OX(i(A2))OX(i(Ax)) = OX(i(Ay) 0 i(Ax)),

for every x. Thus Proposition 7.1.2 implies that i(Ay o Ax/)) = i(Ay) o i(Ax). This proves that i is a
C-algebra homomorphism from H(A) to H(A).
Since the operators Ay form a C-basis of H(A) and, according to Proposition 7.3.4, the operators

Ay = i(Ay) form a C-basis of H(A), it follows immediately that the operator i is a bijection from the
algebra H(A) onto the algebra H(A). O

We shall call the operator ¢ the Satake isomorphism between H(A) and H(A).

7.5. Characterization of the eigenvalues of the algebra 7 (A). We proved in Section 7.1 that,
for every eigenvalue O of the algebra H(A) there exists a character x, such that ® = ©X. The Satake
isomorphism between H(A) and H(A) allows us to extend this characterization to the eigenvalues of the
algebra H(A).

Corollary 7.5.1. For every eigenvalue A of the algebra H(A) there exists a character x on L such that

1/2

A = A
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PROOF. Let A be an eigenvalue of the algebra H(A). By Theorem 7.4.1, there exists a unique eigenvalue
© € Hom(H(A),C), such that

O(\) = A(N), forevery AeLT.

Since, by Proposition 7.2.2, there exists a character y such that ® = ©X, and taking in account the
1/2
identity (7.3.1), we conclude that A = Ao’ O
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