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Abstract. The condition number of a given mathematical problem is often related to
the reciprocal of its distance from the set of ill - conditioned problems. Such a property is
proved here for linear - quadratic convex optimization problems in the infinite - dimensional
setting. A uniform version of such theorem is obtained for suitably equi - bounded classes of
optimization problems. An application to the conditioning of a Ritz method is presented.
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1. Introduction. A standard definition of conditioning of a mathematical problem
(see e.g. [10, 13]) is the following. Let X, Y be linear normed spaces, with given nonempty
subsets D ⊂ X, U ⊂ Y . D is the set of the data, U is the set of the solutions. Fix any
d∗ ∈ D. Then the problem corresponding to d∗ is called well - conditioned if there exists
a unique solution s(d) ∈ U for each data d ∈ D sufficiently close to d∗, and the (absolute)
condition number of the problem corresponding to d∗, namely

cond (d∗) = lim sup d→d∗
‖s(d)− s(d∗)‖
‖d− d∗‖

,

is finite. Otherwise the problem is called ill - conditioned. Thus cond (d∗) is a measure of
the sensitivity of the solution with respect to small changes in problem’ s data, as measured
in the norms of X and Y .

The notion of conditioning plays, as well known, a basic role in the analysis of the
behavior of many numerical solution methods of a given problem. Moreover, a fundamental
property of the condition number is that the (appropriately defined) distance of the given
problem to the set of ill - conditioned problems is proportional (sometimes equal) to the
reciprocal of the condition number. This property, often referred to as the condition
number theorem, is linked in a significant way to computational complexity theory and
related topics. See e.g. [8, 9, 10, 17, 18], and the book [2] for an interesting survey
(especially sections 11, 12, 13, 14 of chapter II there).

Scalar optimization problems are no exceptions to this behavior. For unconstrained
convex quadratic optimization, the condition number theorem has been proved in [19]
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generalizing to the infinite - dimensional setting the classical distance theorem of Eckart -
Young in numerical linear algebra. (See also [12] for earlier results about the distance to
the set of singular operators in the infinite - dimensional setting.) For generalizations and
further properties see [20, 21, 22]. Condition numbers of convex sets are defined in [7].

A different approach for defining conditioning related to (mostly finite - dimensional)
linear and convex programming has been introduced in [17, 18] and further developed
e.g. in [5, 6, 16]. There the condition number is defined in terms of some measure of
the distance to infeasibility, or ill - posedness. Then it is proved that such conditioning
concepts are related to the behavior of the optimal solutions under changes of problem’s
data. In a sense, the approach pursued here is reversed. As in [19, 20] we start with the
standard definition of the condition number as the sensitivity of the optimal solution under
data perturbations, as described above. Then we show how such a definition is related to
the reciprocal of the distance to ill - conditioning.

Aim of this paper is to prove a new condition number theorem for infinite - dimensional
optimization problems of the following type: minimize the convex quadratic form

x → 1
2

< Ax, x >

subject to the constraint
Sx = 0,

where A and S are linear bounded operators with A non negative. The results are new
even in the finite - dimensional setting. The problem’s data are small perturbations of the
objective function and the constraint. Thus we consider the minimizer m(b, p) of

x → 1
2

< Ax, x > − < p, x >

subject to the constraint
Sx = b.

Then we consider the condition number of the problem corresponding to p = 0, b = 0 as
defined by

lim sup (b,p)→(0,0)

‖m(b, p)‖
‖b‖+ ‖p‖

,

under suitable uniqueness requirements.

Compared with the approach of [19, section 4] the present definition takes into ac-
count perturbations of the constraint, which were not considered in [19] (so that a direct
comparison with those results is not possible).

In section 2 we present the basic setting. In section 3 we characterize well - conditioned
problems by coercivity of the linear operator A defining the quadratic form we minimize,
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and surjectivity of the operator S defining the constraint. An explicit formula for the
condition number is obtained in section 4 with the help of the Lagrange multiplier theorem.
The main results are presented in section 5. First we show that the distance from ill -
conditioning is bounded from above and below by suitable multiples of the reciprocal of the
condition number. Then we find classes of linear - quadratic problems which fulfill suitable
equi - boundedness properties, yielding uniform versions of the condition number theorem
for such optimization problems. In a sense we deal with uniformly well - conditioned
problems. The finite - dimensional setting is considered in section 6. The significant
example of Ritz - type approximations to a well - conditioned problem is presented. We
show that the distance of the finite - dimensional problems to ill - conditioning remains
uniformly bounded from below, as an application of the previous results.

2. Notations and basic notions. We consider two real Banach spaces E,F with E
reflexive and F non trivial. Let B(E,F ) denote the space of all linear bounded operators
between E and F equipped with the operator norm. For any normed space X we denote
by X∗ its dual and by < u, v > the duality pairing between u ∈ X∗ and v ∈ X;S∗ denotes
the adjoint od the operator S and Y T is the transpose of the matrix Y . Consider the set
N(E,E∗) of the symmetric non negative operators A ∈ B(E,E∗). Given A ∈ N(E,E∗)
and S ∈ B(E,F ) we deal with the optimization problem P = (A,S), to minimize

x → 1
2

< Ax, x >

subject to the constraint
Sx = 0, x ∈ E.

Of course x = 0 is an optimal solution of P . Along with (A,S) we consider the family of
perturbed problems (A,S, b, p) with p ∈ E∗ and b ∈ F , to minimize

x → 1
2

< Ax, x > − < p, x >

subject to the constraint
Sx = b, x ∈ E. (1)

Of course (A,S) = (A,S, 0, 0). We posit the following definitions. Problem (A,S) is well
- conditioned if

I) there exists δ > 0 such that (A,S, b, p) has a unique optimal solution

m(b, p) = arg min (A,S, b, p)

for each p ∈ E∗ and b ∈ F such that ‖p‖ < δ, ‖b‖ < δ;

II)

lim sup (b,p)→(0,0)

‖m(b, p)‖
‖b‖+ ‖p‖

= cond (A,S) < +∞
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(strong convergence of (b, p) → (0, 0) in F × E∗). The extended real number cond (A,S)
defined by II) is called the condition number of (A,S). The set of all well-conditioned
problems (A,S) is denoted by WC, while IC denotes the set of ill - conditioned problems,
namely those (A,S) for which at least one of I), II) fails.

As well known, we have the following Lagrange multipliers theorem (see e.g. [1,
theorem 1.8 p. 185].

THEOREM 1. Let A ∈ N(E,E∗), let S ∈ B(E,F ) have a closed range, b ∈ S(E), p ∈
E∗. Then y = m(b, p) iff y ∈ E and there exists u ∈ F ∗ such that

Ay = p + S∗u, Sy = b.

The distance between two optimization problems

(A1, S1), (A2, S2) ∈ N(E,E∗)×B(E,F )

is given through the operator norms, namely

dist [(A1, S1), (A2, S2)] = ‖A1 −A2‖+ ‖S1 − S2‖,

and for a fixed problem (A,S),

dist [(A,S), IC] = inf { dist [(A,S), (B, T )] : (B, T ) ∈ IC}.

We write for short
P = (A,S) is well - conditioned

instead of A ∈ N(E,E∗), S ∈ B(E,F ) and the optimization problem (A,S) is well -
conditioned.

3. Characterization of well - conditioned problems. Well - conditioning is
characterized in the next result via coercivity of the quadratic form and surjectivity of the
operator defining the constraint.

THEOREM 2. Let A ∈ N(E,E∗) and S ∈ B(E,F ). Then the following properties
are equivalent:

(A,S) is well - conditioned ; (2)

S is onto and for some constant α > 0 we have < Ax, x > ≥ α‖x‖2 if Sx = 0. (3)

Proof. Let (A,S) be well - conditioned. Then, by condition I), the constraint (1) must
be feasible for all b sufficiently small, hence S is onto. By condition I) and theorem 1, for
every sufficiently small b ∈ F, p ∈ E∗ there exist solutions x ∈ E, u ∈ F ∗ of

Ax = p + S∗u, Sx = b. (4)
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If (x1, u1) and (x2, u2) are solutions of (4), then x1 = x2 by I), hence u1 = u2 by injectivity
of S∗. Then standard reasoning shows that (4) has a unique solution (x, u) for every
b ∈ F, p ∈ E∗. Thus (3) follows by [3, lemma 4.124]. Conversely, let (3) hold. For all
sufficiently small b ∈ F there exists x̄ ∈ E such that Sx̄ = b and

‖x̄‖ ≤ k‖b‖ (5)

for a suitable constant k, see [11, lemma 1 p. 487]. Then every x fulfilling the feasible
constraint (1) can be written as

x = x̄ + y with Sy = 0. (6)

Fix any p ∈ E∗, b ∈ F (sufficiently small) and a corresponding x̄ fulfilling (5). Then, by
(3) and (6), for every x ∈ E with Sx = b we have

1
2

< Ax, x > − < p, x >=
1
2

< A(x̄ + y), x̄ + y > − < p, x̄ + y > ≥ α

2
‖y‖2 + C1‖y‖+ C2

with suitable constants C1, C2. By standard reasoning based on boundedness of the
minimizing sequences, lower semicontinuity and reflexivity of E, it follows that problem
(A,S, b, p) has optimal solutions. Let x1, x2 be two of them, then by theorem 1 for suitable
u1, u2 ∈ F ∗ we have

Ax1 = p + S∗u1, Ax2 = p + S∗u2, Sx1 = Sx2 = b

hence

α‖x1−x2‖2 ≤ < A(x1−x2), x1−x2 >=< S∗(u1−u2), x1−x2 >=< u1−u2, S(x1−x2) >= 0

whence x1 = x2. It follows that (A,S, b, p) has a unique optimal solution

x = x̄ + y, Sy = 0. (7)

Then by theorem 1 and a suitable u ∈ F ∗,

Ax = Ax̄ + Ay = p + S∗u

hence by (3), (5) and (7)

α‖y‖2 ≤ < Ay, y >=< u, Sy > + < p−Ax̄, y >=< p−Ax̄, y > ≤ ‖p‖‖y‖+ k‖A‖‖y‖‖b‖.

Then
‖x‖ ≤ ‖x̄‖+ ‖y‖ ≤ L(‖b‖+ ‖p‖)

for a suitable constant L, so that

lim sup (b,p)→(0,0)

‖x‖
‖b‖+ ‖p‖

≤ L,
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and the proof is completed.

4. A formula for the condition number. In order to prove a form of the condition
number theorem we shall rely on an explicit formula. We need two preliminary results, as
follows.

LEMMA 3. Let P ∈ B(E∗, E), Q ∈ B(F,E). Then

lim sup (x,y)→(0,0)

‖Px + Qy‖
‖x‖+ ‖y‖

= max {‖P‖, ‖Q‖}

(where (x, y) → (0, 0) in the strong convergence of E∗ × F ).

Proof. For all x and y

‖Px + Qy‖ ≤ (‖x‖+ ‖y‖) max {‖P‖, ‖Q‖}. (8)

Let e.g. ‖P‖ ≥ ‖Q‖. There exists a sequence xn ∈ E∗, ‖xn‖ ≤ 1 such that ‖Pxn‖ → ‖P‖.
Thus by (8)

sup {‖Px + Qy‖ : ‖x‖+ ‖y‖ ≤ 1} = ‖P‖ = max {‖P‖, ‖Q‖}.

The conclusion follows because

(x, y) → ‖Px + Qy‖
‖x‖+ ‖y‖

is positively homogeneous of degree 0.

We shall now employ, for a given A ∈ N(E,E∗), the coercivity condition

α‖x‖2 ≤ < Ax, x > ≤ ω‖x‖2, x ∈ E (9)

for fixed positive constants α, ω.

LEMMA 4. Let (A,S) be well - conditioned and assume (9). Then

D = SA−1S∗ : F ∗ → F (10)

is an isomorphism.

Proof. As easily checked, D is a linear bounded symmetric operator. Taking the
Fenchel conjugates in (9) we have

‖u‖2

ω
≤ < u,A−1u > ≤ ‖u‖2

α
, u ∈ E∗ (11)
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hence for all x ∈ F ∗

< x,Dx > ≥ ‖S∗x‖2

ω
. (12)

S is onto by theorem 2, hence by [4, theorem II.19]

‖x‖ ≤ (const.) ‖S∗x‖, x ∈ F ∗

whence by (12)
< x,Dx > ≥ (const.) ‖x‖2 (13)

showing that D is one - to - one. Symmetry of D and (13) show that D is onto (again by
[4, theorem II.19]), ending the proof.

The explicit formula we need for the condition number is obtained as follows.

THEOREM 5. Let (A,S) be well - conditioned and assume (9). Let D be given by
(10). Then

cond (A,S) = max {‖A−1S∗D−1‖, ‖A−1 −A−1S∗D−1SA−1‖}.

Proof. Given p ∈ E∗ and b ∈ E, by theorem 1, if x = m(b, p) there exists u ∈ F ∗ such
that

x = A−1p + A−1S∗u, Sx = b,

thus
Du = b− SA−1p,

and by lemma 4
x = A−1p + A−1S∗D−1(b− SA−1p).

The conclusion follows by lemma 3.

5. Condition number theorems. Here we relate the distance of well - conditioned
problems from IC to their condition numbers. First we prove a condition number formula
for a fixed optimization problem. Next we prove a uniform version of the condition number
theorem dealing with suitable classes of linear - quadratic problems. This is motivated, for
example, by applications to optimization problems depending on parameters, and to the
conditioning of finite - dimensional approximations of a given infinite - dimensional problem
as considered in section 6. In order to obtain such a result, we shall need to properly
define classes of well - conditioned problems fulfilling appropriate uniform boundedness
conditions.

Let S ∈ B(E,F ) be onto, and consider

c∗ = c∗(S) = inf {c > 0 : ‖x‖ ≤ c‖S∗x‖ for all x ∈ F ∗}, (14)
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k = k(S) = sup {h > 0 : T ∈ B(E,F ), ‖S − T‖ ≤ h imply T onto }. (15)

Since S is onto, k and c∗ are well - defined (see [4, theorem II. 19]), and k is not +∞ since
F is nontrivial. Of course k is the distance of S to the set of non surjective operators. We
need the following (possibly known)

LEMMA 6. If S is onto, then

k =
1
c∗

.

Proof. Given T ∈ B(E,F ) consider the reduced minimum modulus of T (see [15, p.
231]) given by

γ(T ) = sup {m > 0 : ‖Tx‖ ≥ m dist (x, ker T ) for every x ∈ E},

and

σ(S) = inf {α > 0 : for every y ∈ S(E) there exists x ∈ E such that Sx = y

and ‖x‖ ≤ α‖y‖}

as defined in [14]. Then

k =
1

σ(S)
(16)

by [14, proposition 1.5]. Since S is onto, then +∞ > γ(S) > 0 by [15, theorem 5.2 p. 231].
Now we prove that

1
σ(S)

= γ(S). (17)

Consider

U1 = {α > 0 : for every y ∈ F there exists x ∈ E such that Sx = y and ‖x‖ ≤ α‖y‖},

and
U2 = {m > 0 : ‖Sx‖ ≥ m dist (x, ker S) for every x ∈ E}.

Let α ∈ U1. Given x ∈ E let y = Sx. Then there exists w ∈ E with Sw = y and
‖w‖ ≤ α‖y‖. Since Sw = Sx we have

dist (w, ker S) = dist (x, ker S),

hence
dist (x, ker S) ≤ ‖w‖ ≤ α‖Sx‖

whence 1/α ∈ U2. Conversely, let m ∈ U2. Let y ∈ F, u ∈ E be such that Su = y. By
reflexivity of E, there exists u0 ∈ ker S such that

dist (u, ker S) = ‖u− u0‖.

8



Thus
‖S(u− u0)‖ ≥ m‖u− u0‖, S(u− u0) = y

hence 1/m ∈ U1. It follows that (17) is proved. By [15, theorem 5.13 p. 234] we have
γ(S) = γ(S∗). Moreover, since S∗ is one - to - one,

c∗ = sup { 1
‖S∗x‖

: ‖x‖ = 1} =
1

γ(S∗)

and the conclusion follows by (16) and (17).

Now we are in position to get a version of the condition number theorem for a fixed
optimization problem (A,S), by proving an upper and a lower bound of its distance to the
set IC of ill - conditioned problems in terms of the condition number cond (A,S).

LEMMA 7. Let A ∈ N(E,E∗) fulfill (9). If (A,S) is well - conditioned, then

c1

cond (A,S)
≤ dist [(A,S), IC]

for every constant c1 such that

0 < c1 < min { cond (A,S)
c∗

,
cond (A,S)
‖A−1‖

},

c∗ given by (14).

Proof. Write L = cond (A,S). Then L > 0 by theorem 5. Let T ∈ B(E,F ) have a
closed range and B ∈ N(E,E∗) be such that

dist [(A,S), (B, T )] ≤ c1

L

so that
‖A−B‖ ≤ c1

L
, ‖S − T‖ ≤ c1

L
.

Then we need to prove that (B, T ) ∈ WC. By theorem 2, suffices to prove that B is an
isomorphism between E and E∗, and T is onto. Since c1 < L/‖A−1‖, the conclusion about
B comes from a known property (see [15, p. 196]). The conclusion about T comes from
lemma 6 since c1 < L/c∗.

LEMMA 8. Let A ∈ N(E,E∗) fulfill (9). If (A,S) is well - conditioned, then

dist [(A,S), IC] ≤ c2

cond (A,S)

for every constant c2 such that

c2 >
cond (A,S)

c∗
,
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c∗ given by (14).

Proof. Again write L = cond (A,S). Since c2/L > 1/c∗, by lemma 6 there exists some
T0 ∈ B(E,F ) which is not onto with ‖S − T0‖ ≤ c2/L. It follows that the optimization
problem (A, T0) ∈ IC by theorem 2, hence

dist [(A,S), IC] ≤ ‖T0 − S‖ ≤ c2

L
,

ending the proof.

From lemmas 7, 8 and theorem 5 we obtain

COROLLARY 9. If P = (A,S) ∈ WC and A fulfills (9), then

c1

cond (P )
≤ dist (P, IC) ≤ c2

cond (P )

for suitable positive constants c1, c2 depending only on the norms of A−1S∗D−1, A−1 −
A−1S∗D−1SA−1 and on α, ω, c∗.

The following definition isolates properties of a set of well - conditioned optimization
problems for which a uniform estimate holds of their distance to ill - conditioning by the
reciprocal of their condition numbers. Let V be a nonempty set of optimization problems
P = (A,S) ∈ WC with A ∈ N(E,E∗) an isomorphism. Let L = cond (P ). Then V is
admissible if there exist positive constants a1, a2, a3 such that for every P ∈ V we have

a1 ≤
L

c∗
≤ a3, a2 ≤

L

‖A−1‖
, (18)

where c∗ is given by (14) (we see from lemma 6 that c∗ > 0 for every P ∈ V ). As a direct
consequence of lemmas 7 and 8 we get

THEOREM 10. For every admissible set V ⊂ WC there exist positive constants
C1, C2 such that

C1

cond (P )
≤ dist (P, IC) ≤ C2

cond (P )

for every P ∈ V .

Proof. As already remarked (proof of lemma 7), cond P > 0 for every P ∈ V , so that
the conclusion makes sense. By lemmas 7 and 8 suffices to consider the constants a1, a2, a3

in (18) and take
0 < C1 < min {a1, a2}, C2 > a3. (19)

We end this section with a sufficient condition for admissibility. We need
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LEMMA 11. Let S ∈ B(E,F ) be onto. Then k ≤ ‖S‖ where k is given by (15).

Proof. Let

U = {h > 0 : T ∈ B(E,F ), ‖S − T‖ ≤ h imply T onto }.

Then U is a nonempty interval contained in [0, k]. Since the operator T = 0 is not onto
(being F non trivial), it follows that ‖S‖ /∈ U , hence ‖S‖ ≥ k = sup U as required.

THEOREM 12. Given positive constants C,α, ω, k0, let V be the set of all pairs
(A,S) ∈ N(E,E∗)×B(E,F ) such that A fulfills (9) and

‖S‖ ≤ C, inf {‖S∗x‖ : ‖x‖ = 1} ≥ k0. (20)

Then V is admissible.

Proof. V ⊂ WC by (9) and (20) due to theorem 2. We check conditions (18). Let
(A,S) ∈ V and L = cond (A,S). By (11) and (20)

‖A−1S∗D−1u‖ ≥ 1
ω
‖S∗D−1u‖ ≥ k0

ω
‖D−1u‖, u ∈ F. (21)

Moreover, again by (11),

< x,Dx > ≤ C2

α
‖x‖2, x ∈ F ∗,

and taking the Fenchel conjugates

α

C2
‖u‖2 ≤ < D−1u, u >, u ∈ F

hence (α/C2)‖u‖ ≤ ‖D−1u‖. Then by (21)

‖A−1S∗D−1u‖ ≥ L1‖u‖, u ∈ F,

where
L1 =

k0α

ωC2
, (22)

hence by theorem 5
L ≥ ‖A−1S∗D−1‖ ≥ L1, (A,S) ∈ V.

By (20) and taking the Fenchel conjugates in (12) we obtain

< D−1u, u > ≤ ω

k2
0

‖u‖2, u ∈ F.

It follows that
‖A−1S∗D−1‖ ≤ ‖A−1‖‖S‖‖D−1‖ ≤ Cω

αk2
0
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for every (A,S) ∈ V . Thus by theorem 5 we have

L1 ≤ L ≤ L2 for every (A,S) ∈ V

where

L2 = max { Cω

αk2
0

,
1
α

+
C2ω

α2k2
0

}. (23)

Moreover, remembering (14) and (20), we have

c∗ =
1

inf {‖S∗x‖ : ‖x‖ = 1}
≤ 1

k0
.

Then the first inequality of (18) is fulfilled by choosing

0 < a1 ≤ k0L1. (24)

By (11), the third is true if
0 < a2 ≤ αL1. (25)

By lemmas 6 and 11, and by (20), the second inequality of (18) follows provided

a3 ≥ CL2, (26)

ending the proof.

As a direct consequence of the previous results, we obtain

COROLLARY 13. Let V be defined as in theorem 12. Then there exist positive
constants C1, C2 depending only on C,α, ω, k0, such that

C1

cond (P )
≤ dist (P, IC) ≤ C2

cond (P )
(27)

for every P ∈ V .

Proof. By theorems 10 and 12, the conclusion holds provided

0 < C1 < min { k2
0α

ωC2
,

k0α
2

ωC2
}, C2 > C max { Cω

αk2
0

,
1
α

+
C2ω

α2k2
0

}, (28)

as we see by (19), (22), (23), (24), (25) and (26).

6. The finite - dimensional setting. Here we consider two positive integers N,K
with K ≤ N , and problems of the following form: to minimize

x → 1
2
xT Ax, x ∈ RN
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subject to the constraint
Sx = 0

where A is a N × N real symmetric positive semidefinite matrix, and S is a K × N
real matrix. By obvious identifications, the above finite - dimensional linear - quadratic
problems are particular cases of those previously considered, with E = RN and F = RK .
Given positive constants α, ω, k1, C, consider the set V of all pairs of matrices (A,S) as
before, such that

α ≤ λ ≤ ω for every eigenvalue λ of A; (29)

k1 ≤ σ ≤ C for every singular value σ of S . (30)

COROLLARY 14. Let V be defined by (29), (30). Then there exist positive constants
C1, C2 depending only on α, ω, k1, C such that (27) holds for every P ∈ V .

Proof. Due to corollary 13, we need only to check that (30) implies (20). As well
known, ‖S‖ is bounded above by a constant times the largest singular value of S. Moreover,
if u ∈ RK minimizes ‖S∗x‖ as ‖x‖ = 1 (Euclidean norms), then ‖S∗u‖ =

√
λ where λ is

some eigenvalue of SS∗. Then (20) is fulfilled and the proof is complete.

A significant example of uniformly well - conditioned finite - dimensional linear -
quadratic problems (with variable domains) is obtained by applying Ritz - type numerical
solution methods to a fixed infinite - dimensional problem, as follows. Let E,F be infinite
- dimensional real Hilbert spaces, with E separable. Fix the problem P = (A,S) and an
orthonormal basis {ϕ1, ..., ϕN , ...} of E. Let

EN = sp {ϕ1, ..., ϕN}, N = 1, 2, ...

and consider the sequence (ĀN , S̄N ) of the restrictions to EN of A,S respectively. For
each N , consider the basis {Aϕ1, ..., AϕN} of A(EN ), and fix an orthonormal basis of the
linear subspace S(EN ) of F . Denote by AN , SN the corresponding matrices associated to
the linear operators

ĀN : EN → A(EN ), S̄N : EN → S(EN )

respectively. For each N let PN = (AN , SN ) be the optimization problem, to minimize

1
2
xT ANx subject to SNx = 0, x ∈ RN .

For each N denote by (IC)N the set of ill - conditioned linear - quadratic problems (B, T )
where B is a N ×N real symmetric positive semidefinite matrix, and T is a K ×N real
matrix, K = KN =dim S(EN ).

THEOREM 15. If P is well - conditioned and A fulfills (9), then every PN is well -
conditioned, and there exist positive constants C1, C2 such that

C1

cond P
≤ C1

cond PN
≤ dist [PN , (IC)N ] ≤ C2

cond PN
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for every N = 1, 2, ....

Proof. For each N , the eigenvalues of AN are between α and ω of (9). If σ is a singular
value of SN , then there exists y ∈ RK , y 6= 0, where K =dim S(EN ), such that

‖S∗y‖2 =< SS∗y, y >= σ2‖y‖2.

By theorem 2 and lemma 6, S fulfills (20), hence σ ≥ k0 for some positive constant k0

independent of N . Moreover σ ≤ ‖S‖, and cond PN ≤ cond P for every N , due to theorem
5. Then every PN is well - conditioned. From corollary (14), the conclusion follows by (27)
and (28), due to the uniform bounds on the eigenvalues of AN and the singular values of
SN , N = 1, 2... .

By theorem 15, computational complexity of each PN as measured by its distance
to ill - conditioning, is uniformly bounded, moreover a uniform version of the condition
number theorem is available for the sequence PN of finite - dimensional approximations
of P . Convergence properties of the condition number of PN as N → +∞, which are
known for unconstrained problems, although in a different setting (as shown in [21]) will
be considered elsewhere.
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