On the monad of proper factorisation systems in categories (*)

Marco Grandis

Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146-Genova, Italy
E-mail address: grandis@dima.unige.it (Marco Grandis).

Abstract. It is known that factorisation systems in categories can be viewed as unitary pseudo algebras for the monad $\mathcal{P} = (-)^2$, in \textbf{Cat}. We show in this note that an analogous fact holds for proper (i.e., epi-mono) factorisation systems and a suitable quotient of the former monad, deriving from a construct introduced by P. Freyd for stable homotopy. Some similarities of \mathcal{P} with the structure of the path endofunctor of topological spaces are considered.

MSC: 18A32; 18C15.

Key Words: Factorisation systems, 2-monads, Eilenberg-Moore algebras, pseudo algebras.

Introduction

For a category X, the category of morphisms $\mathcal{P}X = X^2$ has a natural factorisation system. So equipped, it is the free category with factorisation system, on X.

This system induces a proper, or epi-mono, factorisation system on a quotient $\mathcal{F}rX = X^2/R$ [G3], the free category with epi-mono factorisation system on X (the epi-mono completion), that generalises the Freyd embedding of the stable homotopy category of spaces in an abelian category [Fr]. "Weak subobjects" in X, of interest for homotopy categories, correspond to ordinary subobjects in $\mathcal{F}rX$; other results in [G3] concern various properties of $\mathcal{F}rX$ that derive from weak (co)limits of X.

Now, the "path" endofunctor $\mathcal{P} = (-)^2$ of \textbf{Cat} has an obvious 2-monad structure (with diagonal multiplication), linked to the universal property recalled above (a pseudo adjunction); it is known, since some hints in Coppey [Co] and a full proof in Korostenski - Tholen [KT], that its (unitary) pseudo algebras correspond to the factorisation systems of X. Similarly, as stated without proof in [G3], the pseudo algebras for the induced 2-monad on $\mathcal{F}rX$ correspond to proper factorisation systems of X; more precisely, we prove here, in Theorem 4 (ii), that there is a canonical bijection between proper factorisation systems in X and pseudo isomorphism classes of pseudo $\mathcal{F}r$-algebras on X. Similar, simpler relations hold in the strict case: strict factorisation systems are monadic on categories, as well as the proper such. Structural similarities of \mathcal{P} with the topological path functor $PX = X^{[0,1]}$ are discussed at the end (Section 5).

We shall use the same notation of [G3]. For factorisation systems, one can see Freyd - Kelly [FK], Carboni - Janelidze - Kelly - Paré [CJKP], and their references; the strict version is much less used: see [G3] and Rosebrugh-Wood [RW]. Lax \mathcal{P}-algebras are studied in [RT]. General lax and pseudo algebras can be found in Street [St].

(*) Work partially supported by MURST research projects.
The author acknowledges with pleasure a suggestion of F.W. Lawvere, at the origin of this note.

1. **The factorisation monad.** Let X be any category and X^2 its category of morphisms. An object of the latter is an X-map $x: X' \to X''$, which we may write as \hat{x} when it is viewed as an object of X^2: a morphism $f = (f', f'') : \hat{x} \to \hat{y}$ is a commutative square of X, as in the left diagram

\begin{align*}
x' &\xrightarrow{f} Y' \\
x &\downarrow \\
x'' &\xrightarrow{f''} Y''
\end{align*}

and the composition is obvious. The strict factorisation of f, shown in the right diagram, is $f = (f', 1)(1, f'')$; note that its middle object is the diagonal $\hat{1} = f'\hat{x} = yf''$ of the square f.

Thus, X^2 has a canonical factorisation system (fs for short), where the map $f = (f', f'')$ is in E (resp. in M) iff f' (resp. f'') is an isomorphism. This system contains a canonical strict factorisation system, where (f', f'') is in E_0 (resp. in M_0) iff f' (resp. f'') is an identity. (As in [G3, 2.1], this means that: (i) E_0, M_0 are subcategories containing all the identities; (ii) every map u has a strictly unique factorisation $u = me$ with $e \in E_0, m \in M_0$. A strict fs (E_0, M_0) is not a fs, of course; but, there is a unique fs (E, M) containing the former, where $u = me$ is in E iff m is iso, and dually. Two strict systems are said to be equivalent if they span the same fs.)

The full embedding that identifies the object X of X, with $\hat{1}X$

\begin{align*}
x' &\xrightarrow{x} X' \\
x &\downarrow \\
x' &\xrightarrow{x} X'
\end{align*}

makes X^2 the free category with factorisation system on X, in the "ordinary" sense (as well as in a strict sense): for every functor $F: X \to A$ with values in a category with fs (resp. strict fs), there is an extension $G: X^2 \to A$ that preserves factorisations (resp. strict factorisations), determined up to a unique functorial isomorphism $G(\hat{x}) = \text{Im}_A(Fx)$. The (obvious) proof is based on the canonical factorisation of $\eta X(x) = (x, 1), (1, x): \hat{1}X \to \hat{1}Y$ in X^2

\begin{align*}
x' &\xrightarrow{x} X' \\
x &\downarrow \\
x' &\xrightarrow{x} X'
\end{align*}

One might now expect that "factorisation systems be monadic on categories", but this is only true in a relaxed 2-dimensional sense.

First, by the strict universal property, the forgetful 2-functor $\mathcal{U}_0: \mathcal{F}_0\text{Cat} \to \text{Cat}$ (of categories with strict fs) has a left 2-adjoint $\mathcal{F}_0(X) = (X^2; E_0, M_0)$, and we shall see that \mathcal{U}_0 is indeed 2-monadic: the comparison 2-functor $\mathcal{K}_0: \mathcal{F}_0\text{Cat} \to \mathcal{P}_{-}\text{Alg}$ establishes an isomorphism of $\mathcal{F}_0\text{Cat}$ with the 2-category of algebras of the associated 2-monad, $\mathcal{P} = \mathcal{U}_0\mathcal{F}_0: \text{Cat} \to \text{Cat}$, $\mathcal{P}(X) = X^2$.

Secondly, by the "relaxed" universal property, the forgetful 2-functor $\mathcal{U}: \mathcal{F}s\text{Cat} \to \text{Cat}$ (of categories with fs) acquires a left pseudo adjoint 2-functor $\mathcal{F}(X) = (X^2; E, M)$: the unit $\eta: 1 \to \mathcal{U}\mathcal{F}$ is 2-natural, but the counit is pseudo natural and "ill-controlled", each component $\epsilon A: (|A|^2; E, M) \to A$ depending on a choice of images in A; the triangle conditions are – rather – invertible 2-cells. This
would give an ill-determined pseudo monad structure on $\mathcal{P} = \mathcal{U} \mathcal{F} = \mathcal{U}_0 \mathcal{F}_0$, isomorphic to the previous 2-monad; we will therefore settle on the latter and "by-pass" the pseudo adjunction.

In fact, the structure of the category $\mathbf{2} = \{0 \rightarrow 1\}$ as a diagonal comonoid (with $\epsilon: \mathbf{2} \rightarrow \mathbf{1}$, $\delta: \mathbf{2} \rightarrow \mathbf{2} \times \mathbf{2}$) produces a diagonal monad on the endofunctor $\mathcal{P} = (-)\times (-)$ of \mathbf{Cat}, precisely the one we are interested in. The unit $\eta_X = X^2$: $X \rightarrow X^2$ is the canonical embedding considered above, $\eta_X(X) = \hat{1}_X$. The multiplication $\mu_X = X^2$: $\mathcal{P}^2 \mathcal{X} \rightarrow \mathcal{P} \mathcal{X}$ is a "diagonal functor" defined on $\mathcal{P}^2 \mathcal{X} = X^{2 \times 2}$:

- an object of $\mathcal{P}^2 \mathcal{X}$ is a morphism $\xi_0 = (a_0, b_0): x_0 \rightarrow y_0$ of $\mathcal{P} \mathcal{X}$, and a commutative square in \mathcal{X} (the front square of the diagram below); $\mu_X(\xi_0) = d_0 = b_0 x_0 = y_0 a_0$ is the diagonal of this square;
- a morphism of $\mathcal{P}^2 \mathcal{X}$ is a commutative square Ξ of $\mathcal{P} \mathcal{X}$, and a commutative cube in \mathcal{X}; $\mu_X(\Xi)$ is a diagonal square of the cube

\[
\begin{array}{cccc}
X_1' & \xrightarrow{f_1} & X_2' \\
\downarrow{\xi_0} & & \downarrow{\xi_1} \\
X_0' & \xrightarrow{f} & X_0' \\
\downarrow{\alpha_0} & & \downarrow{\alpha_1} \\
Y_0' & \xrightarrow{g} & Y_0' \\
\end{array}
\]

μ coincides with the multiplication coming from the strict adjunction, $\mathcal{U}_0 \mathcal{F}_0: \mathcal{P}^2 \rightarrow \mathcal{P}$ (and would also coincide with the pseudo multiplication $\mathcal{U}\mathcal{F}$, if one might control the choice of images in $\mathcal{F} \mathcal{X}$ by its strict fs).

\mathcal{P} will also be called the factorisation monad on \mathbf{Cat}, while a \mathcal{P}-algebra (X, t) will also be called a factorisation algebra; it consists of a functor $t: X^2 \rightarrow X$ such that $t \eta_X = 1_X$, $t \mathcal{P} t = t \mu_X$.

2. The proper factorisation monad. Consider now the quotient $\mathcal{F} \mathcal{R} \mathcal{X} = X^2/R$, modulo the "Freyd congruence" $[Fr]$; two parallel X^2-morphisms $f = (f', f''): x \rightarrow y$ and $g = (g', g''): x \rightarrow y$ are R-equivalent whenever their diagonals \bar{f}, \bar{g} coincide (cf. 1.1); the morphism of $\mathcal{F} \mathcal{R} \mathcal{X}$ represented by f will be written as $[f]$ or $[f', f'']$. As a crucial effect of this congruence, if f' is epi (resp. f'' is mono) in \mathcal{X}, so is $[f]$ in $\mathcal{F} \mathcal{R} \mathcal{X}$.

As in [G3], a canonical epi (resp. mono) of $\mathcal{F} \mathcal{R} \mathcal{X}$ will be a morphism which can be represented as $[1, f']$ (resp. $[f, 1]$). Every map $[f]$ has a precise canonical factorisation $[f] = [f, 1][1, f'']$, formed of a canonical epi and a canonical mono (both their diagonals being \bar{f}). $\mathcal{F} \mathcal{R} \mathcal{X}$ has thus a proper strict fs (E_0, M_0), which spans a (proper) fs (E, M): the map $[f]: x \rightarrow y$ belongs to E iff there is some $u: Y' \rightarrow X'$ such that $y f' u = y$ (y sees f' as a split epi).

The full embedding $\eta_X = p: \eta_X: X \rightarrow \mathcal{F} \mathcal{R} \mathcal{X}$ takes $f: X \rightarrow Y$ to $[f, f]$: $\hat{1}_X \rightarrow \hat{1}_Y$; $\mathcal{F} \mathcal{R} \mathcal{X}$ is thus the free category with proper factorisation system on \mathcal{X} [G3, 2.3], called the Freyd completion, or epi-mono completion of \mathcal{X}. The 2-monad structure of $\mathcal{F} \mathcal{R}$, induced by the one of \mathcal{P} (by-passing again a pseudo adjunction $\mathcal{F} \mathcal{R} \rightarrow \mathcal{U} \mathcal{F}$), will be called the proper factorisation monad on \mathbf{Cat}. The unit is η'_X. For the multiplication $\mu_X: \mathcal{F} \mathcal{R}^2 \mathcal{X} \rightarrow \mathcal{F} \mathcal{R} \mathcal{X}$, note that now

- an object of $\mathcal{F} \mathcal{R}^2 \mathcal{X}$ is a morphism of $\mathcal{F} \mathcal{R} \mathcal{X}$, $\xi_0 = (a_0, b_0): x_0 \rightarrow y_0$,
- a morphism of $\mathcal{F} \mathcal{R}^2 \mathcal{X}$ is an equivalence class Ξ of commutative squares of $\mathcal{F} \mathcal{R} \mathcal{X}$

\[
\Xi = ((f', g'), (f'', g'')): \xi_0 \rightarrow \xi_1,
\]

\[
\Xi = (f', g''): d_0 \rightarrow d_1;
\]
(1) $\Xi = [f', g', [f'', g'']]$: $(\xi_0: x_0 \to y_0) \to (\xi_1: x_1 \to y_1)$, and we have

(2) $\mu'(\Xi_0) = d_0$, $\mu'(\Xi) = [f', g'']$: $d_0 \to d_1$;

in fact, the class $[f', g'']$: $d_0 \to d_1$ is well defined, since its diagonal $g''d_0 = g''b_0x_0$ only depends on the class $[f'', g'']$ and the object x_0. The projection p is thus a strict morphism of monads $(P, \eta, \mu) \to (F_r, \eta', \mu')$, as shown in the left diagram below (with $p_2 = Fr(p).p_{2F} = pFr.F(p)$)

$$
\begin{align*}
\xymatrix{X \ar[r]^\eta & PX \ar[l]_{\mu} & P^2X \\
X \ar[r]^\eta' & FrX \ar[l]_{\mu'} & Fr^2X}
\end{align*}
$$

Moreover, any Fr-algebra $t: FrX \to X$ determines a P-algebra $t = t'p: P^2X \to X$, while a P-algebra $t: PX \to X$ induces a Fr-algebra $t: FrX \to X$ (with $t = t'p$) iff t is compatible with R.

3. Pseudo algebras. Actually, we want to compare the 2-category $FsCat$ (of categories with fs, functors which preserve them, and natural transformations of such functors) with the 2-category $Ps-P-Alg$ of pseudo P-algebras, always understood to be unitary (or normalised).

According to a general definition (cf. [St], §2), a (unitary) pseudo P-algebra (X, t, θ), or factorisation pseudo algebra, consists of a category X, a functor t (the structure) and a functorial isomorphism θ (pseudo associativity), so that

(1) $t: X^2 \to X$, $t.\eta X = 1$,

(2) $\theta: tPt \cong t.\mu X: P^2X \to X$,

(3) $\theta(\eta PX) = 1_t = \theta(\eta P^2X): t \to t: PX \to X$,

(4) $\theta(\mu PX).t(\theta) = \theta(\mu P^2X).\theta(P^2t): tPt.P^2t \to t.\mu X,\mu PX: P^3X \to X$.

$$
\begin{align*}
\xymatrix{P^2X & P^2X \ar[l]_{\mu} & P^2X \\
\ar[r]_{\mu'} & P^2X \ar[u]_{\mu} & P^2X \ar[l]_{\mu} \\
\ar[r]_{\mu'} & P^2X \ar[u]_{\mu} & P^2X \ar[l]_{\mu} \ar[u]_{\mu}
\end{align*}
$$

but here (i.e., for P) the conditions (3), (4) follow from the rest (as proved below, 4 (A), (B)).

A morphism $(F, \varphi): (X, t, \theta) \to (Y, t', \theta')$ of pseudo P-algebras is a functor $F: X \to Y$ with a functorial isomorphism $\varphi: Ft \to t'.PF$: $PX \to Y$ satisfying the following coherence conditions (again, the second is redundant for P, cf. 4 (A), (B))

(5) $\varphi.\eta Y = 1_Y, \varphi X, F\theta = \theta^tP^2F.t'.\varphi.pPt: FtPt \to t'.\mu Y, P^2F: P^2X \to Y$.
Finally, a 2-cell \(\alpha: (F, \psi) \to (G, \psi) \) is just a natural transformation \(\alpha: F \to G \); it is automatically coherent (cf. 4 (B))

\[
(7) \quad \psi \cdot \alpha = t' \rho_{\alpha, \psi}: \quad F \cdot t \to t'. \rho_G: \quad \mathcal{P} \cdot X \to Y.
\]

Similarly, we have the 2-category \(\text{Ps-Fr-Alg} \) of pseudo Fr-algebras, or proper-factorisation pseudo algebras; these amount to pseudo \(\mathcal{P} \)-algebras \((X, t, \emptyset)\) where both \(t \) and \(\emptyset \) are consistent with \(R \) (the consistency of \(\emptyset \) being redundant, cf. 4 (D)). Again, (3), (4), (6), (7) are redundant.

4. Theorem (The comparison of factorisation algebras). (i) (Coppey-Korostenski-Tholen) With respect to the diagonal 2-monad for the endofunctor \(\mathcal{P} = (-)^2 \) of \(\text{Cat} \), there is a canonical equivalence of categories – described below – between \(\text{FsCat} \) and \(\text{Ps-\mathcal{P}-Alg} \), which induces a bijection between fs on a category \(X \) and pseudo isomorphism classes of pseudo \(\mathcal{P} \)-algebras on \(X \). In the strict situation, the canonical comparison functor \(\mathcal{K}_0: \text{Fs}_0 \text{Cat} \to \mathcal{P} \text{-Alg} \), between strict fs and \(\mathcal{P} \)-algebras, is an isomorphism.

(ii) With respect to the 2-monad of the endofunctor \(\text{Fr} \), the previous equivalence induces an equivalence between categories with proper factorisation systems and pseudo \(\text{Fr} \)-algebras, as well as a bijection between proper fs on a category \(X \) and pseudo isomorphism classes of pseudo \(\text{Fr} \)-algebras on \(X \). The comparison functor \(\mathcal{K}_0': \text{PFs}_0 \text{Cat} \to \text{Fr-Alg} \), of proper strict fs, is an isomorphism.

Proof. Part (i) is mostly proved in [KT], and we only need to complete a few points.

(A) First, there is a canonical 2-functor \(\mathcal{L}: \text{Ps-\mathcal{P}-Alg} \to \text{FsCat} \). Given a (unitary) pseudo \(\mathcal{P} \)-algebra \((X, t, \emptyset)\), every map \(x: X' \to X^* \) in \(X \) inherits a precise \(t \)-factorisation through the object \(t(\hat{x}) \), by letting the functor \(t \) act on the canonical factorisation of \(\#X(x) = (x, 1). (1, x) \) in \(X^2 \) (1.3)

\[
\begin{align*}
X' & \xrightarrow{\tau^*(\hat{x})} X^* \\
1 \downarrow_x & \xrightarrow{1} X' & \xrightarrow{x} & \xrightarrow{1} & \xrightarrow{\tau(x)} & \xrightarrow{\tau^*(\hat{x})} & X^* \\
X' & \xrightarrow{\tau^*(\hat{x})} X^* & \xrightarrow{\tau(\hat{x})} & \xrightarrow{\tau^*(\hat{x})} & X^* \\
\end{align*}
\]

Define \(E \) as the class of \(X \)-maps \(x \) such that \(\tau^*(\hat{x}) \) is iso; dually for \(M \). This is indeed a fs, as proved in [KT], thm. 4.4, without assuming the coherence condition 3.3 (cf. the Note at the end of the paper) nor 3.4; the fact that these properties will be obtained in (B), from the backward procedure, shows that they are redundant. (In the strict case, a strict \(\mathcal{P} \)-algebra \(t \) gives a strict fs, where \(E_0 \) contains the maps \(x \) such that \(\tau^*(\hat{x}) \) is an identity, and dually for \(M_0 \).)

Given a morphism \((F, \psi): (X, t, \emptyset) \to (Y, t', \emptyset') \) of pseudo \(\mathcal{P} \)-algebras, the fact that the functor \(F: X \to Y \) preserves the associated fs follows from the following diagram, commutative by the naturality of \(\psi: F \cdot t \to t'. \rho_F \) on \((1, x): X' \to \hat{x}, (x, 1): \hat{x} \to X^*, (1, y) \) and \((y, 1) \)
Again, we do not need the condition 3.6: any natural iso \(\varphi \) such that \(\varphi \eta X = 1_F \) has this effect.

(B) Conversely, one can construct a 2-functor \(\mathcal{K}: \mathbf{FsCat} \to \mathbf{Ps-P-Alg} \) depending on choice. Let \((X, E, M)\) be a category with fs; for every map \(x: X' \to X^* \), let us choose one structural factorisation \(x = \tau(x), \tau'(x): X' \to t(x) \to X^* \), respecting all identities: \(1 = 1.1 \) (We are not saying that this choice comes from a strict fs contained in \((E, M)\)). By orthogonality, this choice determines one functor \(t: X \to X^* \) with this action on the objects and such that \(\tau^{-} \cdot \delta^{-} \to t, \tau ': \cdot \delta^{+} \) are natural transformations (\(\delta^{-}, \delta^{+}: X^2 \to X \) being the domain and codomain functors)

\[
\begin{align*}
X' \xrightarrow{\tau x} & \quad t(x) \quad \xrightarrow{\tau' x} \quad X^* \\
Y' \xrightarrow{\tau y} & \quad \xrightarrow{t(f)} \quad Y^*
\end{align*}
\]

Now \(t \eta(X) = t(1_X) = X \). Moreover, let \(t \cdot \mathcal{P}_t \) and \(t \cdot \mu X: \mathcal{P}_2X \to X \) operate on the object \((f', f^\gamma): x \to y \) of \(\mathcal{P}_2X \), producing \(t \cdot \mathcal{P}_t(f', f^\gamma) = Z' \) and \(t \cdot \mu X(f', f^\gamma) = t(\tilde{f}) = Z'' \)

\[
\begin{align*}
X' \xrightarrow{x} & \quad t(x) \quad \xrightarrow{x'} \quad X^* \\
Y' \xrightarrow{y} & \quad \xrightarrow{t(y)} \quad Y^*
\end{align*}
\]

so that there is precisely one isomorphism \(\vartheta(f): Z' \to Z'' \) linking the two EM-factorisations we have obtained for the diagonal, \(\tilde{f} = (y''z^*).(z'x^*) = d''.d' \) (a strict fs would give an identity, for \(\vartheta(f) \))

\[
\begin{align*}
X' \xrightarrow{x} & \quad X^* \\
Y' \xrightarrow{y} & \quad Y^*
\end{align*}
\]

The coherence relations for \(\vartheta \) do hold: the first (3.3) is obvious; the second (3.4) is concerned with two natural transformations, \(\vartheta(\mu X), t(\vartheta) \) and \(\vartheta(\mu X), \vartheta(\mathcal{P}_2 t) \), that take a commutative cube \(\Xi \in \text{Ob}(\mathcal{P}_3 X) \) to the unique isomorphism linking two precise EM-factorisations of the diagonal arrow of \(\Xi \), through \(t \cdot \mathcal{P}_t \mathcal{P}_2 t(\Xi) \) and \(t \cdot \mu X, \mu X(\mathcal{P}_X(\Xi)) \), respectively.

By similar arguments, a functor \(F: (X, E, M) \to (Y, E', M') \) that preserves fs is easily seen to produce a morphism \((F, \varphi): (X, t, \vartheta) \to (Y, t', \vartheta') \) of the associated pseudo \(\mathcal{P} \)-algebras. Note that \(\varphi: F \cdot t \to t' \cdot \mathcal{P} F: \mathcal{P} X \to Y \) is determined by the choices which give \(t \) and \(t' \), and does satisfy the coherence condition 3.6, \(\varphi \mu X, F \theta = \vartheta'^{-} \cdot \mathcal{P} F, t \cdot \varphi, \vartheta \cdot \mathcal{P} t; \) these two natural transformations take a commutative square \(\xi \in \text{Ob}(\mathcal{P}_3 X) \) to the unique isomorphism linking two precise EM-factorisations of the diagonal arrow of the square, through \(F \cdot t \cdot \mathcal{P}_t(\xi) \) and \(t' \cdot \mu Y, \mathcal{P}_2 F(\xi) \). Similarly, a natural transformation \(\alpha: F \to G \) satisfies automatically the condition 3.7.
(C) The composite \(\text{FsCat} \to \text{Ps-P-Alg} \to \text{FsCat} \) is the identity. Let \((E, M)\) be a fs on a category \(X\), \((t, \theta)\) the associated pseudo \(\mathcal{P}\)-algebra and \((E', M')\) the fs corresponding to the latter. Then \(E' = \{x \mid \tau^+(x) \text{ is iso}\}\) plainly coincides with \(E\), and \(M' = M\).

The other composite, \(\text{Ps-P-Alg} \to \text{FsCat} \to \text{Ps-P-Alg}\), is just isomorphic to the identity. It is now sufficient to consider two pseudo \(\mathcal{P}\)-algebras \((t, \theta), (t', \theta')\) on \(X\), giving the same factorisation system \((E, M)\), and prove that they are pseudo isomorphic, in a unique coherent way. Actually, for each \(x: X' \to X''\) in \(X\) there is one iso \(\psi(x)\) linking the \(t\)- and \(t'\)-factorisation (both in \((E, M)\))

\[
\begin{align*}
X' & \xrightarrow{\tau x} t^x X' & \xrightarrow{\tau x} & X^* \\
X' & \xrightarrow{\tau x} t^x X' & \xrightarrow{\psi x} & X^* \\
\end{align*}
\]

this gives a functorial isomorphism \(\psi: t \to t': \mathcal{P}X \to X\) such that \((1_X, \psi): (X, t, \theta) \to (X, t', \theta')\) is a pseudo isomorphism of algebras.

(D) For Part (ii), we only need now to prove that, in the previous transformations, pseudo \(\mathcal{F}_r\)-algebras (i.e., pseudo \(\mathcal{P}\)-algebras consistent with the Freyd congruence \(R\)) correspond to proper fs.

First, the consistency of \(t: X^2 \to X\) with \(R\) is sufficient to give an epi-mono factorisation system. Take, for instance, \(\mu = \tau(m)\) (so that \(\mu = \tau(m)\) is iso) and \(\mu f_1 = \mu = \mu f_2\) in the left-hand diagram below; then, the naturality of the transformation \(\tau^+: \partial^- \to t\) on the \(R\)-equivalent maps \((f, h): X' \to m\) of \(X^2\) gives \(uf_1 = t(f_1, h) = t(f_2, h) = uf_2\) and \(f_1 = f_2\)

\[
\begin{align*}
X' & \xrightarrow{f_1} X' & \xrightarrow{f} X' \\
Y & \xrightarrow{h} X & \xrightarrow{t} t(m) \\
\end{align*}
\]

Finally, if \((E, M)\) is epi-mono, then \(t(f)\) in (3) only depends on the diagonal \(\bar{f}\) of \(f = (f', f'')\): \(x \to y\) in \(X^2\), and similarly for \(\partial(f)\) in (5). Therefore they induce a functor \(t': \mathcal{F}_rX \to X\) and a functorial iso \(\theta': t': \mathcal{F}_r(t') \to t', \mu X\), which form a pseudo \(\mathcal{F}_r\)-algebra.

5. Remarks. A crucial tool for the proof of point (A), above, is the structure of \(\mathcal{P}X = X^2\) as a "path functor" (representing natural transformations): it forms a cubical comonad \([G1, G2]\), well linked to the previous monad structure. This interplay already arises in the exponent category \(2\) – a comonoid and a lattice (more precisely, a cubical monoid \([G1]\)) – and was exploited in this form in \([KT]\), Section 1.

The cubical comonad structure, relevant for formal homotopy theory \([G2]\), has one degeneracy \(\eta: 1 \to \mathcal{P}\) (the previous unit), two faces or co-units \(\bar{\partial}^x: \mathcal{P} \to 1\) (domain and codomain) and two connections or co-operations \(g^\pm: \mathcal{P} \to \mathcal{P}^2\)

\[
\begin{align*}
X' & \xrightarrow{x} X'' & X' & \xrightarrow{x} X' \\
X'' & \xrightarrow{x} X'' & X' & \xrightarrow{x} X'' \\
\end{align*}
\]
A cubical comonad satisfies axioms [G1, G2] essentially saying that ∂^ε ($\varepsilon = \pm$) is a co-unit for the corresponding connection g^ε and co-absorbat for the other, while η makes everything degenerate; moreover, the connections are co-associative. Here the two structures, monad and cubical comonad, are linked by some equations (after the coincidence of the monad-unit with the degeneracy; the last formula is actually a consequence of the co-associativity of connections):

\[
\begin{align*}
\partial^\varepsilon \mu &= \partial^\varepsilon P \partial^\varepsilon = \partial^\varepsilon \partial^\varepsilon P, \\
\eta P &= P \mu g^\varepsilon P g^\varepsilon = P \mu P g^\varepsilon g^\varepsilon = g^\varepsilon \quad (\varepsilon \neq \varepsilon').
\end{align*}
\]

A natural question arises – if the previous arguments have a non-trivial rebound in the usual range of homotopy, the category \mathbf{Top} of topological spaces. Replace the categorical interval $\mathbf{2}$ with the topological one, $I = [0, 1]$, which is, again, a diagonal comonoid and a lattice (and an exponentiable object); thus, the path functor $PX = X^I$ is a monad and a cubical comonad, consistently as above. But here, the interest of (pseudo?) P-algebras is not clear (once we have excluded the trivial, "universal" ones: for a fixed $a \in I$, every space X has an obvious strict structure, $ev_a \colon PX \to X$; in the same way as each category X has two trivial P-algebras, $\delta^\varepsilon \colon PX \to X$, and two trivial η). On the other hand, one can readily note that the Kleisli category of P has for morphisms the homotopies, with "diagonal" horizontal composition: $(\beta \circ \alpha)(x; t) = \beta(\alpha(x; t); t)$, for $t \in I$.

References

