Dual graphs of projective schemes

Matteo Varbaro (University of Genova)

August 26th, Haeundae, Busan, KOREA
Let $X \subseteq \mathbb{P}^n$ be a projective scheme over $K = \overline{K}$.
Motivations

Let $X \subseteq \mathbb{P}^n$ be a projective scheme over $K = \overline{K}$.

The main motivation for this talk comes from the desire of understanding how global properties of $X \subseteq \mathbb{P}^n$ influence the combinatorial configuration of its irreducible components.
Let $X \subseteq \mathbb{P}^n$ be a projective scheme over $K = \overline{K}$.

The main motivation for this talk comes from the desire of understanding how global properties of $X \subseteq \mathbb{P}^n$ influence the combinatorial configuration of its irreducible components.

One way to make precise the concept of “combinatorial configuration of its irreducible components” is by meaning of the dual graph of X
Given $X \subseteq \mathbb{P}^n$, if X_1, \ldots, X_s are its irreducible components, we form the **dual graph** $G(X)$ as follows:

The vertex set of $G(X)$ is $\{1, \ldots, s\}$.

Two vertices $i \neq j$ are connected by an edge if and only if:

$$\dim(X_i \cap X_j) = \dim(X) - 1.$$

From now on we will consider only equidimensional schemes.

Note: If X is a projective curve, then $\{i, j\}$ is an edge if and only if $X_i \cap X_j \neq \emptyset$ (the empty set has dimension -1).

If $\dim(X) > 1$, by intersecting $X \subseteq \mathbb{P}^n$ with a generic hyperplane, we get a projective scheme in \mathbb{P}^{n-1} of dimension one less, and same dual graph! Iterating this trick we can often reduce questions to curves.
Given $X \subseteq \mathbb{P}^n$, if X_1, \ldots, X_s are its irreducible components, we form the **dual graph** $G(X)$ as follows:

- The vertex set of $G(X)$ is $\{1, \ldots, s\}$.
Given $X \subseteq \mathbb{P}^n$, if X_1, \ldots, X_s are its irreducible components, we form the **dual graph** $G(X)$ as follows:

- The vertex set of $G(X)$ is $\{1, \ldots, s\}$.
- Two vertices $i \neq j$ are connected by an edge if and only if:
 \[
 \dim(X_i \cap X_j) = \dim(X) - 1.
 \]
Given $X \subseteq \mathbb{P}^n$, if X_1, \ldots, X_s are its irreducible components, we form the **dual graph** $G(X)$ as follows:

- The vertex set of $G(X)$ is \{1, \ldots, s\}.
- Two vertices $i \neq j$ are connected by an edge if and only if:

 \[
 \dim(X_i \cap X_j) = \dim(X) - 1.
 \]

From now on we will consider only equidimensional schemes.
Given $X \subseteq \mathbb{P}^n$, if X_1, \ldots, X_s are its irreducible components, we form the **dual graph** $G(X)$ as follows:

- The vertex set of $G(X)$ is \{1, \ldots, s\}.
- Two vertices $i \neq j$ are connected by an edge if and only if:
 \[
 \dim(X_i \cap X_j) = \dim(X) - 1.
 \]

From now on we will consider only equidimensional schemes.

NOTE: If X is a projective curve, then \{i, j\} is an edge if and only if $X_i \cap X_j \neq \emptyset$ (the empty set has dimension -1).
Given $X \subseteq \mathbb{P}^n$, if X_1, \ldots, X_s are its irreducible components, we form the **dual graph** $G(X)$ as follows:

- The vertex set of $G(X)$ is $\{1, \ldots, s\}$.
- Two vertices $i \neq j$ are connected by an edge if and only if:

 $$\dim(X_i \cap X_j) = \dim(X) - 1.$$

From now on we will consider only equidimensional schemes.

NOTE: If X is a projective curve, then $\{i, j\}$ is an edge if and only if $X_i \cap X_j \neq \emptyset$ (the empty set has dimension -1). If $\dim(X) > 1$, by intersecting $X \subseteq \mathbb{P}^n$ with a generic hyperplane, we get a projective scheme in \mathbb{P}^{n-1} of dimension one less, and same dual graph!
Given $X \subseteq \mathbb{P}^n$, if X_1, \ldots, X_s are its irreducible components, we form the **dual graph** $G(X)$ as follows:

- The vertex set of $G(X)$ is $\{1, \ldots, s\}$.
- Two vertices $i \neq j$ are connected by an edge if and only if:
 \[\dim(X_i \cap X_j) = \dim(X) - 1. \]

From now on we will consider only equidimensional schemes.

NOTE: If X is a projective curve, then $\{i, j\}$ is an edge if and only if $X_i \cap X_j \neq \emptyset$ (the empty set has dimension -1). If $\dim(X) > 1$, by intersecting $X \subseteq \mathbb{P}^n$ with a generic hyperplane, we get a projective scheme in \mathbb{P}^{n-1} of dimension one less, and same dual graph! Iterating this trick we can often reduce questions to curves.
Hartshorne’s connectedness theorem

Given $X \subseteq \mathbb{P}^n$ and the unique saturated homogeneous ideal $I_X \subseteq S = K[x_0, \ldots, x_n]$ s.t. $X = \text{Proj}(S/I_X)$, let us recall that $X \subseteq \mathbb{P}^n$ is **arithmetically Cohen-Macaulay** (resp. **arithmetically Gorenstein**) if S/I_X is Cohen–Macaulay (resp. Gorenstein).

A classical result by Hartshorne is that aCM schemes are connected in codimension one:

Hartshorne’s connectedness theorem

If $X \subseteq \mathbb{P}^n$ is aCM, then $G(X)$ is a connected graph.

On the other hand
Hartshorne’s connectedness theorem

Given $X \subseteq \mathbb{P}^n$ and the unique saturated homogeneous ideal $I_X \subseteq S = K[x_0, \ldots, x_n]$ s.t. $X = \text{Proj}(S/I_X)$, let us recall that $X \subseteq \mathbb{P}^n$ is arithmetically Cohen-Macaulay (resp. arithmetically Gorenstein) if S/I_X is Cohen–Macaulay (resp. Gorenstein).

A classical result by Hartshorne is that aCM schemes are connected in codimension one:

Hartshorne’s connectedness theorem

If $X \subseteq \mathbb{P}^n$ is aCM, then $G(X)$ is a connected graph.
Hartshorne’s connectedness theorem

Given $X \subseteq \mathbb{P}^n$ and the unique saturated homogeneous ideal $I_X \subseteq S = K[x_0, \ldots, x_n]$ s.t. $X = \text{Proj}(S/I_X)$, let us recall that $X \subseteq \mathbb{P}^n$ is arithmetically Cohen-Macaulay (resp. arithmetically Gorenstein) if S/I_X is Cohen–Macaulay (resp. Gorenstein).

A classical result by Hartshorne is that aCM schemes are connected in codimension one:

Hartshorne’s connectedness theorem

If $X \subseteq \mathbb{P}^n$ is aCM, then $G(X)$ is a connected graph.

On the other hand
Theorem A, Benedetti-Bolognese-V. 2015

For any connected graph G, there exists a reduced aCM curve $C \subseteq \mathbb{P}^n$ such that $G(C) = G$.

Furthermore, $\text{reg}(C) = \text{reg}({I}_C) = 3$ and the irreducible components of C are rational normal curves no 3 of which meet at one point.

Moreover:

Benedetti-Bolognese-V. 2015

For a connected graph G, the following are equivalent:

1. There is a curve $C \subseteq \mathbb{P}^n$ such that no 3 of its irreducible components meet at one point, $\text{reg}(C) = 2$, and $G(C) = G$.
2. G is a tree.
For any connected graph G, there exists a reduced aCM curve $C \subseteq \mathbb{P}^n$ such that $G(C) = G$. Furthermore, $\text{reg}(C) = \text{reg}(I_C) = 3$ and the irreducible components of C are rational normal curves no 3 of which meet at one point.
For any connected graph G, there exists a reduced aCM curve $C \subseteq \mathbb{P}^n$ such that $G(C) = G$. Furthermore, $\text{reg}(C) = \text{reg}(I_C) = 3$ and the irreducible components of C are rational normal curves no 3 of which meet at one point.
Theorem A, Benedetti-Bolognese-V. 2015

For any connected graph G, there exists a reduced aCM curve $C \subseteq \mathbb{P}^n$ such that $G(C) = G$. Furthermore, $\text{reg}(C) = \text{reg}(I_C) = 3$ and the irreducible components of C are rational normal curves no 3 of which meet at one point.

Moreover:

Benedetti-Bolognese-V. 2015

For a connected graph G, the following are equivalent:
Theorem A, Benedetti-Bolognese-V. 2015

For any connected graph G, there exists a reduced aCM curve $C \subseteq \mathbb{P}^n$ such that $G(C) = G$. Furthermore, $\text{reg}(C) = \text{reg}(I_C) = 3$ and the irreducible components of C are rational normal curves no 3 of which meet at one point.

Moreover:

Benedetti-Bolognese-V. 2015

For a connected graph G, the following are equivalent:

- There is a curve $C \subseteq \mathbb{P}^n$ such that no 3 of its irreducible components meet at one point, $\text{reg}(C) = 2$, and $G(C) = G$.
From graphs to curves

Theorem A, Benedetti-Bolognese-V. 2015

For any connected graph G, there exists a reduced ACM curve $C \subseteq \mathbb{P}^n$ such that $G(C) = G$. Furthermore, $\text{reg}(C) = \text{reg}(I_C) = 3$ and the irreducible components of C are rational normal curves no 3 of which meet at one point.

Moreover:

Benedetti-Bolognese-V. 2015

For a connected graph G, the following are equivalent:

- There is a curve $C \subseteq \mathbb{P}^n$ such that no 3 of its irreducible components meet at one point, $\text{reg}(C) = 2$, and $G(C) = G$.
- G is a tree.
From graphs to curves

Notice that not any graph can be obtained as the dual graph of a line arrangement $C = \bigcup_{i=1}^{n} L_i$. For example, one can see that the graph G having:

- $\{1, \ldots, 6\}$ as vertices;
- $\{\{i, j\} : 1 \leq i < j \leq 6\}$ as edges

is not the dual graph of any line arrangement.

However, by taking 6 generic lines $L_i \subseteq \mathbb{P}^2$ and blowing up \mathbb{P}^2 along the points $P_{1,2} = L_1 \cap L_2$ and $P_{3,4} = L_3 \cap L_4$, the strict transform of $\bigcup_{i=1}^{n} L_i$ will have G as dual graph!
Notice that not any graph can be obtained as the dual graph of a line arrangement C, that is a union of lines $C = \bigcup_{i=1}^{s} L_i$.

For example, one can see that the graph G having:

- $\{1, \ldots, 6\}$ as vertices;
- $\{\{i, j\} : 1 \leq i < j \leq 6\} \setminus \{\{1, 2\}, \{3, 4\}\}$ as edges

is not the dual graph of any line arrangement. However, by taking 6 generic lines $L_i \subseteq P^2$ and blowing up P^2 along the points $P_1, 2 = L_1 \cap L_2$ and $P_3, 4 = L_3 \cap L_4$, the strict transform of $\bigcup_{i=1}^{6} L_i$ will have G as dual graph!
Notice that not any graph can be obtained as the dual graph of a line arrangement C, that is a union of lines $C = \bigcup_{i=1}^{s} L_i$. For example, one can see that the graph G having:

- $\{1, \ldots, 6\}$ as vertices;
- $\{\{i, j\} : 1 \leq i < j \leq 6\} \setminus \{\{1, 2\}, \{3, 4\}\}$ as edges
Notice that not any graph can be obtained as the dual graph of a line arrangement C, that is a union of lines $C = \bigcup_{i=1}^{s} L_i$. For example, one can see that the graph G having:

- $\{1, \ldots, 6\}$ as vertices;
- $\{\{i, j\} : 1 \leq i < j \leq 6\} \setminus \{\{1, 2\}, \{3, 4\}\}$ as edges

is not the dual graph of any line arrangement.
Notice that not any graph can be obtained as the dual graph of a line arrangement \(C \), that is a union of lines \(C = \bigcup_{i=1}^{s} L_i \). For example, one can see that the graph \(G \) having:

- \(\{1, \ldots, 6\} \) as vertices;
- \(\{\{i, j\} : 1 \leq i < j \leq 6\} \setminus \{\{1, 2\}, \{3, 4\}\} \) as edges

is not the dual graph of any line arrangement.

However, by taking 6 generic lines \(L_i \subseteq \mathbb{P}^2 \) and blowing up \(\mathbb{P}^2 \) along the points \(P_{1,2} = L_1 \cap L_2 \) and \(P_{3,4} = L_3 \cap L_4 \),
Notice that not any graph can be obtained as the dual graph of a line arrangement \(C \), that is a union of lines \(C = \bigcup_{i=1}^s L_i \). For example, one can see that the graph \(G \) having:

- \(\{1, \ldots, 6\} \) as vertices;
- \(\{\{i,j\} : 1 \leq i < j \leq 6\} \setminus \{\{1, 2\}, \{3, 4\}\} \) as edges

is not the dual graph of any line arrangement.

However, by taking 6 generic lines \(L_i \subseteq \mathbb{P}^2 \) and blowing up \(\mathbb{P}^2 \) along the points \(P_{1,2} = L_1 \cap L_2 \) and \(P_{3,4} = L_3 \cap L_4 \), the strict transform of \(\bigcup_{i=1}^6 L_i \) will have \(G \) as dual graph!
The connectedness theorem of Hartshorne says that $G(X)$ is connected whenever $X \subseteq \mathbb{P}^n$ is aCM.
The connectedness theorem of Hartshorne says that $G(X)$ is connected whenever $X \subseteq \mathbb{P}^n$ is aCM. We would like to infer something more than connectedness by assuming that $X \subseteq \mathbb{P}^n$ is arithmetically Gorenstein (e.g. a complete intersection).
The connectedness theorem of Hartshorne says that $G(X)$ is connected whenever $X \subseteq \mathbb{P}^n$ is aCM. We would like to infer something more than connectedness by assuming that $X \subseteq \mathbb{P}^n$ is arithmetically Gorenstein (e.g. a complete intersection). To this purpose we need to quantify the connectedness of a graph.

A graph is d-connected if it has $>d$ vertices, and the deletion of $<d$ vertices, however chosen, leaves it connected. Menger theorem (Max-flow-min-cut). A graph is d-connected iff between any 2 vertices one can find d vertex-disjoint paths.

Matteo Varbaro (University of Genova)
The connectedness theorem of Hartshorne says that $G(X)$ is connected whenever $X \subseteq \mathbb{P}^n$ is aCM. We would like to infer something more than connectedness by assuming that $X \subseteq \mathbb{P}^n$ is arithmetically Gorenstein (e.g. a complete intersection). To this purpose we need to quantify the connectedness of a graph.

A graph is \textit{d-connected} if it has $> d$ vertices, and the deletion of $< d$ vertices, however chosen, leaves it connected.
The connectedness theorem of Hartshorne says that $G(X)$ is connected whenever $X \subseteq \mathbb{P}^n$ is aCM. We would like to infer something more than connectedness by assuming that $X \subseteq \mathbb{P}^n$ is arithmetically Gorenstein (e.g. a complete intersection). To this purpose we need to quantify the connectedness of a graph.

A graph is **d-connected** if it has $> d$ vertices, and the deletion of $< d$ vertices, however chosen, leaves it connected.

Menger theorem (Max-flow-min-cut).

A graph is d-connected iff between any 2 vertices one can find d vertex-disjoint paths.
Theorem B, Benedetti–Bolognese–V. 2015

Let $X \subseteq \mathbb{P}^n$ be an arithmetically Gorenstein projective scheme such that $\text{reg}(X) = \text{reg}(I_X) = r + 1$. If $\text{reg}(q) \leq \delta$ for all primary components q of I_X, then $G(X)$ is $\left\lfloor \frac{(r + \delta - 1)}{\delta} \right\rfloor$-connected.

When δ can be chosen to be 1, i.e. when X is a (reduced) union of linear spaces (a subspace arrangement), we recover the following:

Benedetti-V. 2014

Let $X \subseteq \mathbb{P}^n$ be an arithmetically Gorenstein subspace arrangement such that $\text{reg}(X) = \text{reg}(I_X) = r + 1$. Then $G(X)$ is r-connected.
Theorem B, Benedetti–Bolognese–V. 2015

Let $X \subseteq \mathbb{P}^n$ be an arithmetically Gorenstein projective scheme such that $\text{reg}(X) = \text{reg}(I_X) = r + 1$. If $\text{reg}(q) \leq \delta$ for all primary components q of I_X, then $G(X)$ is $\lfloor (r + \delta - 1)/\delta \rfloor$-connected.

When δ can be chosen to be 1, i.e. when X is a (reduced) union of linear spaces (a subspace arrangement), we recover the following:

Benedetti-V. 2014

Let $X \subseteq \mathbb{P}^n$ be an arithmetically Gorenstein subspace arrangement such that $\text{reg}(X) = \text{reg}(I_X) = r + 1$. Then $G(X)$ is r-connected.
From schemes to graphs

Theorem B, Benedetti–Bolognese–V. 2015

Let $X \subseteq \mathbb{P}^n$ be an arithmetically Gorenstein projective scheme such that $\text{reg}(X) = \text{reg}(I_X) = r + 1$. If $\text{reg}(q) \leq \delta$ for all primary components q of I_X, then $G(X)$ is $\lfloor (r + \delta - 1)/\delta \rfloor$-connected.

When δ can be chosen to be 1, i.e. when X is a (reduced) union of linear spaces (a subspace arrangement), we recover the following:
From schemes to graphs

Theorem B, Benedetti–Bolognese–V. 2015

Let $X \subseteq \mathbb{P}^n$ be an arithmetically Gorenstein projective scheme such that $\text{reg}(X) = \text{reg}(I_X) = r + 1$. If $\text{reg}(q) \leq \delta$ for all primary components q of I_X, then $G(X)$ is $\lfloor (r + \delta - 1)/\delta \rfloor$-connected.

When δ can be chosen to be 1, i.e. when X is a (reduced) union of linear spaces (a subspace arrangement), we recover the following:

Benedetti-V. 2014

Let $X \subseteq \mathbb{P}^n$ be an arithmetically Gorenstein subspace arrangement such that $\text{reg}(X) = \text{reg}(I_X) = r + 1$. Then $G(X)$ is r-connected.
As we know, on a smooth cubic $X \subseteq \mathbb{P}^3$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^2 along 6 generic points.
As we know, on a smooth cubic $X \subseteq \mathbb{P}^3$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^2 along 6 generic points. Let $C \subseteq \mathbb{P}^3$ be the union of such 27 lines, and let us try to understand how $G(C)$ looks like.
As we know, on a smooth cubic $X \subseteq \mathbb{P}^3$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^2 along 6 generic points. Let $C \subseteq \mathbb{P}^3$ be the union of such 27 lines, and let us try to understand how $G(C)$ looks like.

The important things to know are that:

1. $G(C)$ is 10-connected.
2. The diameter of $G(C)$ is 2.
3. There is a partition V_1, \ldots, V_9 of the nodes of $G(C)$ such that the induced subgraph of $G(C)$ on each V_i is a triangle.
As we know, on a smooth cubic $X \subseteq \mathbb{P}^3$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^2 along 6 generic points. Let $C \subseteq \mathbb{P}^3$ be the union of such 27 lines, and let us try to understand how $G(C)$ looks like.

The important things to know are that:

1. $G(C)$ is 10-connected.
As we know, on a smooth cubic $X \subseteq \mathbb{P}^3$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^2 along 6 generic points. Let $C \subseteq \mathbb{P}^3$ be the union of such 27 lines, and let us try to understand how $G(C)$ looks like.

The important things to know are that:

1. $G(C)$ is 10-connected.
2. The diameter of $G(C)$ is 2.
As we know, on a smooth cubic $X \subseteq \mathbb{P}^3$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^2 along 6 generic points. Let $C \subseteq \mathbb{P}^3$ be the union of such 27 lines, and let us try to understand how $G(C)$ looks like.

The important things to know are that:

1. $G(C)$ is 10-connected.
2. The diameter of $G(C)$ is 2.
3. There is a partition V_1, \ldots, V_9 of the nodes of $G(C)$ such that the induced subgraph of $G(C)$ on each V_i is a triangle.
Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_i are coplanar, let us call H_i the plane defined by the equation ℓ_i; they determine.
Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_i are coplanar, let us call H_i the plane defined by the equation ℓ_i they determine. So

$$C \subseteq \left(\bigcup_{i=1}^{9} H_i \right) \cap X \quad \text{and} \quad (f, g) \subseteq I_C,$$

where f is the cubic polynomial defining X and $g = \prod_{i=1}^{9} \ell_i$.

Matteo Varbaro (University of Genova)
Dual graphs of projective schemes
Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_i are coplanar, let us call H_i the plane defined by the equation ℓ_i they determine. So

$$C \subseteq \left(\bigcup_{i=1}^{9} H_i \right) \cap X \quad \text{and} \quad (f, g) \subseteq I_C,$$

where f is the cubic polynomial defining X and $g = \prod_{i=1}^{9} \ell_i$. But the degree of $K[x_0, x_1, x_2, x_3]/(f, g)$ is $3 \cdot 9 = 27$, like the degree of C.

Matteo Varbaro (University of Genova)
Dual graphs of projective schemes
Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_i are coplanar, let us call H_i the plane defined by the equation ℓ_i they determine. So

$$C \subseteq \left(\bigcup_{i=1}^{9} H_i \right) \cap X \quad \text{and} \quad (f, g) \subseteq I_C,$$

where f is the cubic polynomial defining X and $g = \prod_{i=1}^{9} \ell_i$.

But the degree of $K[x_0, x_1, x_2, x_3]/(f, g)$ is $3 \cdot 9 = 27$, like the degree of C. So $I_C = (f, g)$ is a complete intersection.
Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_i are coplanar, let us call H_i the plane defined by the equation ℓ_i they determine. So

$$C \subseteq \left(\bigcup_{i=1}^{9} H_i \right) \cap X \quad \text{and} \quad (f, g) \subseteq I_C,$$

where f is the cubic polynomial defining X and $g = \prod_{i=1}^{9} \ell_i$.

But the degree of $K[x_0, x_1, x_2, x_3]/(f, g)$ is $3 \cdot 9 = 27$, like the degree of C. So $I_C = (f, g)$ is a complete intersection.

In particular $C \subseteq \mathbb{P}^3$ is an arithmetically Gorenstein subspace arrangement of regularity $\deg(f) + \deg(g) - 1 = 3 + 9 - 1 = 11$.
Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_i are coplanar, let us call H_i the plane defined by the equation ℓ_i they determine. So

$$C \subseteq \left(\bigcup_{i=1}^{9} H_i \right) \cap X \quad \text{and} \quad (f, g) \subseteq I_C,$$

where f is the cubic polynomial defining X and $g = \prod_{i=1}^{9} \ell_i$.

But the degree of $K[x_0, x_1, x_2, x_3]/(f, g)$ is $3 \cdot 9 = 27$, like the degree of C. So $I_C = (f, g)$ is a complete intersection.

In particular $C \subseteq \mathbb{P}^3$ is an an arithmetically Gorenstein subspace arrangement of regularity $\deg(f) + \deg(g) - 1 = 3 + 9 - 1 = 11$. Thus our result confirms that $G(C)$ is 10-connected.
As I pointed out, the diameter of the previous graph $G(C)$ is 2.
As I pointed out, the diameter of the previous graph $G(C)$ is 2. In fact, I do not know any example of aCM line arrangements $C \subseteq \mathbb{P}^3$ such that $\text{diam}(G(C)) > 2$.
As I pointed out, the diameter of the previous graph $G(C)$ is 2. In fact, I do not know any example of aCM line arrangements $C \subseteq \mathbb{P}^3$ such that $\text{diam}(G(C)) > 2$.

If $I \subseteq S = K[x_0, \ldots, x_n]$ is a height 2 monomial ideal, it is easy to show that, if S/I is Cohen-Macaulay, then $\text{diam}(G(X)) \leq 2$.
As I pointed out, the diameter of the previous graph $G(C)$ is 2. In fact, I do not know any example of aCM line arrangements $C \subseteq \mathbb{P}^3$ such that $\text{diam}(G(C)) > 2$.

If $I \subseteq S = K[x_0, \ldots, x_n]$ is a height 2 monomial ideal, it is easy to show that, if S/I is Cohen-Macaulay, then $\text{diam}(G(X)) \leq 2$. So if $C \subseteq \mathbb{P}^3$ is obtained by taking $n - 3$ hyperplane sections of such an X we have $\text{diam}(G(C)) \leq 2$.

We know many aCM line arrangements in \mathbb{P}^3 not arising like this (e.g. the previous 27 lines), but still their dual graph has diameter ≤ 2 (many experiments by Michela Di Marca).
As I pointed out, the diameter of the previous graph $G(C)$ is 2. In fact, I do not know any example of aCM line arrangements $C \subseteq \mathbb{P}^3$ such that $\text{diam}(G(C)) > 2$.

If $I \subseteq S = K[x_0, \ldots, x_n]$ is a height 2 monomial ideal, it is easy to show that, if S/I is Cohen-Macaulay, then $\text{diam}(G(X)) \leq 2$. So if $C \subseteq \mathbb{P}^3$ is obtained by taking $n - 3$ hyperplane sections of such an X we have $\text{diam}(G(C)) \leq 2$.

We know many aCM line arrangements in \mathbb{P}^3 not arising like this (e.g. the previous 27 lines), but still their dual graph has diameter ≤ 2 (many experiments by Michela Di Marca).
As I pointed out, the diameter of the previous graph $G(C)$ is 2. In fact, I do not know any example of aCM line arrangements $C \subseteq \mathbb{P}^3$ such that $\text{diam}(G(C)) > 2$.

If $I \subseteq S = K[x_0, \ldots, x_n]$ is a height 2 monomial ideal, it is easy to show that, if S/I is Cohen-Macaulay, then $\text{diam}(G(X)) \leq 2$. So if $C \subseteq \mathbb{P}^3$ is obtained by taking $n - 3$ hyperplane sections of such an X we have $\text{diam}(G(C)) \leq 2$.

We know many aCM line arrangements in \mathbb{P}^3 not arising like this (e.g. the previous 27 lines), but still their dual graph has diameter ≤ 2 (many experiments by Michela Di Marca).

Question

Is $\text{diam}(G(C)) \leq 2$ for any aCM line arrangement $C \subseteq \mathbb{P}^3$?
We say that a projective scheme $X \subseteq \mathbb{P}^n$ is Hirsch if

$$\text{diam}(G(X)) \leq \text{codim}_{\mathbb{P}^n} X.$$
We say that a projective scheme $X \subseteq \mathbb{P}^n$ is Hirsch if

$$\text{diam}(G(X)) \leq \text{codim}_{\mathbb{P}^n} X.$$

The previous question, thus, can be rephrased as:

Question
Is any aCM line arrangement $C \subseteq \mathbb{P}^3$ Hirsch?
Hirsch embeddings

We say that a projective scheme $X \subseteq \mathbb{P}^n$ is Hirsch if

$$\text{diam}(G(X)) \leq \text{codim}_{\mathbb{P}^n} X.$$

The previous question, thus, can be rephrased as:

Question

Is any aCM line arrangement $C \subseteq \mathbb{P}^3$ Hirsch?

Be careful:

- There exist nonreduced complete intersections $C \subseteq \mathbb{P}^3$ such that $C_{\text{red}} \subseteq \mathbb{P}^3$ is a line arrangement and $\text{diam}(G(C))$ is arbitrarily large.

- For large n, there are arithmetically Gorenstein line arrangements that are not Hirsch (Santos).
Many projective embeddings, however, are Hirsch:

Adiprasito–Benedetti 2014

If $X \subseteq \mathbb{P}^n$ is aCM and I_X is a monomial ideal generated by quadrics, then $X \subseteq \mathbb{P}^n$ is Hirsch.
Many projective embeddings, however, are Hirsch:

Adiprasito–Benedetti 2014

If $X \subseteq \mathbb{P}^n$ is aCM and I_X is a monomial ideal generated by quadrics, then $X \subseteq \mathbb{P}^n$ is Hirsch.

Benedetti–V. 2014

If X is an arrangement of lines, no 3 of which meet in the same point, canonically embedded in \mathbb{P}^n, then $X \subseteq \mathbb{P}^n$ is Hirsch.
Many projective embeddings, however, are Hirsch:

Adiprasito–Benedetti 2014

If $X \subseteq \mathbb{P}^n$ is aCM and I_X is a monomial ideal generated by quadrics, then $X \subseteq \mathbb{P}^n$ is Hirsch.

Benedetti–V. 2014

If X is an arrangement of lines, no 3 of which meet in the same point, canonically embedded in \mathbb{P}^n, then $X \subseteq \mathbb{P}^n$ is Hirsch.

Conjecture: Benedetti–V. 2014

If $X \subseteq \mathbb{P}^n$ is a (reduced) aCM scheme and I_X is generated by quadrics, then $X \subseteq \mathbb{P}^n$ is Hirsch.
Sketch of the proof of Theorem B

By taking generic hyperplane sections, we can reduce ourselves to consider \(\dim X = 1 \).

If \(I = \cap_{i=1}^s q_i \) is a primary decomposition of a homogeneous ideal \(I \subseteq S = K[x_0, \ldots, x_n] \) and \(\text{Proj}(S/I) \) has dimension 1, then:

\[
\text{reg}(I) \leq \sum_{i=1}^s \text{reg}(q_i) .
\]

Let \(I_X = \cap_{i=1}^s q_i \) be the primary decomposition of \(I_X \), choose \(A \subseteq \{1, \ldots, s\} \) of cardinality less than \(\lfloor \left(r + \delta - 1 \right) / \delta \rfloor \) and let \(B = \{1, \ldots, s\} \setminus A \).

Let \(I_A = \cap_{i \in A} q_i \), \(I_B = \cap_{i \in B} q_i \) and \(X_A = \text{Proj}(S/I_A) \), \(X_B = \text{Proj}(S/I_B) \).
By taking generic hyperplane sections, we can reduce ourselves to consider $\dim X = 1$.

Let $I_X = \bigcap_{i=1}^s q_i$ be the primary decomposition of I_X, choose $A \subseteq \{1, \ldots, s\}$ of cardinality less than $\left\lfloor \frac{r + \delta - 1}{\delta} \right\rfloor$ and let $B = \{1, \ldots, s\} \setminus A$.

Let $I_A = \bigcap_{i \in A} q_i$, $I_B = \bigcap_{i \in B} q_i$ and $X_A = \Proj(S/I_A)$, $X_B = \Proj(S/I_B)$.
By taking generic hyperplane sections, we can reduce ourselves to consider $\dim X = 1$.

Caviglia 2007

If $I = \bigcap_{i=1}^{s} q_i$ is a primary decomposition of a homogeneous ideal $I \subseteq S = K[x_0, \ldots, x_n]$ and $\operatorname{Proj}(S/I)$ has dimension 1, then:

$$\operatorname{reg}(I) \leq \sum_{i=1}^{s} \operatorname{reg}(q_i).$$
By taking generic hyperplane sections, we can reduce ourselves to consider $\dim X = 1$.

Caviglia 2007

If $I = \bigcap_{i=1}^{s} q_i$ is a primary decomposition of a homogeneous ideal $I \subseteq S = K[x_0, \ldots, x_n]$ and $\text{Proj}(S/I)$ has dimension 1, then:

$$\text{reg}(I) \leq \sum_{i=1}^{s} \text{reg}(q_i).$$

Let $I_X = \bigcap_{i=1}^{s} q_i$ be the primary decomposition of I_X, choose $A \subseteq \{1, \ldots, s\}$ of cardinality less than $\lceil (r + \delta - 1)/\delta \rceil$ and let $B = \{1, \ldots, s\} \setminus A$.
By taking generic hyperplane sections, we can reduce ourselves to consider \(\dim X = 1 \).

Caviglia 2007

If \(I = \cap_{i=1}^{s} q_i \) is a primary decomposition of a homogeneous ideal \(I \subseteq S = K[x_0, \ldots, x_n] \) and \(\text{Proj}(S/I) \) has dimension 1, then:

\[
\text{reg}(I) \leq \sum_{i=1}^{s} \text{reg}(q_i).
\]

Let \(I_X = \cap_{i=1}^{s} q_i \) be the primary decomposition of \(I_X \), choose \(A \subseteq \{1, \ldots, s\} \) of cardinality less than \(\lfloor (r + \delta - 1)/\delta \rfloor \) and let \(B = \{1, \ldots, s\} \setminus A \). Let \(I_A = \cap_{i \in A} q_i, \ I_B = \cap_{i \in B} q_i \) and \(X_A = \text{Proj}(S/I_A) \), \(X_B = \text{Proj}(S/I_B) \).
X_A and X_B are geometrically linked by X which is a Gorenstein; so by a result of Hartshorne and Schenzel, we have a graded isomorphism

$$H^1_m(S/I_B) \cong H^1_m(S/I_A)^\vee(2 - r).$$
X_A and X_B are geometrically linked by X which is a Gorenstein; so by a result of Hartshorne and Schenzel, we have a graded isomorphism

$$H^1_m(S/I_B) \cong H^1_m(S/I_A)^\vee(2 - r).$$

By Caviglia’s result, $\text{reg}(I_A) \leq |A|\delta \leq r - 1$.
1. X_A and X_B are geometrically linked by X which is a Gorenstein; so by a result of Hartshorne and Schenzel, we have a graded isomorphism

$$H_1^m(S/I_B) \cong H_1^m(S/I_A)^\vee(2 - r).$$

2. By Caviglia’s result, $\text{reg}(I_A) \leq |A|\delta \leq r - 1$.

3. So $\text{reg}(S/I_A) \leq r - 2$, which implies that $H_1^m(S/I_A)^{r-2} = 0$.

But then the dual graph of X_B, which is the same as the dual graph of X with the vertices of A removed, is connected.
1. X_A and X_B are geometrically linked by X which is Gorenstein; so by a result of Hartshorne and Schenzel, we have a graded isomorphism

$$H_m^1(S/I_B) \cong H_m^1(S/I_A)^\vee(2 - r).$$

2. By Caviglia’s result, $\text{reg}(I_A) \leq |A|\delta \leq r - 1$.

3. So $\text{reg}(S/I_A) \leq r - 2$, which implies that $H_m^1(S/I_A)_{r-2} = 0$.

4. So $H_m^1(S/I_B)_0 = H_m^1(S/I_A)_{r-2} = 0$, that is $H^0(X_B, \mathcal{O}_{X_B}) \cong \mathbb{K}$, which implies that X_B is a connected curve.
1. \(X_A \) and \(X_B \) are geometrically linked by \(X \) which is a Gorenstein; so by a result of Hartshorne and Schenzel, we have a graded isomorphism

\[
H^1_m(S/I_B) \cong H^1_m(S/I_A)^\vee(2 - r).
\]

2. By Caviglia’s result, \(\text{reg}(I_A) \leq |A|\delta \leq r - 1. \)

3. So \(\text{reg}(S/I_A) \leq r - 2 \), which implies that \(H^1_m(S/I_A)_{r-2} = 0. \)

4. So \(H^1_m(S/I_B)_0 = H^1_m(S/I_A)_{r-2} = 0 \), that is \(H^0(X_B, \mathcal{O}_{X_B}) \cong \mathbb{K} \), which implies that \(X_B \) is a connected curve.

5. But then the dual graph of \(X_B \), which is the same as the dual graph of \(X \) with the vertices of \(A \) removed, is connected.
An 'Eisenbud-Goto style' question

Let $X \subseteq \mathbb{P}^n$ be a nondegenerate reduced projective scheme with connected dual graph. Then $\text{reg}(X) \leq \deg(X) - \text{codim}\mathbb{P}^n_X + 1$.

The conjecture is known to be true in its full generality in dimension 1 by Gruson-Lazarsfeld-Peskine and Giaimo; in dimension 2, it is true for smooth surfaces by Lazarsfeld; for smooth threefolds and fourfolds, it is 'almost' true by Kwak.

By the subadditivity result of Caviglia, the EG for curves yields:

Theorem

Let $X \subseteq \mathbb{P}^n$ be an equidimensional reduced projective curve. Then $\text{reg}(X) \leq \deg(X)$.
Eisenbud-Goto conjecture (1984)

Let $X \subseteq \mathbb{P}^n$ be a nondegenerate reduced projective scheme with connected dual graph. Then

$$\text{reg}(X) \leq \deg(X) - \text{codim}_{\mathbb{P}^n} X + 1.$$
Eisenbud-Goto conjecture (1984)

Let $X \subseteq \mathbb{P}^n$ be a nondegenerate reduced projective scheme with connected dual graph. Then

$$\text{reg}(X) \leq \text{deg}(X) - \text{codim}_{\mathbb{P}^n} X + 1.$$

The conjecture is known to be true in its full generality in dimension 1 by Gruson-Lazarsfeld-Peskine and Giaimo; in dimension 2, it is true for smooth surfaces by Lazarsfeld; for smooth threefolds and fourfolds, it is 'almost' true by Kwak.
Eisenbud-Goto conjecture (1984)

Let $X \subseteq \mathbb{P}^n$ be a nondegenerate reduced projective scheme with connected dual graph. Then

$$\text{reg}(X) \leq \text{deg}(X) - \text{codim}_{\mathbb{P}^n} X + 1.$$

The conjecture is known to be true in its full generality in dimension 1 by Gruson-Lazarsfeld-Peskine and Giaimo; in dimension 2, it is true for smooth surfaces by Lazarsfeld; for smooth threefolds and fourfolds, it is 'almost' true by Kwak. By the subadditivity result of Caviglia, the EG for curves yields:

Theorem

Let $X \subseteq \mathbb{P}^n$ be an equidimensional reduced projective curve. Then

$$\text{reg}(X) \leq \text{deg}(X)$$
An 'Eisenbud-Goto style' question

Eisenbud-Goto conjecture (1984)

Let $X \subseteq \mathbb{P}^n$ be a nondegenerate reduced projective scheme with connected dual graph. Then

$$\text{reg}(X) \leq \text{deg}(X) - \text{codim}_{\mathbb{P}^n} X + 1.$$

The conjecture is known to be true in its full generality in dimension 1 by Gruson-Lazarsfeld-Peskine and Giaimo; in dimension 2, it is true for smooth surfaces by Lazarsfeld; for smooth threefolds and fourfolds, it is 'almost' true by Kwak. By the subadditivity result of Caviglia, the EG for curves yields:

Theorem

Let $X \subseteq \mathbb{P}^n$ be an equidimensional reduced projective curve. Then

$$\text{reg}(X) \leq \text{deg}(X)$$
An 'Eisenbud-Goto style' question

Question

Let $X \subseteq \mathbb{P}^n$ be an equidimensional reduced projective scheme. Is it true that:

$$\text{reg}(X) \leq \deg(X)$$

If $\text{dim}(X) = 2$, the subadditivity result of Caviglia is not true. However, it is still true that, if X_1 and X_2 are projective schemes intersecting in dimension 0, then

$$\text{reg}(X_1 \cap X_2) \leq \text{reg}(X_1) + \text{reg}(X_2).$$

This implies that the question above would admit a positive answer in dimension 2 if the EG conjecture was true in dimension 2 in its full generality (not only for irreducible surfaces).
Let $X \subseteq \mathbb{P}^n$ be an equidimensional reduced projective scheme. Is it true that:

$$\text{reg}(X) \leq \text{deg}(X)$$

If $\text{dim } X = 2$, the subadditivity result of Caviglia is not true.
An 'Eisenbud-Goto style' question

Question

Let $X \subseteq \mathbb{P}^n$ be an equidimensional reduced projective scheme. Is it true that:

$$\text{reg}(X) \leq \deg(X)$$

If $\dim X = 2$, the subadditivity result of Caviglia is not true. However, it is still true that, if X_1 and X_2 are projective schemes intersecting in dimension 0, then $\text{reg} X_1 \cap X_2 \leq \text{reg} X_1 + \text{reg} X_2$.
An 'Eisenbud-Goto style' question

Question

Let $X \subseteq \mathbb{P}^n$ be an equidimensional reduced projective scheme. Is it true that:

$$\text{reg}(X) \leq \deg(X) \ ?$$

If $\dim X = 2$, the subadditivity result of Caviglia is not true. However, it is still true that, if X_1 and X_2 are projective schemes intersecting in dimension 0, then $\text{reg } X_1 \cap X_2 \leq \text{reg } X_1 + \text{reg } X_2$.

This implies that the question above would admit a positive answer in dimension 2 if the EG conjecture was true in dimension 2 in its full generality (not only for irreducible surfaces).

