Cohomological and projective dimensions
Let R be a ring, $I \subset R$ an ideal and M an R-module. By $H^i_I(M)$ we mean the ith local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$H^i_I(M) \cong \lim_{\rightarrow} \text{Ext}^i_R(R/I_n, M)$$

where $(I_n)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $(I^n)_{n \in \mathbb{N}}$:

$$\forall \ n \in \mathbb{N} \quad I_{n+1} \subset I_n \quad \text{and} \quad \exists \ k, m \in \mathbb{N} : \ I_k \subset I^n \quad \text{and} \quad I^m \subset I_n$$
Let R be a ring, $I \subset R$ an ideal and M an R-module. By $H^i_I(M)$ we mean the ith local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$H^i_I(M) \cong \varprojlim \text{Ext}^i_R(R/I_n, M)$$

where $(I_n)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $(I^n)_{n \in \mathbb{N}}$:

$$\forall n \in \mathbb{N} \quad I_{n+1} \subset I_n \quad \text{and} \quad \exists k, m \in \mathbb{N} : I_k \subset I^n \text{ and } I^m \subset I_n$$
Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$H^i_I(M)$$

we mean the ith local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$H^i_I(M) \cong \varprojlim \operatorname{Ext}^i_R(R/I_n, M)$$

where $(I_n)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $(I^n)_{n \in \mathbb{N}}$:

$$\forall n \in \mathbb{N} \quad I_{n+1} \subset I_n \quad \text{and} \quad \exists k, m \in \mathbb{N} : I_k \subset I^n \text{ and } I^m \subset I_n$$
Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$H^i_I(M)$$

we mean the ith local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$H^i_I(M) \cong \lim_{\to} \text{Ext}^i_R(R/I_n, M)$$

where $(I_n)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $(I^n)_{n \in \mathbb{N}}$:

$$\forall \ n \in \mathbb{N} \quad I_{n+1} \subset I_n \quad \text{and} \quad \exists \ k, m \in \mathbb{N} : I_k \subset I^n \quad \text{and} \quad I^m \subset I_n$$
Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$H^i_I(M)$$

we mean the ith local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$H^i_I(M) \cong \lim_{\longrightarrow} \text{Ext}^i_R(R/I_n, M)$$

where $(I_n)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $(I^n)_{n \in \mathbb{N}}$:

$$\forall n \in \mathbb{N}, \quad I_{n+1} \subseteq I_n \quad \text{and} \quad \exists k, m \in \mathbb{N} : I_k \subseteq I^n \quad \text{and} \quad I^m \subseteq I_n$$
Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$H^i_I(M)$$

we mean the ith local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$H^i_I(M) \cong \lim_{\longrightarrow} \text{Ext}^i_R(R/I_n, M)$$

where $(I_n)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $(I^n)_{n \in \mathbb{N}}$:

$$\forall n \in \mathbb{N} \quad I_{n+1} \subset I_n \quad \text{and} \quad \exists k, m \in \mathbb{N} : I_k \subset I^n \quad \text{and} \quad I^m \subset I_n$$
Let R be a ring, $I \subset R$ an ideal and M an R-module. By $H^i_I(M)$ we mean the ith local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$H^i_I(M) \cong \lim_{\to} \text{Ext}^i_R(R/I_n, M)$$

where $(I_n)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $(I^n)_{n \in \mathbb{N}}$:

$$\forall \ n \in \mathbb{N} \ \ I_{n+1} \subset I_n \ \ \text{and} \ \ \exists \ k, m \in \mathbb{N} : I_k \subset I^n \ \text{and} \ I^m \subset I_n$$
COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Definitions

Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$H^i_I(M)$$

we mean the ith local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$H^i_I(M) \cong \lim_{\rightarrow} \text{Ext}^i_R(R/I_n, M)$$

where $(I_n)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $(I^n)_{n \in \mathbb{N}}$:

$$\forall \ n \in \mathbb{N} \quad I_{n+1} \subset I_n \quad \text{and} \quad \exists \ k, m \in \mathbb{N} : I_k \subset I^n \quad \text{and} \quad I^m \subset I_n$$
Let R be a ring, $I \subseteq R$ an ideal and M an R-module. By

$$H^i_I(M)$$

we mean the ith local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$H^i_I(M) \cong \lim_{\to} \operatorname{Ext}^i_R(R/I_n, M)$$

where $(I_n)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $(I^n)_{n \in \mathbb{N}}$:

$$\forall \ n \in \mathbb{N} \quad I_{n+1} \subseteq I_n \quad \text{and} \quad \exists \ k, m \in \mathbb{N} : I_k \subseteq I^n \quad \text{and} \quad I^m \subseteq I_n$$
Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$H^i_I(M)$$

we mean the ith local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$H^i_I(M) \cong \lim_{\rightarrow} \text{Ext}^i_R(R/I_n, M)$$

where $(I_n)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $(I^n)_{n \in \mathbb{N}}$:

$$\forall \ n \in \mathbb{N} \quad I_{n+1} \subset I_n \quad \text{and} \quad \exists \ k, m \in \mathbb{N} : I_k \subset I^n \quad \text{and} \quad I^m \subset I_n$$
The cohomological dimension of I is the numerical invariant:

$$cd(R, I) = \inf \{ c \in \mathbb{N} : H^i_I(M) = 0 \ \forall \ M \text{ and } i > c \}.$$

It is not difficult to prove that:

$$cd(R, I) = \inf \{ c \in \mathbb{N} : H^i_I(R) = 0 \ \forall \ i > c \}.$$

The very starting results are due to Grothendieck:

$$ht(I) \leq cd(R, I) \leq \dim R.$$
The cohomological dimension of I is the numerical invariant:

$$\text{cd}(R, I) = \inf \{ c \in \mathbb{N} : H^i_I(M) = 0 \ \forall \ M \text{ and } i > c \}.$$

It is not difficult to prove that:

$$\text{cd}(R, I) = \inf \{ c \in \mathbb{N} : H^i_I(R) = 0 \ \forall \ i > c \}.$$

The very starting results are due to Grothendieck:

$$\text{ht}(I) \leq \text{cd}(R, I) \leq \dim R.$$
COHOMOLOGICAL AND PROJECTIVE DIMENSIONS
Definitions

The cohomological dimension of I is the numerical invariant:

$$
\text{cd}(R, I) = \inf\{ c \in \mathbb{N} : H^i_I(M) = 0 \ \forall \ M \text{ and } i > c \}.
$$

It is not difficult to prove that:

$$
\text{cd}(R, I) = \inf\{ c \in \mathbb{N} : H^i_I(R) = 0 \ \forall \ i > c \}.
$$

The very starting results are due to Grothendieck:

$$
\text{ht}(I) \leq \text{cd}(R, I) \leq \dim R.
$$
The cohomological dimension of I is the numerical invariant:

$$\text{cd}(R, I) = \inf\{ c \in \mathbb{N} : H^i_I(M) = 0 \ \forall \ M \text{ and } i > c \}.$$

It is not difficult to prove that:

$$\text{cd}(R, I) = \inf\{ c \in \mathbb{N} : H^i_I(R) = 0 \ \forall \ i > c \}.$$

The very starting results are due to Grothendieck:

$$\text{ht}(I) \leq \text{cd}(R, I) \leq \dim R.$$
The cohomological dimension of I is the numerical invariant:
\[
\text{cd}(R, I) = \inf\{c \in \mathbb{N} : H^i_I(M) = 0 \ \forall \ M \text{ and } i > c\}.
\]
It is not difficult to prove that:
\[
\text{cd}(R, I) = \inf\{c \in \mathbb{N} : H^i_I(R) = 0 \ \forall \ i > c\}.
\]
The very starting results are due to Grothendieck:
\[
\text{ht}(I) \leq \text{cd}(R, I) \leq \text{dim} \ R.
\]
The cohomological dimension of I is the numerical invariant:

$$cd(R, I) = \inf\{c \in \mathbb{N} : H^i_I(M) = 0 \ \forall \ M \text{ and } i > c}\}.$$

It is not difficult to prove that:

$$cd(R, I) = \inf\{c \in \mathbb{N} : H^i_I(R) = 0 \ \forall \ i > c}\}.$$

The very starting results are due to Grothendieck:

$$ht(I) \leq cd(R, I) \leq \dim R.$$
The cohomological dimension of I is the numerical invariant:

$$\text{cd}(R, I) = \inf\{ c \in \mathbb{N} : H^i_I(M) = 0 \ \forall \ M \text{ and } i > c \}.$$

It is not difficult to prove that:

$$\text{cd}(R, I) = \inf\{ c \in \mathbb{N} : H^i_I(R) = 0 \ \forall \ i > c \}.$$

The very starting results are due to Grothendieck:

$$\text{ht}(I) \leq \text{cd}(R, I) \leq \dim R.$$
The cohomological dimension of I is the numerical invariant:

$$\text{cd}(R, I) = \inf\{c \in \mathbb{N} : H^i_I(M) = 0 \ \forall \ M \text{ and } i > c\}.$$

It is not difficult to prove that:

$$\text{cd}(R, I) = \inf\{c \in \mathbb{N} : H^i_I(R) = 0 \ \forall \ i > c\}.$$

The very starting results are due to Grothendieck:

$$\text{ht}(I) \leq \text{cd}(R, I) \leq \dim R.$$
Let $R = K[x_1, \ldots, x_n]$ and $I = (f_1, \ldots, f_r) \subset R$ graded.

Peskine-Szpiro: If $\text{char}(K) = p > 0$, then

$$\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)$$

The proof is easy; for all $e \in \mathbb{N}$:

$$I^{[p^e]} = (f_1^{p^e}, \ldots, f_r^{p^e}).$$

Notice that $I^{[p^e]} = F^e(I)R$, where $F^e : R \to R$ is the e-th-iterated of the Frobenius. By a result of Kunz F^e is flat, so we conclude since:

$$H^i_j(R) \cong \lim_{\longrightarrow} \text{Ext}^i_R(R/I^{[p^e]}, R).$$
COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

A result of Peskine-Szpiro

Let $R = K[x_1, \ldots, x_n]$ and $I = (f_1, \ldots, f_r) \subset R$ graded.

Peskine-Szpiro: If $\text{char}(K) = p > 0$, then

$$\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)$$

The proof is easy; for all $e \in \mathbb{N}$:

$$I^{[p^e]} = (f_1^{p^e}, \ldots, f_r^{p^e}).$$

Notice that $I^{[p^e]} = F^e(I)R$, where $F^e : R \to R$ is the e-th-iterated of the Frobenius. By a result of Kunz F^e is flat, so we conclude since:

$$H^i_j(R) \cong \lim_{\longrightarrow} \text{Ext}^i_R(R/I^{[p^e]}, R).$$
Let $R = K[x_1, \ldots, x_n]$ and $I = (f_1, \ldots, f_r) \subset R$ graded.

Peskine-Szpiro: If $\text{char}(K) = p > 0$, then

$$\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)$$

The proof is easy; for all $e \in \mathbb{N}$:

$$I^{[p^e]} = (f_1^{p^e}, \ldots, f_r^{p^e}).$$

Notice that $I^{[p^e]} = F^e(I)R$, where $F^e : R \rightarrow R$ is the eth-iterated of the Frobenius. By a result of Kunz F^e is flat, so we conclude since:

$$H^i_j(R) \cong \lim_{\rightarrow} \text{Ext}^i_R(R/I^{[p^e]}, R).$$
Let \(R = K[x_1, \ldots, x_n] \) and \(I = (f_1, \ldots, f_r) \subset R \) graded.

Peskine-Szpiro: If \(\text{char}(K) = p > 0 \), then

\[
\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)
\]

The proof is easy; for all \(e \in \mathbb{N} \):

\[
I[p^e] = (f_1^{p^e}, \ldots, f_r^{p^e}).
\]

Notice that \(I[p^e] = F^e(I)R \), where \(F^e : R \to R \) is the \(e \)-th-iterated of the Frobenius. By a result of Kunz \(F^e \) is flat, so we conclude since:

\[
H^i_j(R) \cong \varinjlim \text{Ext}^i_R(R/I[p^e], R).
\]
Let $R = K[x_1, \ldots, x_n]$ and $I = (f_1, \ldots, f_r) \subset R$ graded.

Peskine-Szpiro: If $\text{char}(K) = p > 0$, then

$$\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)$$

The proof is easy; for all $e \in \mathbb{N}$:

$$I^{[p^e]} = (f_1^{p^e}, \ldots, f_r^{p^e}).$$

Notice that $I^{[p^e]} = F^e(I)R$, where $F^e : R \to R$ is the eth-iterated of the Frobenius. By a result of Kunz F^e is flat, so we conclude since:

$$H^i(R) \cong \lim_{\to} \text{Ext}^i_R(R/I^{[p^e]}, R).$$
Let $R = K[x_1, \ldots, x_n]$ and $I = (f_1, \ldots, f_r) \subset R$ graded.

Peskine-Szpiro: If $\text{char}(K) = p > 0$, then

$$\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)$$

The proof is easy; for all $e \in \mathbb{N}$:

$$I^{[p^e]} = (f_1^{p^e}, \ldots, f_r^{p^e}).$$

Notice that $I^{[p^e]} = F^e(I)R$, where $F^e : R \to R$ is the eth-iterated of the Frobenius. By a result of Kunz F^e is flat, so we conclude since:

$$H^i(R) \cong \lim_{\to} \text{Ext}^i_R(R/I^{[p^e]}, R).$$
Let \(R = K[x_1, \ldots, x_n] \) and \(I = (f_1, \ldots, f_r) \subset R \) graded.

Peskine-Szpiro: If \(\text{char}(K) = p > 0 \), then

\[
\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)
\]

The proof is easy; for all \(e \in \mathbb{N} \):

\[
I^{[p^e]} = (f_1^{p^e}, \ldots, f_r^{p^e}).
\]

Notice that \(I^{[p^e]} = F^e(I)R \), where \(F^e : R \to R \) is the \(e \)-th iterated of the Frobenius. By a result of Kunz \(F^e \) is flat, so we conclude since:

\[
H^i_j(R) \cong \lim_{\to} \text{Ext}^i_R(R/I^{[p^e]}, R).
\]
Let $R = K[x_1, \ldots, x_n]$ and $I = (f_1, \ldots, f_r) \subset R$ graded.

Peskine-Szpiro: If $\text{char}(K) = p > 0$, then

$$\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)$$

The proof is easy; for all $e \in \mathbb{N}$:

$$I^{[p^e]} = (f_1^{p^e}, \ldots, f_r^{p^e}).$$

Notice that $I^{[p^e]} = F^e(I)R$, where $F^e : R \to R$ is the e-th iterated of the Frobenius. By a result of Kunz F^e is flat, so we conclude since:

$$H^i_j(R) \cong \lim_{\to} \text{Ext}^i_R(R/I^{[p^e]}, R).$$
Let $R = K[x_1, \ldots, x_n]$ and $I = (f_1, \ldots, f_r) \subset R$ graded.

Peskine-Szpiro: If $\text{char}(K) = p > 0$, then

$$\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)$$

The proof is easy; for all $e \in \mathbb{N}$:

$$I[p^e] = (f_1^{p^e}, \ldots, f_r^{p^e}).$$

Notice that $I[p^e] = F^e(I)R$, where $F^e : R \to R$ is the e-th-iterated of the Frobenius. By a result of Kunz F^e is flat, so we conclude since:

$$H^i_j(R) \cong \lim_{\rightarrow} \text{Ext}^i_R(R/I[p^e], R).$$
Let $R = K[x_1, \ldots, x_n]$ and $I = (f_1, \ldots, f_r) \subset R$ graded.

Peskine-Szpiro: If $\text{char}(K) = p > 0$, then

$$\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)$$

The proof is easy; for all $e \in \mathbb{N}$:

$$I^{[p^e]} = (f_1^{p^e}, \ldots, f_r^{p^e}).$$

Notice that $I^{[p^e]} = F^e(I)R$, where $F^e : R \to R$ is the e-th iterated of the Frobenius. By a result of Kunz F^e is flat, so we conclude since:

$$H^i_j(R) \cong \lim_{\to} \text{Ext}_R^i(R/I^{[p^e]}, R).$$
Let $R = K[x_1, \ldots, x_n]$ and $I = (f_1, \ldots, f_r) \subset R$ graded.

Peskine-Szpiro: If $\text{char}(K) = p > 0$, then

$$\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)$$

The proof is easy; for all $e \in \mathbb{N}$:

$$I^{[p^e]} = (f_1^{p^e}, \ldots, f_r^{p^e}).$$

Notice that $I^{[p^e]} = F^e(I)R$, where $F^e : R \to R$ is the eth-iterated of the Frobenius. By a result of Kunz F^e is flat, so we conclude since:

$$H^i_j(R) \cong \lim_{\to} \text{Ext}^i_R(R/I^{[p^e]}, R).$$
Let $R = K[x_1, \ldots, x_n]$ and $I = (f_1, \ldots, f_r) \subset R$ graded.

Peskine-Szpiro: If $\text{char}(K) = p > 0$, then

$$\text{cd}(R, I) \leq \text{pd}(R/I) = n - \text{depth}(R/I)$$

The proof is easy; for all $e \in \mathbb{N}$:

$$I[p^e] = (f_1^{p^e}, \ldots, f_r^{p^e}).$$

Notice that $I[p^e] = F^e(I)R$, where $F^e : R \rightarrow R$ is the e-th iterated of the Frobenius. By a result of Kunz F^e is flat, so we conclude since:

$$H^i(R) \cong \lim_{\rightarrow} \text{Ext}^i_R(R/I[p^e], R).$$
If \(\text{char}(K) = 0 \) the above argument of course is not applicable. Actually, if \(I \) is the ideal of \(t \)-minors of the generic \(r \times s \) matrix:

\[
\text{Bruns-Schw"{a}nzl: } \text{cd}(I) = rs - t^2 + 1
\]

On the other hand \(\text{pd}(R/I) = (r - t + 1)(s - t + 1) \), so:

\[
\text{cd}(R, I) > \text{pd}(R/I) \text{ (a part from trivial cases).}
\]

As one can check, for all \(p \leq n - 4 \), this provides examples of graded ideals \(I \subset R \) for which \(\text{cd}(R, I) > \text{pd}(R/I) = p \).

QUESTION: If \(\text{pd}(R/I) \leq n - 3 \), is \(\text{cd}(R, I) \leq n - 3 \)???
If \(\text{char}(K) = 0 \) the above argument of course is not applicable. Actually, if \(I \) is the ideal of \(t \)-minors of the generic \(r \times s \) matrix:

\[
\text{Bruns-Schwänzl: } \text{cd}(I) = rs - t^2 + 1
\]

On the other hand \(\text{pd}(R/I) = (r - t + 1)(s - t + 1) \), so:

\[
\text{cd}(R, I) > \text{pd}(R/I) \text{ (a part from trivial cases)}.
\]

As one can check, for all \(p \leq n - 4 \), this provides examples of graded ideals \(I \subset R \) for which \(\text{cd}(R, I) > \text{pd}(R/I) = p \).

QUESTION: If \(\text{pd}(R/I) \leq n - 3 \), is \(\text{cd}(R, I) \leq n - 3 \)??
If \(\text{char}(K) = 0 \) the above argument of course is not applicable. Actually, if \(I \) is the ideal of \(t \)-minors of the generic \(r \times s \) matrix:

\[
\text{Bruns-Schwänzl: } \text{cd}(I) = rs - t^2 + 1
\]

On the other hand \(\text{pd}(R/I) = (r - t + 1)(s - t + 1) \), so:

\[
\text{cd}(R, I) > \text{pd}(R/I) \quad \text{(a part from trivial cases)}.
\]

As one can check, for all \(p \leq n - 4 \), this provides examples of graded ideals \(I \subset R \) for which \(\text{cd}(R, I) > \text{pd}(R/I) = p \).

QUESTION: If \(\text{pd}(R/I) \leq n - 3 \), is \(\text{cd}(R, I) \leq n - 3 \)???
If char(K) = 0 the above argument of course is not applicable. Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

Bruns-Schwänzl: $\text{cd}(I) = rs - t^2 + 1$.

On the other hand $\text{pd}(R/I) = (r - t + 1)(s - t + 1)$, so:

$$\text{cd}(R, I) > \text{pd}(R/I) \text{ (a part from trivial cases)}.$$

As one can check, for all $p \leq n - 4$, this provides examples of graded ideals $I \subset R$ for which $\text{cd}(R, I) > \text{pd}(R/I) = p$.

QUESTION: If $\text{pd}(R/I) \leq n - 3$, is $\text{cd}(R, I) \leq n - 3$???
If \(\text{char}(K) = 0 \) the above argument of course is not applicable. Actually, if \(I \) is the ideal of \(t \)-minors of the generic \(r \times s \) matrix:

\[
\text{Bruns-Schwänzl: } \text{cd}(I) = rs - t^2 + 1
\]

On the other hand \(\text{pd}(R/I) = (r - t + 1)(s - t + 1) \), so:

\[
\text{cd}(R, I) > \text{pd}(R/I) \text{ (a part from trivial cases)}.
\]

As one can check, for all \(p \leq n - 4 \), this provides examples of graded ideals \(I \subset R \) for which \(\text{cd}(R, I) > \text{pd}(R/I) = p \).

QUESTION: If \(\text{pd}(R/I) \leq n - 3 \), is \(\text{cd}(R, I) \leq n - 3 \)??
If char(K) = 0 the above argument of course is not applicable. Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

Bruns-Schwänzl: $cd(I) = rs - t^2 + 1$

On the other hand $pd(R/I) = (r - t + 1)(s - t + 1)$, so:

$cd(R, I) > pd(R/I)$ (a part from trivial cases).

As one can check, for all $p \leq n - 4$, this provides examples of graded ideals $I \subset R$ for which $cd(R, I) > pd(R/I) = p$.

QUESTION: If $pd(R/I) \leq n - 3$, is $cd(R, I) \leq n - 3$???
If $\text{char}(K) = 0$ the above argument of course is not applicable. Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

Bruns-Schwänzl: $\text{cd}(I) = rs - t^2 + 1$

On the other hand $\text{pd}(R/I) = (r - t + 1)(s - t + 1)$, so:

$\text{cd}(R, I) > \text{pd}(R/I)$ (a part from trivial cases).

As one can check, for all $p \leq n - 4$, this provides examples of graded ideals $I \subset R$ for which $\text{cd}(R, I) > \text{pd}(R/I) = p$.

QUESTION: If $\text{pd}(R/I) \leq n - 3$, is $\text{cd}(R, I) \leq n - 3$???
If \(\text{char}(K) = 0 \) the above argument of course is not applicable. Actually, if \(I \) is the ideal of \(t \)-minors of the generic \(r \times s \) matrix:

\[
\text{Bruns-Schwänzl: } \text{cd}(I) = rs - t^2 + 1
\]

On the other hand \(\text{pd}(R/I) = (r - t + 1)(s - t + 1) \), so:

\[
\text{cd}(R, I) > \text{pd}(R/I) \quad \text{(a part from trivial cases)}.
\]

As one can check, for all \(p \leq n - 4 \), this provides examples of graded ideals \(I \subset R \) for which \(\text{cd}(R, I) > \text{pd}(R/I) = p \).

QUESTION: If \(\text{pd}(R/I) \leq n - 3 \), is \(\text{cd}(R, I) \leq n - 3 ??? \)
If $\text{char}(K) = 0$ the above argument of course is not applicable. Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

$$\text{Bruns-Schwänzl: } \text{cd}(I) = rs - t^2 + 1$$

On the other hand $\text{pd}(R/I) = (r - t + 1)(s - t + 1)$, so:

$$\text{cd}(R, I) > \text{pd}(R/I) \text{ (a part from trivial cases).}$$

As one can check, for all $p \leq n - 4$, this provides examples of graded ideals $I \subset R$ for which $\text{cd}(R, I) > \text{pd}(R/I) = p$.

QUESTION: If $\text{pd}(R/I) \leq n - 3$, is $\text{cd}(R, I) \leq n - 3$???
If \(\text{char}(K) = 0 \) the above argument of course is not applicable. Actually, if \(I \) is the ideal of \(t \)-minors of the generic \(r \times s \) matrix:

\[
\text{Bruns-Schwänzl: } \text{cd}(I) = rs - t^2 + 1
\]

On the other hand \(\text{pd}(R/I) = (r - t + 1)(s - t + 1) \), so:

\[
\text{cd}(R, I) > \text{pd}(R/I) \text{ (a part from trivial cases)}.
\]

As one can check, for all \(p \leq n - 4 \), this provides examples of graded ideals \(I \subset R \) for which \(\text{cd}(R, I) > \text{pd}(R/I) = p \).

\textbf{QUESTION:} If \(\text{pd}(R/I) \leq n - 3 \), is \(\text{cd}(R, I) \leq n - 3 \)???
The case $\text{cd}(R, I) \leq n - 2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$\text{cd}(R, I) \leq n - 2 \iff \text{Proj}(R/I) \text{ is geometrically connected}.$$

This yields $\text{pd}(R/I) \leq n - 2 \implies \text{cd}(R, I) \leq n - 2$. Indeed,

$$\text{depth}(R/I) \geq 2 \implies \text{depth}(R/I \otimes_{K} \bar{K}) \geq 2.$$

So, by a result of Hartshorne, $\text{Proj}(R/I \otimes_{K} \bar{K})$ is connected, i.e. $\text{Proj}(R/I)$ is geometrically connected. So we infer $\text{cd}(R, I) \leq n - 2$.
The case $\text{cd}(R, I) \leq n - 2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$\text{cd}(R, I) \leq n - 2 \iff \text{Proj}(R/I) \text{ is geometrically connected}$$

This yields $\text{pd}(R/I) \leq n - 2 \implies \text{cd}(R, I) \leq n - 2$. Indeed,

$$\text{depth}(R/I) \geq 2 \implies \text{depth}(R/I \otimes_{K} \overline{K}) \geq 2.$$

So, by a result of Hartshorne, $\text{Proj}(R/I \otimes_{K} \overline{K})$ is connected, i.e. $\text{Proj}(R/I)$ is geometrically connected. So we infer $\text{cd}(R, I) \leq n - 2$.
COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

cd(\(R, I\)) \leq n - 2

The case \(cd(R, I) \leq n - 2\) has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

\[cd(R, I) \leq n - 2 \iff \text{Proj}(R/I) \text{ is geometrically connected} \]

This yields \(pd(R/I) \leq n - 2 \implies cd(R, I) \leq n - 2\). Indeed,

\[\text{depth}(R/I) \geq 2 \implies \text{depth}(R/I \otimes_K \overline{K}) \geq 2. \]

So, by a result of Hartshorne, \(\text{Proj}(R/I \otimes_K \overline{K})\) is connected, i.e. \(\text{Proj}(R/I)\) is geometrically connected. So we infer \(cd(R, I) \leq n - 2\).
The case $\text{cd}(R, I) \leq n - 2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$\text{cd}(R, I) \leq n - 2 \iff \text{Proj}(R/I) \text{ is geometrically connected}$$

This yields $\text{pd}(R/I) \leq n - 2 \implies \text{cd}(R, I) \leq n - 2$. Indeed,

$$\text{depth}(R/I) \geq 2 \implies \text{depth}(R/I \otimes_K \overline{K}) \geq 2.$$

So, by a result of Hartshorne, $\text{Proj}(R/I \otimes_K \overline{K})$ is connected, i.e. $\text{Proj}(R/I)$ is geometrically connected. So we infer $\text{cd}(R, I) \leq n - 2$.

The case $\text{cd}(R, I) \leq n - 2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$\text{cd}(R, I) \leq n - 2 \iff \text{Proj}(R/I) \text{ is geometrically connected}$$

This yields $\text{pd}(R/I) \leq n - 2 \implies \text{cd}(R, I) \leq n - 2$. Indeed,

$$\text{depth}(R/I) \geq 2 \implies \text{depth}(R/I \otimes_K \overline{K}) \geq 2.$$

So, by a result of Hartshorne, $\text{Proj}(R/I \otimes_K \overline{K})$ is connected, i.e. $\text{Proj}(R/I)$ is geometrically connected. So we infer $\text{cd}(R, I) \leq n - 2$.

The case $\text{cd}(R, I) \leq n - 2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$\text{cd}(R, I) \leq n - 2 \iff \text{Proj}(R/I) \text{ is geometrically connected}$$

This yields $\text{pd}(R/I) \leq n - 2 \implies \text{cd}(R, I) \leq n - 2$. Indeed,

$$\text{depth}(R/I) \geq 2 \implies \text{depth}(R/I \otimes_K \overline{K}) \geq 2.$$

So, by a result of Hartshorne, $\text{Proj}(R/I \otimes_K \overline{K})$ is connected, i.e. $\text{Proj}(R/I)$ is geometrically connected. So we infer $\text{cd}(R, I) \leq n - 2$.

cd$(R, I) \leq n - 2$
The case $\text{cd}(R, I) \leq n - 2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$\text{cd}(R, I) \leq n - 2 \iff \text{Proj}(R/I) \text{ is geometrically connected}$$

This yields $\text{pd}(R/I) \leq n - 2 \implies \text{cd}(R, I) \leq n - 2$. Indeed,

$$\text{depth}(R/I) \geq 2 \implies \text{depth}(R/I \otimes_K \overline{K}) \geq 2.$$

So, by a result of Hartshorne, $\text{Proj}(R/I \otimes_K \overline{K})$ is connected, i.e. $	ext{Proj}(R/I)$ is geometrically connected. So we infer $\text{cd}(R, I) \leq n - 2$.

The case $\text{cd}(R, I) \leq n - 2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$\text{cd}(R, I) \leq n - 2 \iff \text{Proj}(R/I) \text{ is geometrically connected}$$

This yields $\text{pd}(R/I) \leq n - 2 \implies \text{cd}(R, I) \leq n - 2$. Indeed,

$$\text{depth}(R/I) \geq 2 \implies \text{depth}(R/I \otimes_K \overline{K}) \geq 2.$$

So, by a result of Hartshorne, $\text{Proj}(R/I \otimes_K \overline{K})$ is connected, i.e. $\text{Proj}(R/I)$ is geometrically connected. So we infer $\text{cd}(R, I) \leq n - 2$.
cd(R, I) \leq n - 2

The case cd(R, I) \leq n - 2 has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

\[cd(R, I) \leq n - 2 \iff \text{Proj}(R/I) \text{ is geometrically connected} \]

This yields pd(R/I) \leq n - 2 \implies cd(R, I) \leq n - 2. Indeed,

\[\text{depth}(R/I) \geq 2 \implies \text{depth}(R/I \otimes_K \overline{K}) \geq 2. \]

So, by a result of Hartshorne, \text{Proj}(R/I \otimes_K \overline{K}) is connected, i.e. \text{Proj}(R/I) is geometrically connected. So we infer cd(R, I) \leq n - 2.
The case $\text{cd}(R, I) \leq n - 2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$\text{cd}(R, I) \leq n - 2 \iff \text{Proj}(R/I) \text{ is geometrically connected}$$

This yields $\text{pd}(R/I) \leq n - 2 \implies \text{cd}(R, I) \leq n - 2$. Indeed,

$$\text{depth}(R/I) \geq 2 \implies \text{depth}(R/I \otimes_K \overline{K}) \geq 2.$$

So, by a result of Hartshorne, $\text{Proj}(R/I \otimes_K \overline{K})$ is connected, i.e. $\text{Proj}(R/I)$ is geometrically connected. So we infer $\text{cd}(R, I) \leq n - 2$.
The case \(\text{cd}(R, I) \leq n - 2 \) has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

\[\text{cd}(R, I) \leq n - 2 \iff \text{Proj}(R/I) \text{ is geometrically connected} \]

This yields \(\text{pd}(R/I) \leq n - 2 \implies \text{cd}(R, I) \leq n - 2 \). Indeed,

\[\text{depth}(R/I) \geq 2 \implies \text{depth}(R/I \otimes_K \overline{K}) \geq 2. \]

So, by a result of Hartshorne, \(\text{Proj}(R/I \otimes_K \overline{K}) \) is connected, i.e. \(\text{Proj}(R/I) \) is geometrically connected. So we infer \(\text{cd}(R, I) \leq n - 2 \).
Let K be a field of characteristic 0 and $I \subset R = K[x_1, \ldots, x_n]$ a graded ideal such that $\text{pd}(R/I) \leq n - 3$. Then:

$$\text{cd}(R, I) \leq n - 3.$$
Let K be a field of characteristic 0 and $I \subset R = K[x_1, \ldots, x_n]$ a graded ideal such that $\text{pd}(R/I) \leq n - 3$. Then:

$$\text{cd}(R, I) \leq n - 3.$$
Let K be a field of characteristic 0 and $I \subset R = K[x_1, \ldots, x_n]$ a graded ideal such that $\text{pd}(R/I) \leq n - 3$. Then:

$$\text{cd}(R, I) \leq n - 3.$$
Let K be a field of characteristic 0 and $I \subset R = K[x_1, \ldots, x_n]$ a graded ideal such that $\text{pd}(R/I) \leq n - 3$. Then:

$$\text{cd}(R, I) \leq n - 3.$$
Let K be a field of characteristic 0 and $I \subset R = K[x_1, \ldots, x_n]$ a graded ideal such that $pd(R/I) \leq n - 3$. Then:

$$cd(R, I) \leq n - 3.$$
Let K be a field of characteristic 0 and $I \subset R = K[x_1, \ldots, x_n]$ a graded ideal such that $\text{pd}(R/I) \leq n - 3$. Then:

$$\text{cd}(R, I) \leq n - 3.$$
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} (char(K) = 0). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 - n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \text{dim}(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ (char(K) = 0), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
Singh-Walther: Let \(I \subset R \) be the ideal defining \(E \times \mathbb{P}^1 \subset \mathbb{P}^5 \), where \(E \subset \mathbb{P}^2 \) is an elliptic curve defined over \(\mathbb{Z} \) (char(\(K \)) = 0). Then \(R/J \) is not Cohen-Macaulay for all graded ideals such that \(\sqrt{J} = I \).

Their proof relies on the fact that such an \(R/I \) has \(F \)-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies \(\text{cd}(R, I) = 4 = 6 - 2 - n - 2 \). Thus if \(J \subset R \) is a graded ideal such that \(R/J \) is CM and \(\sqrt{J} = I \), so \(\text{depth}(R/J) = \dim(R/J) = 3 \), then \(\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3 \).

Actually a similar argument works to show the following:

Let \(I \subset R \) be the ideal defining of \(C \times X \subset \mathbb{P}^{n-1} \) (char(\(K \)) = 0), where \(C \) is a projective smooth curve of genus \(\geq 0 \) and \(X \) is any projective scheme. Then \(\text{depth}(R/J) \leq 2 \) for all graded ideals such that \(\sqrt{J} = \sqrt{I} \).
Singh-Walther: Let \(I \subset R \) be the ideal defining \(E \times \mathbb{P}^1 \subset \mathbb{P}^5 \), where \(E \subset \mathbb{P}^2 \) is an elliptic curve defined over \(\mathbb{Z} \) \((\text{char}(K) = 0) \). Then \(R/J \) is not Cohen-Macaulay for all graded ideals such that \(\sqrt{J} = I \).

Their proof relies on the fact that such an \(R/I \) has \(F \)-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies \(\text{cd}(R, I) = 4 = 6 - 2 - n - 2 \). Thus if \(J \subset R \) is a graded ideal such that \(R/J \) is CM and \(\sqrt{J} = I \), so \(\text{depth}(R/J) = \dim(R/J) = 3 \), then \(\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3 \).

Actually a similar argument works to show the following:

Let \(I \subset R \) be the ideal defining of \(C \times X \subset \mathbb{P}^{n-1} \) \((\text{char}(K) = 0) \), where \(C \) is a projective smooth curve of genus \(> 0 \) and \(X \) is any projective scheme. Then \(\text{depth}(R/J) \leq 2 \) for all graded ideals such that \(\sqrt{J} = \sqrt{I} \).
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} (char(K) = 0). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 - n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \text{dim}(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ (char(K) = 0), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} (char$(K) = 0$). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \dim(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ (char$(K) = 0$), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) = 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} (char($K) = 0$). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $cd(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \text{dim}(R/J) = 3$, then $cd(R, I) = cd(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ (char($K) = 0$), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) = 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.

Singh-Walther: Let \(I \subset R \) be the ideal defining \(E \times \mathbb{P}^1 \subset \mathbb{P}^5 \), where \(E \subset \mathbb{P}^2 \) is an elliptic curve defined over \(\mathbb{Z} \) (\(\text{char}(K) = 0 \)). Then \(R/J \) is not Cohen-Macaulay for all graded ideals such that \(\sqrt{J} = I \).

Their proof relies on the fact that such an \(R/I \) has \(F \)-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies \(\text{cd}(R, I) = 4 = 6 - 2 = n - 2 \). Thus if \(J \subset R \) is a graded ideal such that \(R/J \) is CM and \(\sqrt{J} = I \), so \(\text{depth}(R/J) = \dim(R/J) = 3 \), then \(\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3 \).

Actually a similar argument works to show the following:

Let \(I \subset R \) be the ideal defining of \(C \times X \subset \mathbb{P}^{n-1} \) (\(\text{char}(K) = 0 \)), where \(C \) is a projective smooth curve of genus \(> 0 \) and \(X \) is any projective scheme. Then \(\text{depth}(R/J) \leq 2 \) for all graded ideals such that \(\sqrt{J} = \sqrt{I} \).
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} (char$(K) = 0$). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \text{dim}(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ (char$(K) = 0$), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
Singh-Walther: Let \(I \subset R \) be the ideal defining \(E \times \mathbb{P}^1 \subset \mathbb{P}^5 \), where \(E \subset \mathbb{P}^2 \) is an elliptic curve defined over \(\mathbb{Z} \) (\(\text{char}(K) = 0 \)). Then \(R/J \) is not Cohen-Macaulay for all graded ideals such that \(\sqrt{J} = I \).

Their proof relies on the fact that such an \(R/I \) has \(F \)-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies \(\text{cd}(R, I) = 4 = 6 - 2 = n - 2 \). Thus if \(J \subset R \) is a graded ideal such that \(R/J \) is CM and \(\sqrt{J} = I \), so \(\text{depth}(R/J) = \dim(R/J) = 3 \), then \(\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3 \).

Actually a similar argument works to show the following:

Let \(I \subset R \) be the ideal defining of \(C \times X \subset \mathbb{P}^{n-1} \) (\(\text{char}(K) = 0 \)), where \(C \) is a projective smooth curve of genus \(\geq 0 \) and \(X \) is any projective scheme. Then \(\text{depth}(R/J) = 2 \) for all graded ideals such that \(\sqrt{J} = \sqrt{I} \).
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} ($\text{char}(K) = 0$). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \text{dim}(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ ($\text{char}(K) = 0$), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} ($\text{char}(K) = 0$). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \text{dim}(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ ($\text{char}(K) = 0$), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

A consequence

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} (char$(K) = 0$). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $cd(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \dim(R/J) = 3$, then $cd(R, I) = cd(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ (char$(K) = 0$), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) = 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} ($\text{char}(K) = 0$). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \text{dim}(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ ($\text{char}(K) = 0$), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

A consequence

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} (char(K) = 0). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \text{dim}(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ (char(K) = 0), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} (char(K) = 0). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \text{dim}(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ (char(K) = 0), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} (char(K) = 0). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $cd(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \dim(R/J) = 3$, then $cd(R, I) = cd(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ (char(K) = 0), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} ($\text{char}(K) = 0$). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \text{dim}(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ ($\text{char}(K) = 0$), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} (char(K) = 0). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \dim(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ (char(K) = 0), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

A consequence

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^1 \subset \mathbb{P}^5$, where $E \subset \mathbb{P}^2$ is an elliptic curve defined over \mathbb{Z} (char(K) = 0). Then R/J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J} = I$.

Their proof relies on the fact that such an R/I has F-pure type.

However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\text{cd}(R, I) = 4 = 6 - 2 = n - 2$. Thus if $J \subset R$ is a graded ideal such that R/J is CM and $\sqrt{J} = I$, so $\text{depth}(R/J) = \text{dim}(R/J) = 3$, then $\text{cd}(R, I) = \text{cd}(R, J) \leq n - 3$.

Actually a similar argument works to show the following:

Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}$ (char(K) = 0), where C is a projective smooth curve of genus > 0 and X is any projective scheme. Then $\text{depth}(R/J) \leq 2$ for all graded ideals such that $\sqrt{J} = \sqrt{I}$.
PROOF OF THE MAIN RESULT
PROOF OF THE MAIN RESULT
Let $I \subset R = K[x_1, \ldots, x_n]$, $X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1}$ and $U = \mathbb{P}^{n-1} \setminus X$. By the Grothendieck-Serre correspondence $\text{cd}(R, I) - 1$ is equal to:

$$\text{cd}(U) = \inf\{s : H^i(U, \mathcal{F}) = 0 \quad \forall \ i > s \text{ and } \mathcal{F} \text{ coherent}\}$$

Ogus: If $\text{char}(K) = 0$, then $\text{cd}(U) < n - s$ is and only if:

(i) $\text{Supp}(H^i_I(R)) \subset \{m\}$ for all $i > n - s$.

(ii) $\dim_K H^i_{\text{DR}}(X) = i + 1 \pmod 2$ for all $i < s - 1$,

where H^i_{DR} denotes algebraic DeRham cohomology.
Let $I \subset R = K[x_1, \ldots, x_n]$, $X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1}$ and $U = \mathbb{P}^{n-1} \setminus X$.

By the Grothendieck-Serre correspondence $\text{cd}(R, I) - 1$ is equal to:

$$\text{cd}(U) = \inf \{ s : H^i(U, \mathcal{F}) = 0 \ \forall \ i > s \text{ and } \mathcal{F} \text{ coherent} \}$$

Ogus: If $\text{char}(K) = 0$, then $\text{cd}(U) < n - s$ is and only if:

(i) $\text{Supp}(H^i_R) \subset \{ m \}$ for all $i > n - s$.

(ii) $\dim_K H^i_{DR}(X) = i + 1 \pmod{2}$ for all $i < s - 1$, where H^i_{DR} denotes algebraic DeRham cohomology.
COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The geometric point of view

Let \(I \subset R = K[x_1, \ldots, x_n] \), \(X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1} \) and \(U = \mathbb{P}^{n-1} \setminus X \).

By the Grothendieck-Serre correspondence \(\text{cd}(R, I) - 1 \) is equal to:

\[
\text{cd}(U) = \inf \{ s : H^i(U, \mathcal{F}) = 0 \ \forall \ i > s \text{ and } \mathcal{F} \text{ coherent} \}
\]

Ogus: If \(\text{char}(K) = 0 \), then \(\text{cd}(U) < n - s \) is and only if:

(i) \(\text{Supp}(H^i_I(R)) \subset \{ m \} \) for all \(i > n - s \).

(ii) \(\dim_K H^i_{DR}(X) = i + 1 \ (\text{mod} \ 2) \) for all \(i < s - 1 \),

where \(H^i_{DR} \) denotes algebraic DeRham cohomology.
Let $I \subset R = K[x_1, \ldots, x_n]$, $X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1}$ and $U = \mathbb{P}^{n-1} \setminus X$.

By the Grothendieck-Serre correspondence $\text{cd}(R, I) - 1$ is equal to:

$$\text{cd}(U) = \inf\{s : H^i(U, \mathcal{F}) = 0 \ \forall \ i > s \text{ and } \mathcal{F} \text{ coherent}\}$$

Ogus: If $\text{char}(K) = 0$, then $\text{cd}(U) < n - s$ is and only if:

(i) $\text{Supp}(H^i_I(R)) \subset \{m\}$ for all $i > n - s$.

(ii) $\dim_K H^i_{DR}(X) = i + 1 \pmod{2}$ for all $i < s - 1$, where H^i_{DR} denotes algebraic DeRham cohomology.
Let $I \subset R = K[x_1, \ldots, x_n]$, $X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1}$ and $U = \mathbb{P}^{n-1} \setminus X$. By the Grothendieck-Serre correspondence $cd(R, I) - 1$ is equal to:

$$cd(U) = \inf\{s : H^i(U, \mathcal{F}) = 0 \ \forall \ i > s \text{ and } \mathcal{F} \text{ coherent}\}$$

Ogus: If $\text{char}(K) = 0$, then $cd(U) < n - s$ is and only if:

(i) $\text{Supp}(H^i_I(R)) \subset \{m\}$ for all $i > n - s$.

(ii) $\dim_K H^i_{\text{DR}}(X) = i + 1 \pmod{2}$ for all $i < s - 1$, where H^i_{DR} denotes algebraic DeRham cohomology.
Let $I \subset R = K[x_1, \ldots, x_n]$, $X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1}$ and $U = \mathbb{P}^{n-1} \setminus X$. By the Grothendieck-Serre correspondence $\text{cd}(R, I) - 1$ is equal to:

$$\text{cd}(U) = \inf \{ s : H^i(U, F) = 0 \ \forall \ i > s \text{ and } F \text{ coherent} \}$$

Ogus: If $\text{char}(K) = 0$, then $\text{cd}(U) < n - s$ is and only if:

(i) $\text{Supp}(H^i_I(R)) \subset \{m\}$ for all $i > n - s$.

(ii) $\dim_K H^i_{\text{DR}}(X) = i + 1 \pmod{2}$ for all $i < s - 1$, where H^i_{DR} denotes algebraic DeRham cohomology.
Let $I \subset R = K[x_1, \ldots, x_n]$, $X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1}$ and $U = \mathbb{P}^{n-1} \setminus X$. By the Grothendieck-Serre correspondence $\text{cd}(R, I) - 1$ is equal to:

$$\text{cd}(U) = \inf\{s : H^i(U, \mathcal{F}) = 0 \forall i > s \text{ and } \mathcal{F} \text{ coherent}\}$$

Ogus: If $\text{char}(K) = 0$, then $\text{cd}(U) < n - s$ is and only if:

(i) $\text{Supp}(H^i_I(R)) \subset \{m\}$ for all $i > n - s$.

(ii) $\dim_K H^i_{DR}(X) = i + 1 \pmod{2}$ for all $i < s - 1$, where H^i_{DR} denotes algebraic DeRham cohomology.
Let $I \subset R = K[x_1, \ldots, x_n]$, $X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1}$ and $U = \mathbb{P}^{n-1} \setminus X$.

By the Grothendieck-Serre correspondence $\text{cd}(R, I) - 1$ is equal to:

$$\text{cd}(U) = \inf \{ s : H^i(U, \mathcal{F}) = 0 \ \forall \ i > s \text{ and } \mathcal{F} \text{ coherent} \}$$

Ogus: If $\text{char}(K) = 0$, then $\text{cd}(U) < n - s$ is and only if:

(i) $\text{Supp}(H^i_i(R)) \subset \{ m \}$ for all $i > n - s$.

(ii) $\dim_K H^i_{DR}(X) = i + 1 \pmod{2}$ for all $i < s - 1$, where H^i_{DR} denotes algebraic DeRham cohomology.
COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The geometric point of view

Let $I \subset R = K[x_1, \ldots, x_n]$, $X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1}$ and $U = \mathbb{P}^{n-1} \setminus X$. By the Grothendieck-Serre correspondence $\text{cd}(R, I) - 1$ is equal to:

$$\text{cd}(U) = \inf\{s : H^i(U, \mathcal{F}) = 0 \ \forall \ i > s \text{ and } \mathcal{F} \text{ coherent}\}$$

Ogus: If $\text{char}(K) = 0$, then $\text{cd}(U) < n - s$ is and only if:

(i) $\text{Supp}(H^i(R)) \subset \{m\}$ for all $i > n - s$.

(ii) $\dim_K H^i_{\text{DR}}(X) = i + 1 \pmod{2}$ for all $i < s - 1$, where H^i_{DR} denotes algebraic DeRham cohomology.
Let $I \subset R = K[x_1, \ldots, x_n]$, $X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1}$ and $U = \mathbb{P}^{n-1} \setminus X$.

By the Grothendieck-Serre correspondence $\text{cd}(R, I) - 1$ is equal to:

$$
\text{cd}(U) = \inf \{s : H^i(U, \mathcal{F}) = 0 \ \forall \ i > s \text{ and } \mathcal{F} \text{ coherent}\}
$$

Ogus: If char$(K) = 0$, then $\text{cd}(U) < n - s$ is and only if:

(i) $\text{Supp}(H^i_I(R)) \subset \{m\}$ for all $i > n - s$.

(ii) $\dim_K H^i_{DR}(X) = i + 1 \pmod{2}$ for all $i < s - 1$,

where H^i_{DR} denotes algebraic DeRham cohomology.
Let $I \subset R = K[x_1, \ldots, x_n]$, $X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1}$ and $U = \mathbb{P}^{n-1} \setminus X$. By the Grothendieck-Serre correspondence $\text{cd}(R, I) - 1$ is equal to:

$$\text{cd}(U) = \inf \{ s : H^i(U, \mathcal{F}) = 0 \ \forall \ i > s \text{ and } \mathcal{F} \text{ coherent} \}$$

Ogus: If $\text{char}(K) = 0$, then $\text{cd}(U) < n - s$ is and only if:

(i) $\text{Supp}(H^i(R)) \subset \{ \mathfrak{m} \}$ for all $i > n - s$.

(ii) $\dim_K H^i_{DR}(X) = i + 1 \pmod{2}$ for all $i < s - 1$, where H^i_{DR} denotes algebraic DeRham cohomology.
Let $I \subset R = K[x_1, \ldots, x_n]$, $X = \text{Proj}(R/I) \subset \mathbb{P}^{n-1}$ and $U = \mathbb{P}^{n-1} \setminus X$. By the Grothendieck-Serre correspondence $\text{cd}(R, I) - 1$ is equal to:

$$\text{cd}(U) = \inf \{ s : H^i(U, \mathcal{F}) = 0 \ \forall \ i > s \text{ and } \mathcal{F} \text{ coherent} \}$$

Ogus: If $\text{char}(K) = 0$, then $\text{cd}(U) < n - s$ is and only if:

(i) $\text{Supp}(H^i_\mathcal{I}(R)) \subset \{ m \}$ for all $i > n - s$.

(ii) $\dim_K H^i_{\text{DR}}(X) = i + 1 \pmod{2}$ for all $i < s - 1$, where H^i_{DR} denotes algebraic DeRham cohomology.
Our goal is to prove $\text{cd}(R, I) \leq n - 3$ provided $\text{depth}(R/I) \geq 3$. So we need to show that $\text{cd}(U) < n - 3$. Since $\text{char}(K) = 0$, by Ogus’ result we must prove:

(i) $\text{Supp}(H^i_I(R)) \subset \{m\}$ for all $i > n - 3$.

(ii) $H^0_{DR}(X) \cong K$.

(iii) $H^1_{DR}(X) = 0$.
Our goal is to prove $\text{cd}(R, I) \leq n - 3$ provided $\text{depth}(R/I) \geq 3$. So we need to show that $\text{cd}(U) < n - 3$. Since $\text{char}(K) = 0$, by Ogus’ result we must prove:

(i) $\text{Supp}(H^i(R)) \subset \{m\}$ for all $i > n - 3$.
(ii) $H^0_{\text{DR}}(X) \cong K$.
(iii) $H^1_{\text{DR}}(X) = 0$.
Our goal is to prove $\text{cd}(R, I) \leq n - 3$ provided $\text{depth}(R/I) \geq 3$. So we need to show that $\text{cd}(U) < n - 3$. Since $\text{char}(K) = 0$, by Ogus' result we must prove:

(i) $\text{Supp}(H^i_I(R)) \subset \{m\}$ for all $i > n - 3$. ✓
(ii) $H^0_{DR}(X) \cong K$.
(iii) $H^1_{DR}(X) = 0$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The geometric point of view
Our goal is to prove $\text{cd}(R, I) \leq n - 3$ provided $\text{depth}(R/I) \geq 3$. So we need to show that $\text{cd}(U) < n - 3$. Since $\text{char}(K) = 0$, by Ogus’ result we must prove:

(i) $\text{Supp}(H^i_i(R)) \subset \{m\}$ for all $i > n - 3$. √

(ii) $H^0_{DR}(X) \cong K$.

(iii) $H^1_{DR}(X) = 0$.
Our goal is to prove $\text{cd}(R, I) \leq n - 3$ provided $\text{depth}(R/I) \geq 3$. So we need to show that $\text{cd}(U) < n - 3$. Since $\text{char}(K) = 0$, by Ogus’ result we must prove:

(i) $\text{Supp}(H^i_i(R)) \subset \{m\}$ for all $i > n - 3$. ✓
(ii) $H^0_{DR}(X) \cong K$.
(iii) $H^1_{DR}(X) = 0$.

Our goal is to prove $\text{cd}(R, I) \leq n - 3$ provided $\text{depth}(R/I) \geq 3$. So we need to show that $\text{cd}(U) < n - 3$. Since $\text{char}(K) = 0$, by Ogus’ result we must prove:

(i) $\text{Supp}(H^i_I(R)) \subset \{m\}$ for all $i > n - 3$. √

(ii) $H^0_{DR}(X) \cong K$.

(iii) $H^1_{DR}(X) = 0$.

Our goal is to prove $\text{cd}(R, I) \leq n - 3$ provided $\text{depth}(R/I) \geq 3$. So we need to show that $\text{cd}(U) < n - 3$. Since $\text{char}(K) = 0$, by Ogus’ result we must prove:

(i) $\text{Supp}(H^i(R)) \subset \{m\}$ for all $i > n - 3$.
(ii) $H^0_{\text{DR}}(X) \cong K$.
(iii) $H^1_{\text{DR}}(X) = 0$.
Our goal is to prove $\text{cd}(R, I) \leq n - 3$ provided $\text{depth}(R/I) \geq 3$. So we need to show that $\text{cd}(U) < n - 3$. Since $\text{char}(K) = 0$, by Ogus’ result we must prove:

(i) $\text{Supp}(H^i_I(R)) \subset \{m\}$ for all $i > n - 3$. √
(ii) $H^0_{DR}(X) \cong K$.
(iii) $H^1_{DR}(X) = 0$.

We can assume $K = \mathbb{C}$. Let us denote X_h the analytic space associated to X.

Hartshorne: $H^i_{DR}(X) \cong H^i(X_h, \mathbb{C})$ (singular cohomology).

$\text{depth}(R/I) \geq 3 \implies X$ is connected. Moreover it is well known:

X connected (Zariski) $\iff X_h$ connected (euclidean)

Thus $H^0_{DR}(X) \cong H^0(X_h, \mathbb{C}) \cong \mathbb{C}$ (ii).

So it remains to show (iii), i.e. $H^1(X_h, \mathbb{C}) = 0$.
We can assume $K = \mathbb{C}$. Let us denote X_h the analytic space associated to X.

Hartshorne: $H^i_{DR}(X) \cong H^i(X_h, \mathbb{C})$ (singular cohomology).

$\text{depth}(R/I) \geq 3 \implies X$ is connected. Moreover it is well known:

X connected (Zariski) $\iff X_h$ connected (euclidean)

Thus $H^0_{DR}(X) \cong H^0(X_h, \mathbb{C}) \cong \mathbb{C}$ (ii) (i).

So it remains to show (iii), i.e. $H^1(X_h, \mathbb{C}) = 0$.
We can assume \(K = \mathbb{C} \). Let us denote \(X_h \) the analytic space associated to \(X \).

Hartshorne: \(H^i_{DR}(X) \cong H^i(X_h, \mathbb{C}) \) (singular cohomology).

\[
\text{depth}(R/I) \geq 3 \implies X \text{ is connected. Moreover it is well known:}
\]

\[
X \text{ connected (Zariski) } \iff X_h \text{ connected (euclidean)}
\]

Thus \(H^0_{DR}(X) \cong H^0(X_h, \mathbb{C}) \cong \mathbb{C} \) (ii).

So it remains to show (iii), i.e. \(H^1(X_h, \mathbb{C}) = 0 \).
We can assume $K = \mathbb{C}$. Let us denote X_h the analytic space associated to X.

Hartshorne: $H^i_{DR}(X) \cong H^i(X_h, \mathbb{C})$ (singular cohomology).

$\text{depth}(R/I) \geq 3 \implies X$ is connected. Moreover it is well known:

$$X \text{ connected (Zariski)} \iff X_h \text{ connected (euclidean).}$$

Thus $H^0_{DR}(X) \cong H^0(X_h, \mathbb{C}) \cong \mathbb{C}$ (ii).

So it remains to show (iii), i.e. $H^1(X_h, \mathbb{C}) = 0$.
We can assume $K = \mathbb{C}$. Let us denote X_h the analytic space associated to X.

Hartshorne: $H^i_{DR}(X) \cong H^i(X_h, \mathbb{C})$ (singular cohomology).

$\text{depth}(R/I) \geq 3 \implies X$ is connected. Moreover it is well known:

$$X \text{ connected (Zariski)} \iff X_h \text{ connected (euclidean)}$$

Thus $H^0_{DR}(X) \cong H^0(X_h, \mathbb{C}) \cong \mathbb{C}$ (iii) (ii).

So it remains to show (iii), i.e. $H^1(X_h, \mathbb{C}) = 0$.
We can assume $K = \mathbb{C}$. Let us denote X_h the analytic space associated to X.

Hartshorne: $H^i_{DR}(X) \cong H^i(X_h, \mathbb{C})$ (singular cohomology).

$\text{depth}(R/I) \geq 3 \implies X$ is connected. Moreover it is well known:

$$X \text{ connected (Zariski)} \iff X_h \text{ connected (euclidean)}$$

Thus $H^0_{DR}(X) \cong H^0(X_h, \mathbb{C}) \cong \mathbb{C}$ ((ii) \checkmark).

So it remains to show (iii), i.e. $H^1(X_h, \mathbb{C}) = 0$.

We can assume $K = \mathbb{C}$. Let us denote X_h the analytic space associated to X.

Hartshorne: $H^i_{DR}(X) \cong H^i(X_h, \mathbb{C})$ (singular cohomology).

$$\text{depth}(R/I) \geq 3 \implies X \text{ is connected.}$$

Moreover it is well known:

$$X \text{ connected (Zariski)} \iff X_h \text{ connected (euclidean)}$$

Thus $H^0_{DR}(X) \cong H^0(X_h, \mathbb{C}) \cong \mathbb{C}$ ((ii) \checkmark).

So it remains to show (iii), i.e. $H^1(X_h, \mathbb{C}) = 0$.
We can assume $K = \mathbb{C}$. Let us denote X_h the analytic space associated to X.

Hartshorne: $H^i_{DR}(X) \cong H^i(X_h, \mathbb{C})$ (singular cohomology).

$\text{depth}(R/I) \geq 3 \implies X$ is connected. Moreover it is well known:

X connected (Zariski) $\iff X_h$ connected (euclidean)

Thus $H^0_{DR}(X) \cong H^0(X_h, \mathbb{C}) \cong \mathbb{C}$ ((ii) $\sqrt{}$).

So it remains to show (iii), i.e. $H^1(X_h, \mathbb{C}) = 0$.

We can assume $K = \mathbb{C}$. Let us denote X_h the analytic space associated to X.

Hartshorne: $H^i_{DR}(X) \cong H^i(X_h, \mathbb{C})$ (singular cohomology).

$\text{depth}(R/I) \geq 3 \implies X$ is connected. Moreover it is well known:

X connected (Zariski) $\iff X_h$ connected (euclidean)

Thus $H^0_{DR}(X) \cong H^0(X_h, \mathbb{C}) \cong \mathbb{C}$ ((ii) $\check{}$).

So it remains to show (iii), i.e. $H^1(X_h, \mathbb{C}) = 0$.
We can assume $K = \mathbb{C}$. Let us denote X_h the analytic space associated to X.

Hartshorne: $H^i_{DR}(X) \cong H^i(X_h, \mathbb{C})$ (singular cohomology).

$\text{depth}(R/I) \geq 3 \implies X$ is connected. Moreover it is well known:

X connected (Zariski) $\iff X_h$ connected (euclidean)

Thus $H^0_{DR}(X) \cong H^0(X_h, \mathbb{C}) \cong \mathbb{C}$ ((ii) $\sqrt{\cdot}$).

So it remains to show (iii), i.e. $H^1(X_h, \mathbb{C}) = 0$.
We can assume $K = \mathbb{C}$. Let us denote X_h the analytic space associated to X.

Hartshorne: $H^i_{DR}(X) \cong H^i(X_h, \mathbb{C})$ (singular cohomology).

$$\text{depth}(R/I) \geq 3 \implies X \text{ is connected.}$$

Moreover it is well known:

$$X \text{ connected (Zariski)} \iff X_h \text{ connected (euclidean)}$$

Thus $H^0_{DR}(X) \cong H^0(X_h, \mathbb{C}) \cong \mathbb{C}$ (**(ii)** \checkmark).

So it remains to show (**iii**), i.e. $H^1(X_h, \mathbb{C}) = 0$.

The proof of (iii) relies on the celebrated exponential sequence:

$$0 \rightarrow \mathbb{Z}_{X_h} \cdot 2\pi i \rightarrow \mathcal{O}_{X_h} \xrightarrow{\exp_{X_h}} \mathcal{O}_{X_h}^* \rightarrow 0.$$

This is well known, but references can be found only if X is reduced (I radical), so I would like to explain it in the general case.
The proof of (iii) relies on the celebrated exponential sequence:

\[0 \to \mathbb{Z}_{X_h} \cdot 2\pi i \to \mathcal{O}_{X_h} \xrightarrow{\exp_{X_h}} \mathcal{O}_{X_h}^* \to 0. \]

This is well known, but references can be found only if \(X \) is reduced (\(I \) radical), so I would like to explain it in the general case.
The proof of (iii) relies on the celebrated exponential sequence:

$$0 \rightarrow \mathbb{Z}_{X_h} \xrightarrow{\cdot 2\pi i} \mathcal{O}_{X_h} \xrightarrow{\exp_{X_h}} \mathcal{O}^*_{X_h} \rightarrow 0.$$

This is well known, but references can be found only if X is reduced (I radical), so I would like to explain it in the general case.
The proof of (iii) relies on the celebrated exponential sequence:

\[0 \rightarrow \mathbb{Z}_{X_h} \cdot 2\pi i \rightarrow \mathcal{O}_{X_h} \xrightarrow{\exp_{X_h}} \mathcal{O}_{X_h}^* \rightarrow 0. \]

This is well known, but references can be found only if \(X \) is reduced (\(I \) radical), so I would like to explain it in the general case.
The proof of (iii) relies on the celebrated exponential sequence:

$$0 \rightarrow \mathbb{Z}_{X^h} \cdot 2\pi i \rightarrow \mathcal{O}_{X^h} \xrightarrow{\exp_{X^h}} \mathcal{O}_{X^h}^* \rightarrow 0.$$

This is well known, but references can be found only if X is reduced (I radical), so I would like to explain it in the general case.
First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^n$ is affine. So we have the maps:

$$
\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n}^* \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp_{X_h}} & \mathcal{O}_{X_h}^*
\end{array}
$$

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

$$
\mathcal{O}_{X_h} \xrightarrow{\exp_{X_h}} \mathcal{O}_{X_h}^*,
$$

where $\exp_{X_h}(f) = \exp_{\mathbb{C}^n}(f)$, is a well-defined map.
First of all the problem is local. Therefore we can assume that $X \subseteq \mathbb{A}^n$ is affine. So we have the maps:

$$O_{\mathbb{C}^n} \xrightarrow{\operatorname{exp}_{\mathbb{C}^n}} O_{\mathbb{C}^n}^*$$

$$\downarrow \quad \quad \quad \downarrow$$

$$O_{X_h} \quad \quad \quad O_{X_h}^*$$

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

$$O_{X_h} \xrightarrow{\operatorname{exp}_{X_h}} O_{X_h}^*,$$

where $\operatorname{exp}_{X_h}(f) = \overline{\operatorname{exp}_{\mathbb{C}^n}(f)}$, is a well-defined map.
First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^n$ is affine. So we have the maps:

$$
\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \overset{\exp_{\mathbb{C}^n}}{\longrightarrow} & \mathcal{O}^*_{\mathbb{C}^n} \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \rightarrow & \mathcal{O}^*_{X_h}
\end{array}
$$

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

$$
\mathcal{O}_{X_h} \overset{\exp_{X_h}}{\longrightarrow} \mathcal{O}^*_{X_h},
$$

where $\exp_{X_h}(f) = \exp_{\mathbb{C}^n}(f)$, is a well-defined map.
First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^n$ is affine. So we have the maps:

$$
\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n}^* \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp_{X_h}} & \mathcal{O}_{X_h}^*
\end{array}
$$

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

$$
\mathcal{O}_{X_h} \xrightarrow{\exp_{X_h}} \mathcal{O}_{X_h}^*,
$$

where $\exp_{X_h}(f) = \exp_{\mathbb{C}^n}(f)$, is a well-defined map.
First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^n$ is affine. So we have the maps:

$$
\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n}^* \\
\downarrow & & \downarrow \\
\mathcal{O}_{Xh} & \xrightarrow{\exp_{Xh}} & \mathcal{O}_{Xh}^*
\end{array}
$$

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

$$
\mathcal{O}_{Xh} \xrightarrow{\exp_{Xh}} \mathcal{O}_{Xh}^*
$$

where $\exp_{Xh}(f) = \exp_{\mathbb{C}^n}(f)$, is a well-defined map.
First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^n$ is affine. So we have the maps:

$$
\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n}^* \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \quad & \mathcal{O}_{X_h}^*
\end{array}
$$

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

$$
\mathcal{O}_{X_h} \xrightarrow{\exp_{X_h}} \mathcal{O}_{X_h}^*,
$$

where $\exp_{X_h}(\bar{f}) = \exp_{\mathbb{C}^n}(\bar{f})$, is a well-defined map.
First of all the problem is local. Therefore we can assume that \(X \subset \mathbb{A}^n \) is affine. So we have the maps:

\[
\begin{array}{c}
\mathcal{O}_{\mathbb{C}^n} \xrightarrow{\exp_{\mathbb{C}^n}} \mathcal{O}_{\mathbb{C}^n}^* \\
\downarrow \quad \downarrow \\
\mathcal{O}_X^h \quad \mathcal{O}_X^h^*
\end{array}
\]

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

\[
\mathcal{O}_X^h \xrightarrow{\exp_X^h} \mathcal{O}_X^h^*,
\]

where \(\exp_X^h(f) = \exp_{\mathbb{C}^n}(\overline{f}) \), is a well-defined map.
First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^n$ is affine. So we have the maps:

$$
\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}^*_{\mathbb{C}^n} \\
\downarrow & & \downarrow \\
\mathcal{O}_X^h & & \mathcal{O}^*_X^h
\end{array}
$$

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

$$
\mathcal{O}_X^h \xrightarrow{\exp_{X^h}^*} \mathcal{O}^*_X,$$

where $\exp_{X^h}(\bar{f}) = \exp_{\mathbb{C}^n}(f)$, is a well-defined map.
First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^n$ is affine. So we have the maps:

$$
\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n}^* \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & & \mathcal{O}_{X_h}^*
\end{array}
$$

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

$$
\mathcal{O}_{X_h} \xrightarrow{\exp_{X_h}} \mathcal{O}_{X_h}^* ,
$$

where $\exp_{X_h}(\bar{f}) = \exp_{\mathbb{C}^n}(\bar{f})$, is a well-defined map.
To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$\exp_{\mathcal{O}_{\mathbb{C}^n,0}}(f) - 1 = \sum_{m \geq 1} \frac{f^m}{m!} \in a.$$

So it makes sense to write the commutative diagram:

$$\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp} & \mathcal{O}_{\mathbb{C}^n} \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp} & \mathcal{O}_{X_h}
\end{array}$$

Notice that \exp_{X_h} is surjective.
To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$\exp_{\mathbb{C}^n,0}(f) - 1 = \sum_{m \geq 1} f^m / m! \in a.$$

So it makes sense to write the commutative diagram:

$$\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n,0}} & \mathcal{O}_{\mathbb{C}^n,0} \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp_{X_h,0}} & \mathcal{O}_{X_h,0}
\end{array}$$

Notice that \exp_{X_h} is surjective.
The exponential sequence

To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$
\exp_{\mathbb{C}^n,0}(f) - 1 = \sum_{m \geq 1} \frac{f^m}{m!} \in a.
$$

So it makes sense to write the commutative diagram:

$$
\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n} \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp_{X_h}} & \mathcal{O}_{X_h}
\end{array}
$$

Notice that \exp_{X_h} is surjective.
To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$\exp_{\mathbb{C}^n,0}(f) - 1 = \sum_{m \geq 1} \frac{f^m}{m!} \in a.$$

So it makes sense to write the commutative diagram:

$$\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n} \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp_{X_h}} & \mathcal{O}_{X_h}
\end{array}$$

Notice that \exp_{X_h} is surjective.
To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$\exp_{\mathbb{C}^n,0}(f) - 1 = \sum_{m \geq 1} \frac{f^m}{m!} \in a.$$

So it makes sense to write the commutative diagram:

$$\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n,0} & \xrightarrow{\exp} & \mathcal{O}_{\mathbb{C}^n,0} \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h,0} & \xrightarrow{\exp} & \mathcal{O}_{X_h,0}
\end{array}$$

Notice that \exp_{X_h} is surjective.
To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$\exp_{\mathbb{C}^n,0}(f) - 1 = \sum_{m \geq 1} \frac{f^m}{m!} \in a.$$

So it makes sense to write the commutative diagram:

$$\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n} \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp_{X_h}} & \mathcal{O}_{X_h}
\end{array}$$

Notice that \exp_{X_h} is surjective.
To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$\exp_{\mathbb{C}^n,0}(f) - 1 = \sum_{m \geq 1} \frac{f^m}{m!} \in a.$$

So it makes sense to write the commutative diagram:

Notice that \exp_{X_h} is surjective.
To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$\exp_{\mathbb{C}^n,0}(f) - 1 = \sum_{m \geq 1} \frac{f^m}{m!} \in a.$$

So it makes sense to write the commutative diagram:

\[\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n}^* \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp_{X_h}} & \mathcal{O}_{X_h}^*
\end{array} \]

Notice that \exp_{X_h} is surjective.
To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$\exp_{\mathbb{C}^n,0}(f) - 1 = \sum_{m \geq 1} \frac{f^m}{m!} \in a.$$

So it makes sense to write the commutative diagram:

\[
\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n}^* \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp_{X_h}} & \mathcal{O}_{X_h}^*
\end{array}
\]

Notice that \exp_{X_h} is surjective.
To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$\exp_{\mathbb{C}^n,0}(f) - 1 = \sum_{m \geq 1} \frac{f^m}{m!} \in a.$$

So it makes sense to write the commutative diagram:

\[
\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n}^* \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp_{X_h}} & \mathcal{O}_{X_h}^*
\end{array}
\]

Notice that \exp_{X_h} is surjective.
To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$\exp_{\mathbb{C}^n,0}(f) - 1 = \sum_{m \geq 1} \frac{f^m}{m!} \in a.$$

So it makes sense to write the commutative diagram:

$$\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}_{\mathbb{C}^n}^* \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp_{X_h}} & \mathcal{O}_{X_h}^*
\end{array}$$

Notice that \exp_{X_h} is surjective.
To show that \exp_{X_h} is well-defined we can argue on the stalks. Let P be a point of X_h. We can assume that $P = 0$. So let $a \subset A = \mathbb{C}\{x_1, \ldots, x_n\}$ be so that $\mathcal{O}_{\mathbb{C}^n,0} \cong A$ and $\mathcal{O}_{X_h,0} \cong A/a$. Let $f \in a$:

$$\exp_{\mathbb{C}^n,0}(f) - 1 = \sum_{m \geq 1} \frac{f^m}{m!} \in a.$$

So it makes sense to write the commutative diagram:

\[
\begin{array}{ccc}
\mathcal{O}_{\mathbb{C}^n} & \xrightarrow{\exp_{\mathbb{C}^n}} & \mathcal{O}^*_{\mathbb{C}^n} \\
\downarrow & & \downarrow \\
\mathcal{O}_{X_h} & \xrightarrow{\exp_{X_h}} & \mathcal{O}^*_h
\end{array}
\]

Notice that \exp_{X_h} is surjective.
Now we want to show that:

\[0 \to \mathbb{Z}X_h \cdot 2\pi i \to \mathcal{O}_X^* \to \mathcal{O}_h \to 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{C_n,0}(f) - 1 \in \mathfrak{a} \). Then \(\exp_{C_n,0}(f) - 1 \in \sqrt{\mathfrak{a}} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi ik \in \sqrt{\mathfrak{a}} \). But

\[\exp_{C_n,0}(f') - 1 = \sum_{m \geq 1} f'^m/m! = f'^{-1} \cdot (1 + \sum_{m \geq 1} f'^m/(m + 1)!)) = 1. \]

The element \(g = \sum_{m \geq 1} f'^m/(m + 1)! \in \sqrt{\mathfrak{a}} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(\mathfrak{a} \).
Now we want to show that:

\[0 \to \mathbb{Z} X_h \cdot 2\pi i \to \mathcal{O} X_h \xrightarrow{\exp_{X_h}} \mathcal{O}^*_X \to 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{\mathbb{C}^n,0}(f) - 1 \in a \). Then \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \sqrt{a} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi ik \in \sqrt{a} \). But

\[
\exp_{\mathbb{C}^n,0}(f') - 1 = \sum_{m \geq 1} f'^m / m! = i^k \cdot (1 + \sum_{m \geq 1} f'^m / (m + 1)!) \in a.
\]

The element \(g = \sum_{m \geq 1} f'^m / (m + 1)! \in \sqrt{a} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(a \).
Now we want to show that:

$$0 \rightarrow \mathbb{Z} X_h \xrightarrow{2\pi i} \mathcal{O} X_h \xrightarrow{\exp_{X_h}} \mathcal{O}^*_X \rightarrow 0$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp_{n,0}(f) - 1 \in \alpha$. Then $\exp_{n,0}(f) - 1 \in \sqrt{\alpha}$. Since the above sequence is exact if X is reduced, there exist $k \in \mathbb{Z}$ such that $f' = f - 2\pi ik \in \sqrt{\alpha}$. But

$$\exp_{n,0}(f') - 1 = \sum_{m \geq 1} f'^m/m! = ik \cdot (1 + \sum_{m \geq 1} f'^m/(m+1)!) \in \alpha.$$

The element $g = \sum_{m \geq 1} f'^m/(m+1)! \in \sqrt{\alpha}$. This means that $1 + g$ is invertible in A, so f' is actually an element of α.

Now we want to show that:

\[0 \rightarrow \mathbb{Z}X_h \xrightarrow{2\pi i} \mathcal{O}_{X_h} \xrightarrow{\exp_{X_h}} \mathcal{O}_{X_h}^* \rightarrow 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{\mathbb{C}^*,0}(f) - 1 \in a \). Then \(\exp_{\mathbb{C}^*,0}(f) - 1 \in \sqrt{a} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi ik \in \sqrt{a} \). But

\[\exp_{\mathbb{C}^*,0}(f') - 1 = \sum_{m \geq 1} f'^m / m! = i^k \cdot (1 + \sum_{m \geq 1} f'^m / (m + 1)!) = 0. \]

The element \(g = \sum_{m \geq 1} f'^m / (m + 1)! \in \sqrt{a} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(a \).
Now we want to show that:

\[0 \to \mathbb{Z}X_h \xrightarrow{2\pi i} \mathcal{O}X_h \xrightarrow{\exp X_h} \mathcal{O}^*_X \to 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \mathfrak{a} \). Then \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \sqrt{\mathfrak{a}} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi ik \in \sqrt{\mathfrak{a}} \). But

\[
\exp_{\mathbb{C}^n,0}(f') - 1 = \sum_{m \geq 1} f'^m / m! = f' \cdot (1 + \sum_{m \geq 1} f'^m / (m + 1)!) = \mathfrak{a}
\]

The element \(g = \sum_{m \geq 1} f'^m / (m + 1)! \in \sqrt{\mathfrak{a}} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(\mathfrak{a} \).
Now we want to show that:

\[0 \to \mathbb{Z} \xrightarrow{2\pi i} \mathcal{O} \xrightarrow{\exp} \mathcal{O}^* \to 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{C^n,0}(f) - 1 \in \mathfrak{a} \). Then \(\exp_{C^n,0}(f) - 1 \in \sqrt{\mathfrak{a}} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi ik \in \sqrt{\mathfrak{a}} \). But

\[\exp_{C^n,0}(f') - 1 = \sum_{m \geq 1} f'^m / m! = f' \cdot (1 + \sum_{m \geq 1} f'^m / (m+1)!) = 1. \]

The element \(g = \sum_{m \geq 1} f'^m / (m+1)! \in \sqrt{\mathfrak{a}} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(\mathfrak{a} \).
Now we want to show that:

\[0 \to \mathbb{Z} \chi_h \cdot 2\pi i \to \mathcal{O} \chi_h \xrightarrow{\exp_{\chi_h}} \mathcal{O}^*_\chi_h \to 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \mathfrak{a} \). Then \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \sqrt{\mathfrak{a}} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi ik \in \sqrt{\mathfrak{a}} \). But

\[
\exp_{\mathbb{C}^n,0}(f') - 1 = \sum_{m \geq 1} \frac{f'^m}{m!} = f' \cdot (1 + \sum_{m \geq 1} \frac{f'^m}{(m+1)!}) \in \mathfrak{a}.
\]

The element \(g = \sum_{m \geq 1} \frac{f'^m}{(m+1)!} \in \sqrt{\mathfrak{a}} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(\mathfrak{a} \).
Now we want to show that:

\[0 \to \mathbb{Z} \times_h \cdot 2\pi i \to \mathcal{O}_X \times_h \exp_{X_h} \to \mathcal{O}_{X_h}^* \to 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{\mathbb{C}^n,0}(f) - 1 \in a \). Then \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \sqrt{a} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi ik \in \sqrt{a} \). But

\[
\exp_{\mathbb{C}^n,0}(f') - 1 = \sum_{m \geq 1} f'^m / m! = f' \cdot (1 + \sum_{m \geq 1} f'^m / (m + 1)!) \in a.
\]

The element \(g = \sum_{m \geq 1} f'^m / (m + 1)! \in \sqrt{a} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(a \).
Now we want to show that:

\[0 \rightarrow \mathbb{Z}X_h \xrightarrow{\cdot 2\pi i} \mathcal{O}X_h \xrightarrow{\exp X_h} \mathcal{O}^*_X \rightarrow 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \mathfrak{a} \). Then \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \sqrt{\mathfrak{a}} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi i k \in \sqrt{\mathfrak{a}} \). But

\[\exp_{\mathbb{C}^n,0}(f') - 1 = \sum_{m \geq 1} f'^m / m! = f' \cdot (1 + \sum_{m \geq 1} f'^m / (m + 1)!) \in \mathfrak{a}. \]

The element \(g = \sum_{m \geq 1} f'^m / (m + 1)! \in \sqrt{\mathfrak{a}} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(\mathfrak{a} \).
Now we want to show that:

\[0 \rightarrow \mathbb{Z} \chi_{X_{h}} \xrightarrow{2\pi i} \mathcal{O}X_{h} \xrightarrow{\exp_{X_{h}}} \mathcal{O}^{*}_{X_{h}} \rightarrow 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{C_{n},0}(f) - 1 \in \alpha \). Then \(\exp_{C_{n},0}(f) - 1 \in \sqrt{\alpha} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi i k \in \sqrt{\alpha} \). But

\[
\exp_{C_{n},0}(f') - 1 = \sum_{m \geq 1} f'^{m}/m! = f' \cdot (1 + \sum_{m \geq 1} f'^{m}/(m+1)!) \in \alpha.
\]

The element \(g = \sum_{m \geq 1} f'^{m}/(m+1)! \in \sqrt{\alpha} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(\alpha \).
Now we want to show that:

\[0 \rightarrow \mathbb{Z} \cdot X_h \xrightarrow{2\pi i} \mathcal{O}_{X_h} \xrightarrow{\exp X_h} \mathcal{O}_{X_h}^* \rightarrow 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \mathfrak{a} \). Then \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \sqrt{\mathfrak{a}} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi ik \in \sqrt{\mathfrak{a}} \). But

\[\exp_{\mathbb{C}^n,0}(f') - 1 = \sum_{m \geq 1} f'^m / m! = f' \cdot (1 + \sum_{m \geq 1} f'^m / (m + 1)!) \in \mathfrak{a}. \]

The element \(g = \sum_{m \geq 1} f'^m / (m + 1)! \in \sqrt{\mathfrak{a}} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(\mathfrak{a} \).
Now we want to show that:

\[0 \rightarrow \mathbb{Z}X_h \xrightarrow{\cdot 2\pi i} \mathcal{O}X_h \xrightarrow{\exp X_h} \mathcal{O}^*_X \rightarrow 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \mathfrak{a} \). Then \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \sqrt{\mathfrak{a}} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi ik \in \sqrt{\mathfrak{a}} \). But

\[\exp_{\mathbb{C}^n,0}(f') - 1 = \sum_{m \geq 1} f'^m / m! = f' \cdot (1 + \sum_{m \geq 1} f'^m / (m + 1)!) \in \mathfrak{a}. \]

The element \(g = \sum_{m \geq 1} f'^m / (m + 1)! \in \sqrt{\mathfrak{a}} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(\mathfrak{a} \).
Now we want to show that:

\[
0 \rightarrow \mathbb{Z} X_h \overset{2\pi i}{\longrightarrow} \mathcal{O} X_h \overset{\exp X_h}{\longrightarrow} \mathcal{O}^*_X \rightarrow 0
\]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{\mathbb{C}^n,0}(f) - 1 \in a \). Then \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \sqrt{a} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi ik \in \sqrt{a} \). But

\[
\exp_{\mathbb{C}^n,0}(f') - 1 = \sum_{m \geq 1} f'^m / m! = f' \cdot (1 + \sum_{m \geq 1} f'^m / (m + 1)!) \in a.
\]

The element \(g = \sum_{m \geq 1} f'^m / (m + 1)! \in \sqrt{a} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(a \).
Now we want to show that:

\[0 \rightarrow \mathbb{Z}X_h \cdot 2\pi i \rightarrow \mathcal{O}X_h \xrightarrow{\exp_{X_h}} \mathcal{O}_X^* \rightarrow 0 \]

is exact. For the discussion above we have just to show exactness in the middle. Let \(f \in A \) such that \(\exp_{\mathbb{C}^n,0}(f) - 1 \in a \). Then \(\exp_{\mathbb{C}^n,0}(f) - 1 \in \sqrt{a} \). Since the above sequence is exact if \(X \) is reduced, there exist \(k \in \mathbb{Z} \) such that \(f' = f - 2\pi ik \in \sqrt{a} \). But

\[
\exp_{\mathbb{C}^n,0}(f') - 1 = \sum_{m \geq 1} f'^m / m! = f' \cdot (1 + \sum_{m \geq 1} f'^m / (m + 1)!) \in a.
\]

The element \(g = \sum_{m \geq 1} f'^m / (m + 1)! \in \sqrt{a} \). This means that \(1 + g \) is invertible in \(A \), so \(f' \) is actually an element of \(a \).
The exponential sequence yields a long exact sequence of abelian groups:

\[0 \to H^0(X_h, \mathbb{Z}_{X_h}) \to H^0(X_h, \mathcal{O}_{X_h}) \to H^0(X_h, \mathcal{O}_{X_h}^*) \to H^1(X_h, \mathbb{Z}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}^*) \to \ldots \]

By GAGA $H^0(X_h, \mathcal{O}_{X_h}) \cong H^0(X, \mathcal{O}_X)$, and the latter is an artinian \mathbb{C}-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective. So $H^0(X_h, \mathcal{O}_{X_h}) \to H^0(X_h, \mathcal{O}_{X_h}^*)$ is surjective, and thus

\[H^1(X_h, \mathbb{Z}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}) \]

is injective.
The exponential sequence yields a long exact sequence of abelian groups:

\[0 \to H^0(X_h, \mathbb{Z}_{X_h}) \to H^0(X_h, \mathcal{O}_{X_h}) \to H^0(X_h, \mathcal{O}^*_{X_h}) \to \]
\[H^1(X_h, \mathbb{Z}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}) \to H^1(X_h, \mathcal{O}^*_{X_h}) \to \ldots \]

By GAGA, \(H^0(X_h, \mathcal{O}_{X_h}) \cong H^0(X, \mathcal{O}_X) \), and the latter is an artinian \(\mathbb{C} \)-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective. So \(H^0(X_h, \mathcal{O}_{X_h}) \to H^0(X_h, \mathcal{O}^*_{X_h}) \) is surjective, and thus

\[H^1(X_h, \mathbb{Z}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}) \]

is injective.
The exponential sequence yields a long exact sequence of abelian groups:

\[0 \rightarrow H^0(X_h, \mathbb{Z}_{X_h}) \rightarrow H^0(X_h, \mathcal{O}_{X_h}) \rightarrow H^0(X_h, \mathcal{O}_{X_h}^*) \rightarrow \]
\[H^1(X_h, \mathbb{Z}_{X_h}) \rightarrow H^1(X_h, \mathcal{O}_{X_h}) \rightarrow H^1(X_h, \mathcal{O}_{X_h}^*) \rightarrow \ldots \]

By GAGA \(H^0(X_h, \mathcal{O}_{X_h}) \cong H^0(X, \mathcal{O}_X) \), and the latter is an artinian \(\mathbb{C} \)-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective. So \(H^0(X_h, \mathcal{O}_{X_h}) \rightarrow H^0(X_h, \mathcal{O}_{X_h}^*) \) is surjective, and thus

\[H^1(X_h, \mathbb{Z}_{X_h}) \rightarrow H^1(X_h, \mathcal{O}_{X_h}) \]

is injective.
The conclusion

The exponential sequence yields a long exact sequence of abelian groups:

\[0 \to H^0(X_h, \mathbb{Z}_{X_h}) \to H^0(X_h, \mathcal{O}_{X_h}) \to H^0(X_h, \mathcal{O}^*_{X_h}) \to \]
\[H^1(X_h, \mathbb{Z}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}) \to H^1(X_h, \mathcal{O}^*_{X_h}) \to \ldots \]

By GAGA \(H^0(X_h, \mathcal{O}_{X_h}) \cong H^0(X, \mathcal{O}_X) \), and the latter is an artinian \(\mathbb{C} \)-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective. So \(H^0(X_h, \mathcal{O}_{X_h}) \to H^0(X_h, \mathcal{O}^*_{X_h}) \) is surjective, and thus

\[H^1(X_h, \mathbb{Z}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}) \]

is injective.
The exponential sequence yields a long exact sequence of abelian groups:

\[0 \rightarrow H^0(X_h, \mathbb{Z}_{X_h}) \rightarrow H^0(X_h, \mathcal{O}_{X_h}) \rightarrow H^0(X_h, \mathcal{O}_{X_h}^*) \rightarrow H^1(X_h, \mathbb{Z}_{X_h}) \rightarrow H^1(X_h, \mathcal{O}_{X_h}) \rightarrow H^1(X_h, \mathcal{O}_{X_h}^*) \rightarrow \ldots \]

By GAGA \(H^0(X_h, \mathcal{O}_{X_h}) \cong H^0(X, \mathcal{O}_X) \), and the latter is an artinian \(\mathbb{C} \)-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective. So \(H^0(X_h, \mathcal{O}_{X_h}) \rightarrow H^0(X_h, \mathcal{O}_{X_h}^*) \) is surjective, and thus

\[H^1(X_h, \mathbb{Z}_{X_h}) \rightarrow H^1(X_h, \mathcal{O}_{X_h}) \]

is injective.
The exponential sequence yields a long exact sequence of abelian groups:

\[0 \to H^0(X_h, \mathbb{Z}_{X_h}) \to H^0(X_h, \mathcal{O}_{X_h}) \to H^0(X_h, \mathcal{O}_{X_h}^*) \to \]
\[H^1(X_h, \mathbb{Z}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}^*) \to \ldots \]

By GAGA, \(H^0(X_h, \mathcal{O}_{X_h}) \cong H^0(X, \mathcal{O}_X) \), and the latter is an artinian \(\mathbb{C} \)-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective. So \(H^0(X_h, \mathcal{O}_{X_h}) \to H^0(X_h, \mathcal{O}_{X_h}^*) \) is surjective, and thus

\[H^1(X_h, \mathbb{Z}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}) \]

is injective.
The exponential sequence yields a long exact sequence of abelian groups:

$$0 \rightarrow H^0(X_h, \mathbb{Z}_{X_h}) \rightarrow H^0(X_h, \mathcal{O}_{X_h}) \rightarrow H^0(X_h, \mathcal{O}_{X_h}^*) \rightarrow H^1(X_h, \mathbb{Z}_{X_h}) \rightarrow H^1(X_h, \mathcal{O}_{X_h}) \rightarrow H^1(X_h, \mathcal{O}_{X_h}^*) \rightarrow \ldots$$

By GAGA $H^0(X_h, \mathcal{O}_{X_h}) \cong H^0(X, \mathcal{O}_X)$, and the latter is an artinian \mathbb{C}-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective. So $H^0(X_h, \mathcal{O}_{X_h}) \rightarrow H^0(X_h, \mathcal{O}_{X_h}^*)$ is surjective, and thus $H^1(X_h, \mathbb{Z}_{X_h}) \rightarrow H^1(X_h, \mathcal{O}_{X_h})$ is injective.
The exponential sequence yields a long exact sequence of abelian groups:

\[0 \rightarrow H^0(X_h, \mathbb{Z}_X) \rightarrow H^0(X_h, \mathcal{O}_X) \rightarrow H^0(X_h, \mathcal{O}_{X_h}^*) \rightarrow \]
\[H^1(X_h, \mathbb{Z}_X) \rightarrow H^1(X_h, \mathcal{O}_X) \rightarrow H^1(X_h, \mathcal{O}_{X_h}^*) \rightarrow \ldots \]

By GAGA $H^0(X_h, \mathcal{O}_X) \cong H^0(X, \mathcal{O}_X)$, and the latter is an artinian \mathbb{C}-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective. So $H^0(X_h, \mathcal{O}_X) \rightarrow H^0(X_h, \mathcal{O}_{X_h}^*)$ is surjective, and thus

\[H^1(X_h, \mathbb{Z}_X) \rightarrow H^1(X_h, \mathcal{O}_X) \]

is injective.
The exponential sequence yields a long exact sequence of abelian groups:

\[
0 \to H^0(X_h, \mathbb{Z}_{X_h}) \to H^0(X_h, \mathcal{O}_{X_h}) \to H^0(X_h, \mathcal{O}_{X_h}^*) \to \]
\[
H^1(X_h, \mathbb{Z}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h}^*) \to \ldots
\]

By \textit{GAGA} \(H^0(X_h, \mathcal{O}_{X_h}) \cong H^0(X, \mathcal{O}_X) \), and the latter is an artinian \(\mathbb{C} \)-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective. So \(H^0(X_h, \mathcal{O}_{X_h}) \to H^0(X_h, \mathcal{O}_{X_h}^*) \) is surjective, and thus

\[
H^1(X_h, \mathbb{Z}_{X_h}) \to H^1(X_h, \mathcal{O}_{X_h})
\]

is injective.
Using again GAGA, $H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X)$. Moreover

$$H^1(X, \mathcal{O}_X) \cong H^2_m(R/I)_0$$

where $R = \mathbb{C}[x_1, \ldots, x_n]$, $I \subset R$ is such that $X \cong \text{Proj}(R/I)$ and m is the maximal irrelevant. Our assumption was depth$(R/I) \geq 3$. In particular $H^2_m(R/I) = 0$, so $H^1(X_h, \mathcal{O}_{X_h}) = 0$. Eventually, by the injection $H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_h})$ we deduce $H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0$. By the universal coefficient theorem

$$H^1(X_h, \mathbb{C}) = 0,$$

and this was the missing piece (iii) to infer $\text{cd}(R, I) \leq n - 3$. □
Using again GAGA, $H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X)$. Moreover

$$H^1(X, \mathcal{O}_X) \cong H^2_{m}(R/I)_0$$

where $R = \mathbb{C}[x_1, \ldots, x_n]$, $I \subset R$ is such that $X \cong \text{Proj}(R/I)$ and m is the maximal irrelevant. Our assumption was $\text{depth}(R/I) \geq 3$. In particular $H^2_{m}(R/I) = 0$, so $H^1(X_h, \mathcal{O}_{X_h}) = 0$. Eventually, by the injection $H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_h})$ we deduce $H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0$. By the universal coefficient theorem

$$H^1(X_h, \mathbb{C}) = 0,$$

and this was the missing piece (iii) to infer $\text{cd}(R, I) \leq n - 3$. \square
Using again GAGA, $H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X)$. Moreover

$$H^1(X, \mathcal{O}_X) \cong H^2_m(R/I)_0$$

where $R = \mathbb{C}[x_1, \ldots, x_n]$, $I \subset R$ is such that $X \cong \text{Proj}(R/I)$ and m is the maximal irrelevant. Our assumption was $\text{depth}(R/I) \geq 3$. In particular $H^2_m(R/I) = 0$, so $H^1(X_h, \mathcal{O}_{X_h}) = 0$. Eventually, by the injection $H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_h})$ we deduce $H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0$. By the universal coefficient theorem

$$H^1(X_h, \mathbb{C}) = 0,$$

and this was the missing piece (iii) to infer $\text{cd}(R, I) \leq n - 3$. \qed
Using again GAGA, $H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X)$. Moreover

$$H^1(X, \mathcal{O}_X) \cong H^2_m(R/I)_0$$

where $R = \mathbb{C}[x_1, \ldots, x_n]$, $I \subset R$ is such that $X \cong \text{Proj}(R/I)$ and m is the maximal irrelevant. Our assumption was $\text{depth}(R/I) \geq 3$. In particular $H^2_m(R/I) = 0$, so $H^1(X_h, \mathcal{O}_{X_h}) = 0$. Eventually, by the injection $H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_h})$ we deduce $H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0$. By the universal coefficient theorem

$$H^1(X_h, \mathbb{C}) = 0,$$

and this was the missing piece (iii) to infer $\text{cd}(R, I) \leq n - 3$. □
Using again GAGA, \(H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X) \). Moreover

\[
H^1(X, \mathcal{O}_X) \cong H^2_m(R/I_0)
\]

where \(R = \mathbb{C}[x_1, \ldots, x_n] \), \(I \subset R \) is such that \(X \cong \text{Proj}(R/I) \) and \(m \) is the maximal irrelevant. Our assumption was \(\text{depth}(R/I) \geq 3 \). In particular \(H^2_m(R/I) = 0 \), so \(H^1(X_h, \mathcal{O}_{X_h}) = 0 \). Eventually, by the injection \(H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_h}) \) we deduce \(H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0 \). By the universal coefficient theorem

\[
H^1(X_h, \mathbb{C}) = 0,
\]

and this was the missing piece (iii) to infer \(\text{cd}(R, I) \leq n - 3 \). \(\square \)
Using again GAGA, $H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X)$. Moreover

$$H^1(X, \mathcal{O}_X) \cong H^2_m(R/I)_0$$

where $R = \mathbb{C}[x_1, \ldots, x_n]$, $I \subset R$ is such that $X \cong \text{Proj}(R/I)$ and m is the maximal irrelevant. Our assumption was $\text{depth}(R/I) \geq 3$. In particular $H^2_m(R/I) = 0$, so $H^1(X_h, \mathcal{O}_{X_h}) = 0$. Eventually, by the injection $H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_h})$ we deduce $H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0$. By the universal coefficient theorem

$$H^1(X_h, \mathbb{C}) = 0,$$

and this was the missing piece (iii) to infer $\text{cd}(R, I) \leq n - 3$. □
Using again GAGA, $H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X)$. Moreover

$$H^1(X, \mathcal{O}_X) \cong H^2_m(R/I)_0$$

where $R = \mathbb{C}[x_1, \ldots, x_n]$, $I \subset R$ is such that $X \cong \text{Proj}(R/I)$ and m is the maximal irrelevant. Our assumption was $\text{depth}(R/I) \geq 3$. In particular $H^2_m(R/I) = 0$, so $H^1(X_h, \mathcal{O}_{X_h}) = 0$. Eventually, by the injection $H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_h})$ we deduce $H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0$. By the universal coefficient theorem

$$H^1(X_h, \mathbb{C}) = 0,$$

and this was the missing piece (iii) to infer $\text{cd}(R, I) \leq n - 3$. □
Using again GAGA, $H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X)$. Moreover

$$H^1(X, \mathcal{O}_X) \cong H^2_m(R/I)_0$$

where $R = \mathbb{C}[x_1, \ldots, x_n]$, $I \subset R$ is such that $X \cong \text{Proj}(R/I)$ and m is the maximal irrelevant. Our assumption was $\text{depth}(R/I) \geq 3$. In particular $H^2_m(R/I) = 0$, so $H^1(X_h, \mathcal{O}_{X_h}) = 0$. Eventually, by the injection $H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_k})$ we deduce $H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0$. By the universal coefficient theorem

$$H^1(X_h, \mathbb{C}) = 0,$$

and this was the missing piece (iii) to infer $\text{cd}(R, I) \leq n - 3$. \qed
Using again GAGA, $H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X)$. Moreover

$$H^1(X, \mathcal{O}_X) \cong H^2_m(\mathbb{R}/I)_0$$

where $R = \mathbb{C}[x_1, \ldots, x_n]$, $I \subset R$ is such that $X \cong \text{Proj}(R/I)$ and m is the maximal irrelevant. Our assumption was $\text{depth}(R/I) \geq 3$. In particular $H^2_m(\mathbb{R}/I) = 0$, so $H^1(X_h, \mathcal{O}_{X_h}) = 0$. Eventually, by the injection $H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_h})$ we deduce $H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0$. By the universal coefficient theorem

$$H^1(X_h, \mathbb{C}) = 0,$$

and this was the missing piece (iii) to infer $\text{cd}(R, I) \leq n - 3$. \qed
Using again GAGA, $H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X)$. Moreover

$$H^1(X, \mathcal{O}_X) \cong H^2_m(R/I)_0$$

where $R = \mathbb{C}[x_1, \ldots, x_n]$, $I \subset R$ is such that $X \cong \text{Proj}(R/I)$ and m is the maximal irrelevant. Our assumption was $\text{depth}(R/I) \geq 3$. In particular $H^2_m(R/I) = 0$, so $H^1(X_h, \mathcal{O}_{X_h}) = 0$. Eventually, by the injection $H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_h})$ we deduce $H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0$. By the universal coefficient theorem

$$H^1(X_h, \mathbb{C}) = 0,$$

and this was the missing piece (iii) to infer $\text{cd}(R, I) \leq n - 3$. □
Using again GAGA, \(H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X) \). Moreover

\[
H^1(X, \mathcal{O}_X) \cong H^2_m(R/I)_0
\]

where \(R = \mathbb{C}[x_1, \ldots, x_n] \), \(I \subset R \) is such that \(X \cong \text{Proj}(R/I) \) and \(m \) is the maximal irrelevant. Our assumption was \(\text{depth}(R/I) \geq 3 \). In particular \(H^2_m(R/I) = 0 \), so \(H^1(X_h, \mathcal{O}_{X_h}) = 0 \). Eventually, by the injection \(H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_h}) \) we deduce \(H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0 \). By the universal coefficient theorem

\[
H^1(X_h, \mathbb{C}) = 0,
\]

and this was the missing piece (iii) to infer \(\text{cd}(R, I) \leq n - 3 \). □
Using again GAGA, $H^1(X_h, \mathcal{O}_{X_h}) \cong H^1(X, \mathcal{O}_X)$. Moreover

$$H^1(X, \mathcal{O}_X) \cong H^2_m(R/I)_0$$

where $R = \mathbb{C}[x_1, \ldots, x_n]$, $I \subset R$ is such that $X \cong \text{Proj}(R/I)$ and m is the maximal irrelevant. Our assumption was $\text{depth}(R/I) \geq 3$. In particular $H^2_m(R/I) = 0$, so $H^1(X_h, \mathcal{O}_{X_h}) = 0$. Eventually, by the injection $H^1(X_h, \mathbb{Z}_{X_h}) \hookrightarrow H^1(X_h, \mathcal{O}_{X_k})$ we deduce $H^1(X_h, \mathbb{Z}) \cong H^1(X_h, \mathbb{Z}_{X_h}) = 0$. By the universal coefficient theorem

$$H^1(X_h, \mathbb{C}) = 0,$$

and this was the missing piece (iii) to infer $\text{cd}(R, I) \leq n - 3$. □