Primes in arithmetic progressions to large moduli

James Maynard

University of Oxford

Second Symposium in Analytic Number Theory, Cetraro
July 2019
How many primes are less than x and congruent to $a \pmod{q}$?

Theorem (Siegel-Walfisz)

If $q \leq (\log x)^A$ and $\gcd(a, q) = 1$ then

$$\pi(x; q, a) = (1 + o(1)) \pi(x) \phi(q).$$

Theorem (GRH Bound)

Assume GRH. If $q \leq x^{1/2 - \epsilon}$ and $\gcd(a, q) = 1$ then

$$\pi(x; q, a) = (1 + o(1)) \pi(x) \phi(q).$$

Conjecture (Montgomery)

If $q \leq x^{1 - \epsilon}$ and $\gcd(a, q) = 1$ then

$$\pi(x; q, a) = (1 + o(1)) \pi(x) \phi(q).$$

James Maynard

Primes in arithmetic progressions to large moduli
Introduction

How many primes are less than \(x\) and congruent to \(a\) \((\text{mod } q)\)?

Theorem (Siegel-Walfisz)

If \(q \leq (\log x)^A\) and \(\gcd(a, q) = 1\) then

\[
\pi(x; q, a) = (1 + o(1)) \frac{\pi(x)}{\phi(q)}.
\]

Theorem (GRH Bound)

Assume GRH. If \(q \leq x^{1/2-\epsilon}\) and \(\gcd(a, q) = 1\) then

\[
\pi(x; q, a) = (1 + o(1)) \frac{\pi(x)}{\phi(q)}.
\]

Conjecture (Montgomery)

If \(q \leq x^{1-\epsilon}\) and \(\gcd(a, q) = 1\) then

\[
\pi(x; q, a) = (1 + o(1)) \frac{\pi(x)}{\phi(q)}.
\]
Often we don’t need such a statement to be true for every \(q \), just for most \(q \).
Often we don’t need such a statement to be true for every q, just for most q.

Theorem (Bombieri-Vinogradov)

Let $Q < x^{1/2-\epsilon}$. Then for any A

$$
\sum_{q \sim Q, (a,q)=1} \sup_{(a,q)=1} \left| \pi(x; q, a) - \frac{\pi(x)}{\phi(q)} \right| \ll_A \frac{x}{(\log x)^A}
$$

Corollary

For most $q \leq x^{1/2-\epsilon}$, we have

$$
\pi(x; q, a) = (1 + o(1)) \frac{\pi(x)}{\phi(q)}
$$

for every a with $\gcd(a, q) = 1$.

From the point of view of e.g. sieve methods, this is essentially as good as the Riemann Hypothesis!

James Maynard

Primes in arithmetic progressions to large moduli
Often we don’t need such a statement to be true for every \(q \), just for most \(q \).

Theorem (Bombieri-Vinogradov)

Let \(Q < x^{1/2-\epsilon} \). Then for any \(A \)

\[
\sum_{q \sim Q} \sup_{(a,q)=1} \left| \pi(x; q, a) - \frac{\pi(x)}{\phi(q)} \right| \ll_A \frac{x}{(\log x)^A}
\]

Corollary

For most \(q \leq x^{1/2-\epsilon} \), we have

\[
\pi(x; q, a) = (1 + o(1)) \frac{\pi(x)}{\phi(q)}
\]

for every \(a \) with \(\gcd(a, q) = 1 \).

From the point of view of e.g. sieve methods, this is essentially as good as the Riemann Hypothesis!
Beyond GRH

Pioneering work by Bombieri, Fouvry, Friedlander, Iwaniec went beyond the $x^{1/2}$ barrier in special circumstances.

\[\sum_{q \sim x^\theta} (q, a) = \frac{\pi(x; q, a) - \pi(x) \phi(q)}{\ll a (\theta - 1/2)^2 x (\log \log x)} + \frac{x \log 3}{\log x}. \]

This is non-trivial when θ is very close to $1/2$.

\[\sum_{q \sim x^{4/7 - \epsilon}} (q, a) = \frac{\pi(x; q, a) - \pi(x) \phi(q)}{\ll a A x \log A x}. \]

This is often an adequate substitute for BV with exponent $4/7$.
Beyond GRH

Pioneering work by Bombieri, Fouvry, Friedlander, Iwaniec went beyond the $x^{1/2}$ barrier in special circumstances.

Theorem (BFI1)

Fix a. Then we have (uniformly in θ)

$$\sum_{q \sim x^\theta \atop (q,a)=1} \left| \pi(x; q, a) - \frac{\pi(x)}{\phi(q)} \right| \ll a (\theta - 1/2)^2 \frac{x(\log \log x)^O(1)}{\log x} + \frac{x}{\log^3 x}.$$

This is non-trivial when θ is very close to $1/2$.

Theorem (BFI2)

Fix a. Let $\lambda(q)$ be ‘well-factorable’. Then we have

$$\sum_{q \sim x^{4/7-\epsilon} \atop (q,a)=1} \lambda(q) \left(\pi(x; q, a) - \frac{\pi(x)}{\phi(q)} \right) \ll_{a, A} \frac{x}{\log^A x}.$$

This is often an adequate substitute for BV with exponent $4/7$!
More recently, Zhang went beyond $x^{1/2}$ for smooth/friable moduli.

Theorem (Zhang, Polymath)

\[
\sum_{q \leq x^{1/2+7/300-\epsilon}} \left| \pi(x; q, a) - \frac{\pi(x)}{\phi(q)} \right| \ll_A \frac{x}{(\log x)^A}
\]

The implied constant is independent of a.
New results

Theorem (M.)

Let $\delta < 1/42$ and $Q_\delta := \{ q \sim x^{1/2+\delta} : \exists d|q \text{ s.t. } x^{2\delta+\epsilon} < d < x^{1/14-\delta}\}$.

$$\sum_{\substack{q\in Q_\delta \atop (q,a)=1}} \left| \pi(x; q, a) - \frac{\pi(x)}{\phi(q)} \right| \ll_A \frac{x(\log \log x)^O(1)}{\log^5 x}. $$
New results

Theorem (M.)

Let $\delta < 1/42$ and $Q_{\delta} := \{ q \sim x^{1/2+\delta} : \exists d|q \text{ s.t. } x^{2\delta+\epsilon} < d < x^{1/14-\delta} \}$.

$$\sum_{q \in Q_{\delta}} \left| \pi(x ; q, a) - \frac{\pi(x)}{\phi(q)} \right| \ll_a \frac{x(\log \log x)^{O(1)}}{\log^5 x}.$$

Corollary

Let $\delta < 1/42$. For $(100 - O(\delta))\%$ of $q \sim x^{1/2+\delta}$ we have

$$\pi(x ; q, a) = (1 + o(1)) \frac{\pi(x)}{\phi(q)}$$

Corollary

$$\sum_{q_1 \sim x^{1/21}} \sum_{q_2 \sim x^{10/21-\epsilon}} \left| \pi(x ; q_1 q_2, a) - \frac{\pi(x)}{\phi(q_1 q_2)} \right| \ll_a \frac{x(\log \log x)^{O(1)}}{\log^5 x}.$$
Theorem (M.)

Let $\lambda(q)$ be ‘very well factorable’. Then we have

$$\sum_{\substack{q \leq x^{3/5-\epsilon} \\ (q,a)=1}} \lambda(q) \left(\pi(x; q, a) - \frac{\pi(x)}{\phi(q)} \right) \ll_{a,A} \frac{x}{(\log x)^A}.$$

The β-sieve weights are ‘very well factorable’ for $\beta \geq 2$.

James Maynard

Primes in arithmetic progressions to large moduli
Theorem (M.)

Let $\lambda(q)$ be ‘very well factorable’. Then we have

$$\sum_{q \leq x^{3/5 - \epsilon} \atop (q,a) = 1} \lambda(q) \left(\pi(x; q, a) - \frac{\pi(x)}{\phi(q)} \right) \ll_{a,A} x \left(\frac{\log x}{A} \right)^{6}.$$

The β-sieve weights are ‘very well factorable’ for $\beta \geq 2$.

Corollary

Let $\lambda^+(d)$ be sieve weights for the linear sieve. Then

$$\sum_{q \leq x^{7/12 - \epsilon} \atop (q,a) = 1} \lambda^+(q) \left(\pi(x; q, a) - \frac{\pi(x)}{\phi(q)} \right) \ll \frac{x}{(\log x)^{A}}.$$
Comparison

<table>
<thead>
<tr>
<th>Result</th>
<th>Size of q</th>
<th>Type of q</th>
<th>Proportion of q</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFI1</td>
<td>$x^{1/2+o(1)}$</td>
<td>All</td>
<td>$(100 - \delta)%$</td>
</tr>
<tr>
<td>BFI2</td>
<td>$x^{4/7-\epsilon}$</td>
<td>Factorable</td>
<td>$\delta%$</td>
</tr>
<tr>
<td>Zhang</td>
<td>$x^{1/2+7/300-\epsilon}$</td>
<td>Factorable</td>
<td>$\delta%$</td>
</tr>
<tr>
<td>M1</td>
<td>$x^{11/21-\epsilon}$</td>
<td>Partially Factorable</td>
<td>$(100 - \delta)%$</td>
</tr>
<tr>
<td>M2</td>
<td>$x^{3/5-\epsilon}$</td>
<td>Factorable</td>
<td>$\delta%$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result</th>
<th>Coefficients</th>
<th>Residue class</th>
<th>Cancellation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFI1</td>
<td>Absolute values</td>
<td>Fixed</td>
<td>$o(1)$</td>
</tr>
<tr>
<td>BFI2</td>
<td>Factorable weights</td>
<td>Fixed</td>
<td>$\log^A x$</td>
</tr>
<tr>
<td>Zhang</td>
<td>Absolute values</td>
<td>Uniform</td>
<td>$\log^A x$</td>
</tr>
<tr>
<td>M1</td>
<td>Absolute values</td>
<td>Fixed</td>
<td>$\log^{5-\epsilon} x$</td>
</tr>
<tr>
<td>M2</td>
<td>Factorable weights</td>
<td>Fixed</td>
<td>$\log^A x$</td>
</tr>
</tbody>
</table>

Note that $3/5 > 4/7 > 11/21 > 1/2 + 7/300$.
The overall proof follows the same lines as previous approaches:

1. Apply a combinatorial decomposition to $\Lambda(n)$

2. Reduce the problem to estimating exponential sums of convolutions.

3. Apply different techniques in different ranges to estimate exponential sums.
 - Bounds from the spectral theory of automorphic forms (Kuznetsov Trace Formula)
 - Bounds from Algebraic Geometry (Weil bound/Deligne bounds)

4. Ensure that (essentially) all ranges are covered.

Combine Zhang-style estimates with Kloostermania
The overall proof follows the same lines as previous approaches:

1. Apply a combinatorial decomposition to \(\Lambda(n) \)
2. Reduce the problem to estimating exponential sums of convolutions
Proof overview

The overall proof follows the same lines as previous approaches:

1. Apply a combinatorial decomposition to $\Lambda(n)$
2. Reduce the problem to estimating exponential sums of convolutions
3. Apply different techniques in different ranges to estimate exponential sums
 - Bounds from the spectral theory of automorphic forms (Kuznetsov Trace Formula)
 - Bounds from Algebraic Geometry (Weil bound/Deligne bounds)

Combine Zhang-style estimates with Kloostermania
The overall proof follows the same lines as previous approaches:

1. Apply a combinatorial decomposition to $\Lambda(n)$
2. Reduce the problem to estimating exponential sums of convolutions
3. Apply different techniques in different ranges to estimate exponential sums
 - Bounds from the spectral theory of automorphic forms (Kuznetsov Trace Formula)
 - Bounds from Algebraic Geometry (Weil bound/Deligne bounds)
4. Ensure that (essentially) all ranges are covered.
The overall proof follows the same lines as previous approaches:

1. Apply a combinatorial decomposition to $\Lambda(n)$
2. Reduce the problem to estimating exponential sums of convolutions
3. Apply different techniques in different ranges to estimate exponential sums
 - Bounds from the spectral theory of automorphic forms (Kuznetsov Trace Formula)
 - Bounds from Algebraic Geometry (Weil bound/Deligne bounds)
4. Ensure that (essentially) all ranges are covered.

Combine Zhang-style estimates with Kloostermania
Let us recall the situation when $q \sim x^{1/2+\delta}$ where $\delta > 0$ is fixed but small. Using BFI proof ideas:

1. Heath-Brown Identity/Sieve methods reduces to considering products of few prime factors
Let us recall the situation when $q \sim x^{1/2+\delta}$ where $\delta > 0$ is fixed but small. Using BFI proof ideas:

1. Heath-Brown Identity/Sieve methods reduces to considering products of few prime factors

2. Working through the BFI argument their proof can essentially handle all such numbers except for
 - Products $p_1p_2p_3p_4p_5$ of 5 primes with $p_i = x^{1/5+O(\delta)}$
 - Products $p_1p_2p_3p_4$ of 4 primes with $p_i = x^{1/4+O(\delta)}$
Let us recall the situation when \(q \sim x^{1/2+\delta} \) where \(\delta > 0 \) is fixed but small. Using BFI proof ideas:

1. Heath-Brown Identity/Sieve methods reduces to considering products of few prime factors
2. Working through the BFI argument their proof can essentially handle all such numbers except for
 - Products \(p_1 p_2 p_3 p_4 p_5 \) of 5 primes with \(p_i = x^{1/5+O(\delta)} \)
 - Products \(p_1 p_2 p_3 p_4 \) of 4 primes with \(p_i = x^{1/4+O(\delta)} \)

BFI result follows on noting that these terms are only a \(O(\delta) \) proportion of the terms.

We can concentrate on these ‘bad products’.
Consider terms $p_1 p_2 p_3 p_4 p_5$ with $p_i \in [x^{1/5-\delta}, x^{1/5+\delta}]$

- Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don’t help.
Products of 5 Primes

Consider terms $p_1 p_2 p_3 p_4 p_5$ with $p_i \in [x^{1/5-\delta}, x^{1/5+\delta}]$

- Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don’t help.

- Instead we refine some of the estimates for exponential sums coming from Kuznetsov/Kloostermana.

I still can’t handle these terms, but they now contribute $O((\log \log x)^{O(1)} / \log 4^x)$ proportion for a wide range of q.

(This is why I only save $4-\epsilon \log x$ factors.)

Algebraic Geometry doesn’t help much, but we can refine Kuznetsov-based estimates to handle these terms.
Consider terms $p_1 p_2 p_3 p_4 p_5$ with $p_i \in [x^{1/5-\delta}, x^{1/5+\delta}]$

- Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don’t help.

- Instead we refine some of the estimates for exponential sums coming from Kuznetsov/Kloostermana.

- Refinement of BFI can handle $p_1 p_2 p_3 p_4 p_5$ with $q < x^{4/7-\varepsilon}$ when $p_i \approx x^{1/5}$ except when $p_i \in [x^{1/5 \log^{-A} x}, x^{1/5 \log^A x}]$
Consider terms $p_1 p_2 p_3 p_4 p_5$ with $p_i \in [x^{1/5-\delta}, x^{1/5+\delta}]$

- Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don’t help.

- Instead we refine some of the estimates for exponential sums coming from Kuznetsov/Kloostermana.

- Refinement of BFI can handle $p_1 p_2 p_3 p_4 p_5$ with $q < x^{4/7-\epsilon}$ when $p_i \approx x^{1/5}$ except when $p_i \in [x^{1/5} \log^{-A} x, x^{1/5} \log^A x]$

- I still can’t handle these terms, but they now contribute $O((\log \log x)^{O(1)} / \log^4 x)$ proportion for a wide range of q. (This is why I only save $4 - \epsilon \log x$ factors.)

Algebraic Geometry doesn’t help much, but we can refine Kuznetsov-based estimates to handle these terms
Consider terms $p_1 p_2 p_3 p_4$ with $p_i \in [x^{1/4-\delta}, x^{1/4+\delta}]$

- Kloostermania techniques still can’t handle products of 4 primes
Consider terms $p_1p_2p_3p_4$ with $p_i \in [x^{1/4-\delta}, x^{1/4+\delta}]$

- Kloostermania techniques still can’t handle products of 4 primes
- Note: In this case there is a factor $p_1p_4 = x^{1/2+O(\delta)}$ very close to $1/2$. This is the situation when Zhang-style arguments are most effective!
Consider terms $p_1 p_2 p_3 p_4$ with $p_i \in [x^{1/4-\delta}, x^{1/4+\delta}]$

- Kloostermania techniques still can’t handle products of 4 primes
- Note: In this case there is a factor $p_1 p_4 = x^{1/2+O(\delta)}$ very close to $1/2$. This is the situation when Zhang-style arguments are most effective!
- Provided q has a suitable factor close to $x^{1/2}$, we can handle these terms using the Weil bound.

The technical parts which spectral theory estimates can’t handle are precisely parts that the algebraic geometry estimates are best at *when there is a suitable factor*
As stated these ideas combine to give a result for \(q \sim x^{1/2+\delta} \) for some small \(\delta > 0 \).

To get good numerics, need to refine estimates for other parts of prime decomposition

- Generalize ideas based on Deligne’s work (Fouvry, Kowalski, Michel) to handle products of 3 primes when the modulus has a convenient small factor.
As stated these ideas combine to give a result for \(q \sim x^{1/2+\delta} \) for some small \(\delta > 0 \).

To get good numerics, need to refine estimates for other parts of prime decomposition

- Generalize ideas based on Deligne’s work (Fouvry, Kowalski, Michel) to handle products of 3 primes when the modulus has a convenient small factor.
- Generalize ideas of Fouvry for products of 7 primes when the modulus has a convenient small factor.
As stated these ideas combine to give a result for \(q \sim x^{1/2+\delta} \) for some small \(\delta > 0 \).

To get good numerics, need to refine estimates for other parts of prime decomposition

- Generalize ideas based on Deligne’s work (Fouvry, Kowalski, Michel) to handle products of 3 primes when the modulus has a convenient small factor.
- Generalize ideas of Fouvry for products of 7 primes when the modulus has a convenient small factor.
- Auxilliary estimate when there is a very small factor

Together these improve all terms in the decomposition, with a reasonable range of \(q \)!
Overview

Spectral Theory
- Fouvry-Kowalski-Michel style
- Bombieri-Friedlander-Iwaniec style
- Fouvry style
- Zhang style

Algebraic Geometry
- Products of 3 Primes
- Products of 5 Primes
- Product of 7 Primes
- Combinatorial Decomposition
- Primes in APs

Figure: Outline of steps to prove primes in arithmetic progressions
Thank you for listening.