A sufficient condition for the Bisognano-Wichmann property ¹

Vincenzo Morinelli

University of Rome "Tor Vergata"

AQFT: Where Operator Algebra meets Microlocal Analysis
Palazzone, Cortona,
June 4-8. 2018

¹ "The Bisognano-Wichmann property on nets of standard subspaces, some sufficient conditions", Annales Henri Poincaré (2018).

- 1. Introduction: models, standard subspaces, one-particle nets
- 2. An algebraic condition for the B-W property on one-particle nets
- 3. Counterexamples and remarks

1. Introduction			

Introduction

In AQFT, \mathbb{R}^{1+3} models are specified through Haag-Kastler axioms. Let \mathcal{H} be a fixed Hilbert space and $\mathbb{R}^{1+3} \supset O \mapsto \mathcal{A}(O) \subset \mathcal{B}(\mathcal{H})$ be a map from the family of open causally closed regions in \mathbb{R}^{1+3} , to von Neumann algebras on \mathcal{H} s.t. the following hold:

- **1** *Isotony*: if $O_1 \subset O_2$, then $\mathcal{A}(O_1) \subset \mathcal{A}(O_2)$
- **2** Locality: if $O_1 \subset O_2'$, then $\mathcal{A}(O_1) \subset \mathcal{A}(O_2)'$
- 3 Poincaré covariance and Positivity of the energy: there exists a unitary, positive energy representation of the Poincaré group \mathcal{P}_+^{\uparrow} acting covariantly on the net \mathcal{A} , namely

$$U(g)\mathcal{A}(O)U(g)^* = \mathcal{A}(gO), \quad \forall g \in \mathcal{P}_+^{\uparrow}$$

- **4** Existence and uniqueness of the vacuum: there exists a unique (up to a phase) vector $\Omega \in \mathcal{H}$ s.t. $U(\mathcal{P}_+^{\uparrow})\Omega = \Omega$
- **5** Reeh-Schlieder: $A(O)\Omega$ is dense in \mathcal{H}

Introduction about models

We have two main characteristics in the model

- the algebraic structure $\mathcal{A}: O \mapsto \mathcal{A}(O)$
- lacksquare the geometric structure $U:\mathcal{P}_+^{\uparrow}
 ightarrow \mathcal{U}(\mathcal{H})$

We recognize another character: vacuum state $\omega = \langle \Omega, \cdot \Omega \rangle$.

About the algebraic structure: Tomita-Takesaki theory.

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a von Neumann algebra and $\Omega \in \mathcal{H}$ be standard vector.

The Tomita operator $S_{\mathcal{A},\Omega}$ is the closure of the densely defined anti-linear involution:

$$\mathcal{H} \supset \mathcal{A}\Omega \ni a\Omega \longmapsto a^*\Omega \in \mathcal{A}\Omega \subset \mathcal{H}$$

Polar decomposition: $S_{A,\Omega} = J_{A,\Omega} \Delta_{A\Omega}^{1/2}$.

 $J_{\mathcal{A},\Omega}$ modular conjugation and $\Delta_{\mathcal{A},\Omega}$ modular operator satisfy

$$J_{\mathcal{A},\Omega}\Delta_{\mathcal{A},\Omega}J_{\mathcal{A},\Omega}=\Delta_{\mathcal{A},\Omega}^{-1}.$$

We have that

$$J_{\mathcal{A},\Omega}\mathcal{A}J_{\mathcal{A},\Omega}=\mathcal{A}'$$
 and $\Delta^{it}_{\mathcal{A},\Omega}\mathcal{A}\Delta^{-it}_{\mathcal{A},\Omega}=\mathcal{A}$

Introduction about the geometry

The symmetry group is the Poincaré group $\mathcal{P}_+^{\uparrow} = \mathcal{L}_+^{\uparrow} \ltimes \mathbb{R}^{1+3}$. Let $W_{\alpha} = \{x \in \mathbb{R}^{1+3} : |x_0| < x_{\alpha}\}$ be a **wedge** in the direction x_{α} , Λ_{α} be the pure Lorentz one-parameter group of **boosts** fixing W_{α} .

$$\Lambda_3(t)(p_0, p_1, p_2, p_3) = (\cosh(t)p_0 + \sinh(t)p_3, p_1, p_2, \sinh(t)p_0 + \cosh(t)p_3)$$

Sets of wedges: $W = \mathcal{P}_+^{\uparrow} W_3$, $W_0 = \mathcal{L}_+^{\uparrow} W_3$. Λ_W boosts associated to $W \in \mathcal{W}$.

Introduction

Bisognano-Wichmann property [Bisognano-Wichmann 1976]

$$U(\Lambda_W(2\pi t)) = \Delta_{\mathcal{A}(W),\Omega}^{-it}$$

Modular covariance [Brunetti-Guido-Longo 1994]

$$\Delta_{\mathcal{A}(W),\Omega}^{-it}\mathcal{A}(O)\Delta_{\mathcal{A}(W),\Omega}^{it}=\mathcal{A}(\Lambda_W(2\pi t)O)$$

Given the algebraic structure and the vacuum state, the modular structure has a geometrical meaning.

In particular modular covariance ensures the reconstruction of a unitary positive energy Poincaré representation + PCT opertor [Guido-Longo 1995].

Motivations

The Bisognano-Wichmann property is a **natural** requirement:

- Holds in Wightman fields [Bisognano-Wichmann 1976]
- Gives a canonical structure to free fields [Brunetti-Guido-Longo 2002]
- Deduced by asymptoptic completeness in massive theories [Mund 2001]
- Implies correct Spin-Statistics relation [Guido-Longo 1995]
- Holds in conformal theories [Guido-Longo 1996]
- Unnatural counterexamples [Yngvason 1994]

Question: Can the B-W property be deduced by the axioms?

We propose an algebraic approach to the B-W property: we provide an algebraic sufficient condition on the covariant representation for the B-W property in the generalized one-particle - standard subspace - setting.

Standard Subspaces Araki, Brunetti, Eckmann, Guido, Longo, Osterwalder...

A real linear closed subspace of an Hilbert space $H \subset \mathcal{H}$ is called **standard** if it is *cyclic* $(\overline{H+iH}=\mathcal{H})$ and *separating* $(H\cap iH=\{0\})$. **Symplectic complement**: $H'=\{\xi\in\mathcal{H}:\Im\langle\xi,\eta\rangle=0,\forall\eta\in H\}$

Let H be a standard subspace. The associated Tomita operator is the closed anti-linear involution

$$S_H: H+iH \ni \xi+i\eta \longmapsto \xi-i\eta \in H+iH.$$

Its polar decomposition $S_H = J_H \Delta_H^{1/2}$ is s.t.

$$J_H \Delta_H J_H = \Delta_H^{-1}, \qquad \Delta_H^{it} H = H, \qquad J_H H = H'.$$

There is a **1-1 correspondence** $S_H \longleftrightarrow (J_H, \Delta_H) \longleftrightarrow H$.

Standard subspaces Poincaré covariant nets

A \emph{U} -covariant net of standard subspaces $\mathcal H$ on the set $\mathcal W$ of wedge regions of the Minkowski spacetime is a map

$$H: \mathcal{W} \ni W \longmapsto H(W) \subset \mathcal{H}$$

that associates a closed real linear subspace H(W) with each $W \in \mathcal{W}$, satisfying:

- **1** *Isotony*: if $W_1 \subset W_2$ then $H(W_1) \subset H(W_2)$;
- **2** Locality: For every wedge $W \in \mathcal{W}$ we have

$$H(W') \subset H(W)'$$

- 3 Poincaré covariance and Positivity of the energy: $U: \mathcal{P}_+^{\uparrow} \to \mathcal{U}(\mathcal{H})$, U(g)H(W) = H(gW), $g \in \mathcal{P}_+^{\uparrow}$ and U has positive energy;
- 4 Reeh-Schlieder property: H(W) is cyclic $\forall W \in \mathcal{W}$;

Nets satisfying 1.-4. will be denoted by (U, H)

5. Bisognano-Wichmann property:

$$\Delta^{it}_{H(W)} = U(\Lambda_W(-2\pi t)), \quad \forall W \in \mathcal{W};$$

Standard Subspaces and von Neumann algebras

The modular theory of a von Neumann algebra is contained in its real structure.

- $A = A'' \subset \mathcal{B}(\mathcal{H})$, $\Omega \in \mathcal{H}$ is cyclic and separating iff $H_A = \overline{A_{sa}\Omega}$ is cyclic and separating.
- let $a\Omega \in H_A = \overline{\mathcal{A}_{sa}\Omega}$, $b\Omega \in H_{A'} = \overline{\mathcal{A}'_{sa}\Omega}$, then $H'_A = H_{A'}$.
- $S_{A,\Omega} = S_{H_A}$ coincide.

Second quantization respects the lattice and the modular structure:

$$H \subset \mathcal{H} \to R_+(H) = \{w(f) : f \in H\}'' \subset \mathcal{B}(\mathcal{F}_+(\mathcal{H}))$$

In particular, $S_{\mathcal{A},\Omega} = \Gamma_+(S_H), \ \Delta_{\mathcal{A},\Omega} = \Gamma_+(\Delta_H), \ J_{\mathcal{A},\Omega} = \Gamma_+(J_H).$

Poincaré covariant nets of standard subspaces

(at least) Two reasons to look at nets of standard subspaces:

- 1 they contain the modular structure of von Neumann algebras net $A(O) \mapsto H(O) = \overline{A(O)_{sa}\Omega}$
- 2 they define one particle nets Scalar massive particle

$$H_m(O) = \overline{\{f \in \mathcal{C}^{\infty}(\mathbb{R}^{1+3}), \operatorname{supp} f \subset O\}}$$

Scalar product: $\langle f, g \rangle = \int \overline{\hat{f}}(p)\hat{g}(p)\delta(p^2 - m^2)\theta(p_0)dp$. It satisfies B-W property but **Not Canonical!**

Canonical one-particle net associated to a particle [Brunetti-Guido-Longo 2002], [M. 2018]

 \emph{U} (anti-)unitary positive energy representation of \mathcal{P}_+ \updownarrow 1-1

One particle nets satisfying **B-W property** $O \mapsto H(O)$

Second quantization \rightarrow free field $O \mapsto \mathcal{A}_m(O) \dot{=} R_+(H_m(O))$.

An algebraic condition for the B-W property

- We expect that under some conditions on the Poincaré representation, the canonical (generalized) one-particle net is unique (up to unitary equivalence).
- One way to face this problem is to consider analytic extensions of wave functions (cf. Mund 2001 + Buchholz, Epstein 1985).
 There are some difficulties in extending the result to infinite multiplicity and direct integrals and to the massless case.
- We will provide an algebraic condition called **modularity condition** on a unitary p.e.r. of \mathcal{P}_+^{\uparrow} , sufficient to conclude B-W property on any standard subspace net the representation acts on.

2.	A sufficient condition for the B-W	property	

An algebraic condition for the B-W property

Definition

A unitary, $\mathcal{P}_{+}^{\uparrow}$ -p.e.r. U is **modular** if for any U-covariant net of standard subspaces H, namely any couple (U, H) the B-W property holds.

Definition

- $G_3^0 \doteq \{g \in \mathcal{L}_+^{\uparrow} : gW_3 = W_3\}$ the subgroup of \mathcal{L}_+^{\uparrow} elements fixing W_3 .
- lacksquare $G_3 = \langle G_3^0, \mathcal{T} \rangle$, where \mathcal{T} is the \mathbb{R}^{1+3} -translation group.
- lacksquare G_W^0 and G_W are defined by the transitive action of \mathcal{P}_+^{\uparrow} on wedges.

Definition

A unitary, positive energy \mathcal{P}_+^{\uparrow} -representation U satisfies the **modularity** condition if $r \in \mathcal{P}_+^{\uparrow}$ s.t. rW = W'

$$U(r) \in U(G_W)''. \tag{MC}$$

An algebraic condition for the B-W property, a first remark

It is sufficient to fix $W=W_3$ and $r=R_1(\pi)$, thus (MC) becomes

$$U(R_1(\pi)) \in U(G_3)''$$
.

Note that $G_3^0 = \langle \Lambda_3, R_3 \rangle$.

■ $R_1(\pi)$ is an automorphism of a.e. orbits of G_3^0 on \overline{V}^+ . Indeed, for (almost) every $p=(p_0,p_1,p_2,p_3)$ in the forward light cone $\overline{V}^+=\{p\in\mathbb{R}^{1+3}:p\cdot p\geq 0\}$

$$R_{1}(\pi)p = (p_{0}, p_{1}, -p_{2}, -p_{3})$$

$$= \Lambda_{3}(t_{p})(p_{0}, p_{1}, -p_{2}, p_{3})$$

$$= \Lambda_{3}(t_{p})R_{3}(\theta_{p})(p_{0}, p_{1}, p_{2}, p_{3})$$
(1)

for a proper $t_p \in \mathbb{R}$ and $\theta_p \in [0, 2\pi]$ (depend on p).

• $R_1(\pi)$ action can be point-wise reconstructed by the G_3^0 -action.

Modularity condition

Proposition

Let (U, H) be a Poincaré covariant net of standard subspaces. The strongly continuous map

$$Z_{H(W_3)}: \mathbb{R} \ni t \mapsto \Delta^{it}_{H(W_3)} U(\Lambda_3(2\pi t))$$

is a one-parameter group and $Z_{H(W_3)}(t) \in U(G_3)'$.

Theorem

Let U be a unitary p.e.r. of the Poincaré group $\mathcal{P}^{\uparrow}_{+}$. If the condition (MC)

$$U(R_1(\pi)) \in U(G_3)^{\prime\prime}$$

holds on U, then any local U-covariant net of standard subspaces, satisfies the Bisognano-Wichmann property. In particular U is modular.

Idea of the proof: $Z_{H(W_3)}$ commutes with $U(R_1(\pi))$, then $Z_{H(W_3)} \equiv 1$ and B-W property holds.

The modularity condition

The condition (MC) can be extended to more general representations.

Proposition

Let U and $\{U_x\}_{x\in X}$ be unitary p.e.r. of \mathcal{P}_+^{\uparrow} satisfying (MC). Let \mathcal{K} be an Hilbert space, Let (X,μ) be a standard measure space. Then

- (MC) holds for $U \otimes 1_{\mathcal{K}} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$.
- If $U_x|_{G_W}$ and $U_y|_{G_W}$ are disjoint for μ -a.e. $x \neq y$. Then $U = \int_X U_x d\mu(x)$ satisfies (MC).

Proposition

Assume that U satisfies (MC), then for every (U, H) the essential duality holds, namely H(W') = H(W)'.

The modularity condition - the scalar case

The scalar representations have the following form

$$(U_{m,0}(a,g)\phi)(p)=e^{iap}\phi(g^{-1}p), \qquad (a,g)\in\mathbb{R}^{1+3}\rtimes\mathcal{L}_+^{\uparrow}=\mathcal{P}_+^{\uparrow},$$

where $\phi \in \mathcal{H}_{m,0} \doteq L^2(\Omega_m, \delta(p^2 - m^2)\theta(p_0)d^4p)$, and Ω_m is the massive hyperboloyd $m \geq 0$.

Proposition

Let U be a unitary, positive energy, irreducible scalar representation of the Poincaré group. Then U satisfies the modularity condition (MC) $U(R_1(\pi)) \in U(G_3)''$.

Proof uses that translation unitaries \mathcal{T} generate MASA and G_3^0 -orbits are $R_1(\pi)$ -invariant

Theorem

Let $U = \int_{[0,+\infty)} U_m d\mu(m)$ where $\{U_m\}$ are (finite or infinite) multiples of the scalar representation of mass m, then U satisfies (MC). In particular the B-W property hold for every (U,H).

3. Counterexamples and remarks

Bisognano-Wichmann and doublecone localization

B-W property \Rightarrow uniqueness (up to unitary equivalence) of standard subspace nets on **WEDGES**/spacelike cones and on doublecones in finite degeneracy case (in 3+1 dimensions).

There are direct integrals of massive, scalar representations which extend to the conformal group in 3+1 dimension, namely there exist measures μ supported in \mathbb{R}^+ s.t. $U=\int d\mu(m)U_m$ extends to the conformal group $\mathcal C$ [Mack 1977].

U satisfies the modularity condition thus there is a unique (up to unitary equivalence) net on wedges $W \mapsto H(W)$.

Since U extends to the conformal group $\mathcal C$ one can define H(O) by covariance, namely $H(O) \dot= U(g) H(W)$, for some $g \in \mathcal C$ and $H(V_+)$ is standard subspace of $\mathcal H$. H is conformal.

On the other hand, let $H^d(O) = \cap_{W \supset O} H(W)$ be the dual net, then $H^d(V_+) = \overline{\sum_{O \subset V_+} H^d(O)} = \mathcal{H}$ and H^d is not conformal. [M.-Tanimoto, to appear]

Counter-example

Counterexamples to modular covariance seem not so natural in Poincaré covariant framework (see for instance Yngvason 1994).

Counterexamples to B-W (with modular covariance). Let V be a K-real, bosonic, unitary representation of \mathcal{L}_+^{\uparrow} on an Hilbert space $\mathcal{K}=K+iK$. Let U_0 be the scalar, unitary irreducible representation of \mathcal{P}_+^{\uparrow} .

$$W \mapsto H_0(W) \in \mathcal{H}$$

the canonical BGL-net associated to U_0 . We can define the **new standard subspaces** net

$$\tilde{H}: W \longmapsto K \otimes H_0(W) \subset \tilde{\mathcal{H}} \doteq \mathcal{K} \otimes \mathcal{H}.$$

There are **two representations** acting on \tilde{H} :

$$\textit{U}_{\textit{I}}: \widetilde{\mathcal{P}_{+}^{\uparrow}} \ni (\textit{a},\textit{A}) \longmapsto 1_{\mathcal{K}} \otimes \textit{U}_{0}(\textit{a},\textit{A}) \in \mathcal{U}(\tilde{\mathcal{H}}),$$

$$U_V: \widetilde{\mathcal{P}_+^{\uparrow}} \ni (a,A) \longmapsto V(A) \otimes U_0(a,A) \in \mathcal{U}(\tilde{\mathcal{H}}).$$

Remarks

- Bisognano-Wichmann property holds for U_I (not for U_V).
- If U₀ is massive, U_V has infinitely many spins (possibly with finite multiplicity).
 If U₀ is massless, U_V is direct integral of infinite spin representations [Longo-M.-Rehren 2016].
- (MC) holds for scalar representations in \mathbb{R}^{1+s} , $s \ge 3$.
- (MC) holds for irreducible finite helicity representations ⇒ No one-particle nets associated (polarizations have to be combined).

Todo list

- (MC) has to be generalized to include (at least) a finite sum of spinorial representations. More on G_3 -reps can be said.
- Can (MC) be used to prove B-W for more general nets of von Neumann algebras? (ongoing project with W. Dybalski).
- What else can be deduced just looking at the representation?