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Abstract

This paper analyzes features and problems related to the application of the simplex sliding mode control to systems with mono-
directional actuators and integrators in the input channel. The plain use of the method formulated in previous contributions
results in unacceptable behaviors, such as control laws (the output of the mono-directional actuators), which increase without
bounds. It is proposed a non trivial modification of the original algorithm; the new simplex strategy allows the perfect
fulfillment of the control objectives by means of bounded inputs from the actuators.
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1 Introduction

The simplex sliding mode control methodology dates back to the pioneering work of Bajda and Izosimov, [1], and it
was extensively analyzed in previous papers, [6], [7].

In the recent work [7] a class of uncertain nonlinear non affine control systems has been dealt with by this control
strategy applied to the first time derivative of the actual control vector. In principle this “trick” (negligible dynamics
of actuators and sensors) counteracts the chattering phenomenon, which is often considered the main drawback of the
sliding mode control methodology, in practice it allows to reduce the phenomenon to an acceptable, high frequency,
small amplitude perturbation of the ideal control law.

In many real situations, either by virtue of the physical principle underlying the control action (e.g. jets, tendons,
etc), or due to the presence of unilateral constraints (e.g. contact forces for manipulation, locomotion, etc), it is
necessary to consider, as a further constraint on the design of the control law, the condition that any actuator can
exert its action in only one direction. This paper is focused on the problem of implementing simplex sliding mode
control laws in the first time derivative of the control vector by a mono-directional actuation system. In general multi-
input situations any actuator generates a control vector characterized by a direction (specified by a unit vector) and
an intensity (the norm of the control vector). A system with mono-directional control devices is fully actuated if
any generic control law can be generated as a nonnegative linear combination of the mono-directional vectors (e.g.
the force closure conditions in robotic manipulation). Full actuation with minimum number of devices implies that
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the associated the mono-directional vectors form a simplex in the relevant input space. Moreover, if the simplex of
the actuation coincides with the one chosen for the control algorithm [7], just one device at a time has a first time
derivative different from zero.

In this paper we show that the plain application of the simplex logic presented in [7] with mono-directional actuators
would lead to a pathological behavior, that is while the designed cumulative control action is bounded, the effort
required to any single device increases without bound. This phenomenon is prevented by introducing a modified
simplex switching logic, which is proven to simultaneously guarantee the achievement of the desired sliding motion
and the boundedness of the action exerted by any control device in a bounded domain.

Throughout the paper a prime denotes transpose and |·| is the Euclidean norm or the induced matrix norm.

2 Problem Statement and Previous Results

Consider the control system

ẋ = f (t, x, u) , t ≥ 0, (1)

with the control vector u ∈ RK , the state variable x ∈ RN and the dynamics f : [0,+∞) ×RN ×RK → RN .

The control objective is to steer the trajectories of system (1) onto the sliding manifold

s (t, x) = 0, (2)

where the sliding output s (t, x), s : [0,+∞)×RN → RM , M ≤ N , is suitably chosen to guarantee desired behaviors
of the system.

The first control constraint, which must be satisfied, is to design and apply to system (1) continuous vectors u.

To this end, according to a standard chattering reduction strategy, we consider the control u generated by simplified
actuation dynamics and define the augmented control system

ẋ = f (t, x, u) , u̇ = v, t ≥ 0, (3)

with augmented state variable y = (x′, u′)′ ∈ RN+K , control variable v ∈ RK , and dynamics g (t, y, v) = (f (t, y) , v)
′
.

It is assumed that K = M . If the control v is discontinuous, then the vector u turns out to be continuous.

We define a new sliding output

σ (t, x, u) = ṡ+ Λs, (4)

where Λ = diag (λi), λi > 0, i = 1, . . . ,M , ṡ = D (t, x, u), s̈ = C (t, x, u) + B (t, x, u) u̇; it is assumed that f , s are
both of class C2 everywhere.

Then for almost every t

σ̇ (t, x, u, u̇) = A (t, x, u) +B (t, x, u) u̇, (5)

where A = σt + σxf = C + ΛD, B = σu = sxfu and A, B are continuous.

The relative degree between the sliding output σ and the control vector v is uniformly one.

The aim is to control the state variables y (t) = (x′ (t) , u′ (t))′, t ≥ 0, of the augmented system in order to guarantee
the sliding property

σ [t, x (t) , u (t)] = 0 (6)
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for every t sufficiently large. If σ = 0, the original sliding output s [t, x (t)] → 0 as t→ +∞ exponentially fast. This
means that s [t, x (t)] is arbitrarily close to 0 for t sufficiently large.

The problem is solved by the following simplex control strategy, proposed in [7].

System (3) and sliding outputs s and σ must satisfy the following assumptions.

For every (t, x, u) the uncertain control matrix B can be expressed as

B (t, x, u) = B (t, x, u) + ∆B (t, x, u) , (7)

both the uncertain control matrix B and the known nominal matrix B are everywhere non-singular.

A known constant γ0 is available to the controller such that

∣

∣

∣
∆B B

−1
∣

∣

∣
≤ γ0. (8)

A known function γ is available to the controller such that

|C| ≤ γ (t, x, u) . (9)

We consider uncertain systems, then ṡ, and therefore σ, are not available to the controller. We make up for this lack
of information with a second order sliding mode observer, [11], [2], based on the so called second order sliding mode
suboptimal algorithm [5],

z̈ = w +B (t, x, u) u̇, z, w ∈ RM . (10)

The observer control vector w, designed by a decoupled second order sliding mode control law, [7], is able to globally
steer to zero in finite time the observation error vectors e = z − s and ė = ż − ṡ. The lack of a priori known
constant bounds of systems uncertainties prevent the use of different second order sliding mode observers [11], [8],
which exploit some homogeneity property [14], [12], [13] of the differential inclusions representing the uncertain
discontinuous error equation.

In order to design a simplex control strategy based on the estimate of ṡ, provided in finite time by (10), fix M + 1
constant vectors p1, . . . , pM+1 ∈ RM such that |pi| = 1, i = 1, . . . ,M + 1, and there exists a constant c 6= 0 such
that they satisfy the following obtuse angle condition, [4], p′iph ≤ −c2 |pi| |ph| ≤ −c2, i 6= h. They form a simplex of
vectors in RM .

Let the M + 1 vectors v1, . . . , vM+1 ∈ RM be defined as vi = a (t) pi, i = 1, . . . ,M + 1, where the function a (t) is
integrable on every bounded interval of [0,+∞) and a (t) > 0 for any t ≥ 0. The vectors vi, i = 1, . . . ,M + 1, form
a simplex and satisfy for every t ≥ 0

v′ivh ≤ −c2 |vi| |vh| if i 6= h, and (11)

0 < a (t) = |vi| , i = 1, . . . ,M + 1.

The space RM is partitioned in M + 1 cones

Qh = Qh (t) = cone (vi : i = 1, . . . ,M + 1, i 6= h) , (12)

h = 1, . . . ,M + 1,

with pairwise disjoint interiors.

Define the new vector

σ̂ = ż + Λz (13)
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where Λ = diag (λi), i = 1, . . . ,M , is the same as in (4) and max
i=1,...,M

λi = λmax.

Given (t, x, u, z, ż) ∈ [0,+∞) ×RN ×RM ×RM ×RM , let h be the least index such that, by (12),

σ̂ (t, x, u, z, ż) ∈ Qh.

The simplex control algorithm based on estimates is defined by the discontinuous switching logic:

if σ̂ (t, x, u, z, ż) ∈ Qh then

v∗ (t, x, u, z, ż) = B
−1

(t, x, u) vh (14)

and v∗ is the simplex control law based on estimates.

The control w of the estimation process guarantees that, in finite time, the estimation errors e and ė are zero. The
switching logic (14) is applied with

a (t) ≥
|w| + λmax |ż| + k2

c2
, k 6= 0, t ≥ 0. (15)

In this case, Theorem 2 in [7] assures that the actual sliding output σ converges to the sliding manifold σ = 0 in
finite time.

3 Nonlinear Systems with Mono-Directional Actuators

In this section we consider nonlinear systems actuated by mono-directional devices. Many physical systems are
controlled by this kind of actuators, each one of which generates an action which can be continuously modulated
only in one direction (contact forces, tendons, solenoids, jets, etc.).

Since mono-directional actuation is taken into account, it is necessary to consider a further constraint on the design
of the control vectors according to the simplex sliding mode strategy.

Assume that the nonlinear uncertain control system (3) is actuated by P mono-directional devices. The control
vector u is generated as the non-negative linear combination of some vectors hi ∈ RM , i = 1, . . . , P , directly related
to the P actuators and their disposition

u =

P
∑

i=1

ui =

P
∑

i=1

hiFi (t) = HF (t) , Fi ≥ 0, (16)

where ui = hiFi, ∀i ∈ {1, . . . , P}; the vectors hi, i = 1, . . . , P , express the directions along which the actuators exert
their positive manipulable actions, the intensities of which are measured by the quantities Fi (t), i = 1, . . . , P ; the
matrix H ∈ RM×P is defined as H = col (hi) and the vector F ∈ RP is given by F = [F1, . . . , FP ]′.

The fact that the Fi (t), i = 1, . . . , P , are non-negative, derives from the mono-directionality of the actuators. The
matrix H could depend on time and state variables, but in this paper it is assumed to be constant.

In order to have a fully actuated system, the choice, if allowed, which minimizes the required number of mono-
directional devices, is to consider P = M+1 actuators disposed in a way that the columns hi, i ∈ A = {1, . . . ,M + 1}
of H form a simplex such that for some constant c 6= 0

|hi| = 1, h′ihj ≤ −c2, ∀i, j ∈ A, i 6= j. (17)

It follows that the M + 1 vectors

ui = hiFi, ∀i ∈ A, (18)
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form a simplex of vectors, which satisfy

|ui| = Fi, u′i uj ≤ −c2FiFj ,

Fi, Fj ≥ 0, ∀i, j ∈ A, i 6= j.

This fact guarantees that any control vector u ∈ RM can be generated.

Let us differentiate (16) and remember u̇ = v, we obtain

v =

M+1
∑

i=1

vi =

M+1
∑

i=1

hiḞi (t) = HḞ (t) , (19)

where Ḟ =
[

Ḟ1, . . . , ḞM+1

]′
.

Consider system (3), the control vector v, the sliding output s (t, x), the sliding vector σ (t, x, u) defined by (4) and
(5). Suppose that assumptions (7)–(9) hold.

From (17), if in (19) we set Ḟi (t) = a (t), i ∈ A, with a (t) ≥ 0, we have that the M + 1 vectors vi, i ∈ A, form a
simplex of vectors in RM corresponding to (11).

Suppose that the sliding output σ̂ = σ + η is available. We apply the control ṽ (t) such that

if σ̂ ∈ Qh then ṽ (t) = vh. (20)

If the sliding observer (10) is used, η = 0 in finite time. It follows by Theorem 2 in [7] that the feedback control ṽ
(20) guarantees that, provided the positive control gain a (t) is chosen according to the condition (15), for every t
sufficiently large, the state of the control system (3) satisfies the sliding property (6).

We need conditions giving boundedness of the control vector guaranteeing σ = 0.

Proposition 1 Let σ [t, x (t) , u (t)] = 0 and |x (t)| ≤ L for all t ≥ t. Write

g (t, y, w) =
∂s (t, y)

∂t
+
∂s (t, y)

∂x
f (t, y, w) .

Then u is bounded provided

lim
w→∞

inf inf
{

|g (t, y, w)| : t ≥ t, |y| ≤ L
}

6= 0. (21)

Proof of Proposition 1.

Arguing by contradiction, let u be unbounded. Since u is continuous, there exists a sequence tn → +∞ such that
u (tn) → ∞. Then by (21)

0 6= lim
w→∞

inf inf
{

|g (t, y, w)| : t ≥ t, |y| ≤ L
}

≤ lim
n→+∞

inf inf
{

|g [t, y, u (tn)]| : t ≥ t, |y| ≤ L
}

≤ lim
n→+∞

inf |g [tn, x (tn) , u (tn)]| .

(22)

By (6) we have

|ṡ (tn)| = |g [tn, x (tn) , u (tn)]| ≤ (const.) eαtn
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with α < 0. Then by (22) we get a contradiction. 2

We remark that (21) is true in the special case of

f (t, x, u) = Ax+Bu, s (t, x) = Cx

with A, B, C constant matrices, provided the rank of CB is K.

Because of its discontinuous nature, the vector u̇ = v commutes at infinite frequency among a finite number of
vectors vi = hiḞi (t) = hia (t). There exists at least one Ḟi, which oscillates at infinite frequency between zero and

positive values a (t) ≥ k2

c2 from (15); it follows that at least one Fi (t) increases without bounds, as t→ +∞.

Considering this fact, the following proposition proves that the application of the simplex method as previously
formulated, leads to an unacceptable behaviour, since any actuator intensity Fi (t) tends to increase without bounds.

Proposition 2 Suppose that (21) holds. On σ = 0 if there exists an index J , J ∈ A, such that FJ tends to infinity,
then all the Fi, i ∈ A, tend to infinity.

If, on the contrary, there exists an index I, I ∈ A, such that FI is bounded, then all the Fi, i ∈ A, are bounded.

Proof of Proposition 2.

The sliding condition σ = 0 is fulfilled after a finite time t2. Therefore, for any t ≥ t2, it exists a control vector

u (t) = uσ (t) such that σ (t, x, uσ) = 0,

uσ bounded according to Proposition 1.

As any other vector in RM , uσ (t) can be expressed as the linear combination with non-negative coefficients, of M
vectors hi of the simplex

uσ (t) =

M+1
∑

i=1,i6=h

hiλi (t) , λi (t) ≥ 0. (23)

where λi (t) are bounded functions.

Recalling (18), we can write uσ (t) as follows

uσ (t) =
∑

i∈A
hiFi, (24)

where the set A = {1, . . . ,M + 1} contains all the M + 1 indexes of the vectors of the simplex.

Comparing (23) and (24) we obtain

HF = HDλ (25)

where the matrix H ∈ RM×(M+1) is full rank and HD is the matrix, the columns of which are the vectors of the
simplex hi, i ∈ D, where the set D is such that A \ D is a singleton.

Expression (25) represents M linear equations in M + 1 variables, where H is the matrix of coefficients, F is the
column vector of variables, and HDλ is the column vector of solutions.
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System (25) is underdetermined since H is full rank; then any solution of (25) can be expressed as the sum of a
particular solution F ∗ ∈ RM+1 and of a vector belonging to null (H).

A particular solution of (25) is given by

F ∗
i =

{

λi, i ∈ D,

0, i ∈ A \ D.

The columns of H form a simplex then there exist constants µi, i ∈ A, such that

∑

i∈A
µihi = 0, µi > 0, ∀i, and

∑

i∈A
µi = 1.

Let µH ∈ RM+1 be the constant vector such that µH i = µi, i ∈ A, therefore F = F ∗ + kµH , k ∈ R, that is

Fi = F ∗
i + kµi =

{

λi + kµi, i ∈ D,

kµi, i ∈ A \ D.
(26)

From (26), if there exists an index J such that FJ tends to infinity, then k tends to infinity and all the Fi, i ∈ A,
tend to infinity.

From (26) it is also apparent that if for some reason it is possible to ensure that there exists an index I such that
FI is bounded, then k is bounded and all the Fi, i ∈ A, are bounded. 2

We introduce a modified switching logic, which guarantees that σ is steered to zero in finite time while all the Fi,
i ∈ A, remain bounded. That is, according to Proposition 2, min

i∈A
Fi ≤ F0, where F0 is an arbitrarily fixed finite

constant value.

The simplex switching logic is modified taking into account the fact that while a mono-directional action Fi, i ∈ A,
cannot assume negative values, its derivative Ḟi, i ∈ A, can be made negative, which corresponds to a decreasing
Fi. Within a fixed range 0 < Fi ≤ FMax, i ∈ A, any mono-directional actuator can generate a bidirectional action
in terms of Ḟi.

In (20) any control vector vi, i ∈ A, is given by

vi = hiḞi (t) = Heia (t) , (27)

where ei is the i-th vector of the standard orthonormal basis of RM+1. The feedback control v∗ (t), either ṽ (t), is
generated by the mono-directional actuators, such that just one device at a time has a first time derivative different
from zero

The columns of H form a simplex then null (H) = span (µH), where µH ∈ RM+1 is the constant vector such that
µH i = µi, i ∈ A; the constant elements µi, i ∈ A, are such that

∑

i∈A
µihi = 0, µi > 0, ∀i, and

∑

i∈A
µi = 1.

The vectors vi (t), i ∈ A, in (27), can be rewritten as

vi (t) = hiḞi (t) − b (t)
∑

i∈A µihi =

= Heia (t) −HµHb (t) =

= Hβi (t) ,

(28)
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where b (t) ∈ R is a positive scalar and ei is the i-th unit vector of the standard orthonormal basis of RM+1.

The vectors βi (t) ∈ RM+1, i ∈ A, are such that

βij (t) = −b (t)µj i 6= j and

βii (t) = −b (t)µi + a (t) i, j ∈ A.

If b (t)min
i∈A

µi > a (t) > 0, then each component of βi (t), i ∈ A, turns out to be negative.

Repeating the reasoning, vectors vi (t), i ∈ A, in (27), can be rewritten as

vi (t) = hiḞi (t) + d (t)
∑

i∈A µi (t)hi =

= Heia (t) +HµHd =

= Hδi (t) ,

(29)

where d (t) ∈ R is a positive scalar.

The vectors δi (t) ∈ RM+1, i ∈ A, are such that

δij (t) = d (t)µj i 6= j and

δii (t) = d (t)µi + a (t) i, j ∈ A.

Since d (t) > 0, each component of δi (t), i ∈ A, turns out to be positive.

The three equivalent forms (27), (28) and (29), in which the control vectors vi (t), i ∈ A, can be expressed, correspond
to three possible status of activation of the actuators, which produce the same effect.

The Simplex Algorithm with Switching Logic for Bounded Mono-Directional Control Actions

RM is partitioned in M + 1 cones

Qh = Qh (t) = cone (vi (t) : i = 1, . . . ,M + 1, i 6= h) ,

h = 1, . . . ,M + 1,

with pairwise disjoint interiors.

Given t ≥ 0, the control algorithm is defined by the discontinuous switching logic

if σ̂ ∈ Qh then

v (t) = vh (t) =























Hδh (t) , if

(

F0 − min
i∈A

Fi (t)

)

> 0,

Hβh (t) , if

(

F0 − min
i∈A

Fi (t)

)

≤ 0.

(30)

where h is the least index such that σ̂ (t) ∈ Qh, and F0 is a prescribed constant.

The following theorem is proven.

Theorem 1 Consider system (3), the control vector v, the sliding output s (t, x), the sliding vector σ (t, x, u) defined
by (4), (5) and the vector σ̂ defined by (13). Suppose that assumptions (7)–(9) hold.
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Then there exists a time instant t3 such that, for any t ≥ t3, every uncertain state corresponding to v (t) verifies the
sliding condition σ = 0 and min

i∈A
Fi = F0.

The proof of Theorem 1 requires the following lemma [15].

Lemma 1 Let

v (y) = max {f1 (y) , . . . , fp (y)}

where f1, . . . , fp are of class C1. Let I (y) the set of the active indices, i.e.

i ∈ I (y) iff fi (y) = v (y) .

Then, if the function x is differentiable at t, we have

d

dt
v [x (t)] = z′ẋ (t) , ∀z ∈ ∂v [x (t)] ,

and moreover [10]

∂v (y) = co {∇fi (y) : i ∈ I (y)} .

Proof of Theorem 1.

From Theorem 2 in [7], we have that σ = 0 in finite time. In order to show that min
i∈A

Fi = F0, let us consider the

following quantity

ψ (F ) = F0 − min
i∈A

Fi =

= maxi∈A [(F0 − Fi)] =

= max [(F0 − F1) , . . . , (F0 − FM+1)] .

According to Lemma 1, we have

∂ψ (F ) = co [(−ei) , i ∈ I (F )] = −
∑

i∈I(F )

ρiei,

where the vectors ei ∈ RM+1, i ∈ A, form the standard orthonormal basis of RM+1, ρi ≥ 0, i ∈ I (F ),
∑

i∈I(F )

ρi = 1,

and

ψ̇ (F ) = ∂ψ (F ) Ḟ = −
∑

i∈I(F )

ρie
′
iḞ . (31)

Let us apply the switching logic (30)

if σ̂ ∈ Qh then

v = vh =























Hδh, if

(

F0 − min
i∈A

Fi

)

> 0,

Hβh, if

(

F0 − min
i∈A

Fi

)

≤ 0.
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Considering (31) and (30), two cases can occur.

Case 1: ψ > 0, then ψ̇ = −
∑

i∈I(F )

ρiδhi < 0, since ρi ≥ 0, i ∈ I (F ),
∑

i∈I(F )

ρi = 1 and δhi > 0, h ∈ A, i ∈ I (F ).

Case 2: ψ ≤ 0, then ψ̇ = −
∑

i∈I(F )

ρiβhi > 0, since ρi ≥ 0, i ∈ I (F ),
∑

i∈I(F )

ρi = 1 and βhi < 0, h ∈ A, i ∈ I (F ).

In both cases, we see that

ψψ̇ ≤ −δ |ψ| , δ > 0,

so that ψ = 0 in finite time. 2

Remark 1 The proposed procedure guarantees almost the same robustness and tracking precision of the standard
simplex sliding mode control, together with the chattering elimination. Moreover this methodology introduces the
possibility to control the power consumption. Indeed the on-off logic of the standard simplex method dissipates a
power which is equivalent to that of a single actuator at its maximum power even if the equivalent control is zero.
With the proposed control we can choose F0 as close to zero as we want, attaining a control signal which is arbitrarily
close to the equivalent control [16]. The equivalent control can be characterized by some optimality property if the
sliding manifold is suitably chosen.

4 Example: Simplex Based Maneuvering of a Surface Vessel

We consider, as an example, the problem of controlling the planar position and orientation of an autonomous surface
vessel using four mono-directional propellers, Figure 1.

The surface vessel has three degrees of freedom (DOF), which are the position of the center of mass (xI , yI) and the
heading ψ of the vehicle in the earth-fixed inertial frame (I-frame).

The dynamic model of the vessel can be expressed, [9], as

η̇ = R (ψ) ν,

Mν̇ = −C (ν) ν −D (ν) ν + τ,
(32)

where η = (xI , yI , ψ)
′
is the position vector, ν = (vx, vy, ωz)

′
is the velocity vector and τ ∈ R3 denotes the vector

of external forces and torque generated by the four mono-directional propellers. The surge and sway (vx, vy) are the
linear velocities and the yaw ωz is the angular rate of the vessel in the the vehicle-fixed (B-frame). For simplicity
we assume that the origin of the B-frame is located at the center of mass of the system. Also we suppose that the
vehicle is neutrally buoyant. M ∈ R3×3 is the positive definite inertia matrix, including added mass; C (ν) ∈ R3×3

and D (ν) ∈ R3×3 denote the Coriolis/centrifugal and the damping matrices, respectively. We assume that M is
constant and diagonal and the hydrodynamic damping terms of order higher than one are neglected. The three DOF

rotation matrix R (ψ) is such that R (ψ)R′ (ψ) = I, |R (ψ)| = 1 for all ψ, and
d

dt
R (ψ) = ψ̇R (ψ)S, where

R (ψ) =









cosψ − sinψ 0

sinψ cosψ 0

0 0 1









, S =









0 −1 0

1 0 0

0 0 0









. (33)

Let x = (η′, ν′)′, u = τ and u̇ = v; the dynamics of the surface vessel (32) can be rewritten in the form (3)

ẋ = f (t, x, u) , u̇ = v, t ≥ 0,
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where f1 = x4 cosx3 − x5 sinx3, f2 = x4 sinx3 + x5 cosx3, f3 = x6, f4 = m22x5x6−d11x4+u1

m11

, f5 = −m11x4x6−d22x5+u2

m22

,

f6 = −(m22−m11)x4x5−d33x6+u3

m33

, with m11 = 200 kg,m22 = 250 kg,m33 = 80 kgm2, d11 = 70 kg s−1, d22 = 100 kg s−1,

d33 = 50 kgm2 s−1.

The system is designed, [3], such that the input vector u is generated as the non-negative linear combination of the
vectors hi ∈ R3, i = 1, . . . , 4, directly related to the four actuators and their disposition

u =

4
∑

i=1

ui =

4
∑

i=1

hiFi (t) = HF (t) , Fi ≥ 0, (34)

where ui = hiFi, ∀i ∈ {1, . . . , 4}; the vector F ∈ R4 is given by F = [F1, . . . , F4]
′ and the quantities Fi, i = 1, . . . , 4,

are non-negative, due to the mono-directionality of the propellers. The matrix H ∈ R3×4, H = col (hi), i = 1, . . . , 4,
is designed as

H =









1√
3

1√
3
− 1√

3
− 1√

3

0 0
√

2√
3
−

√
2√
3√

2√
3
−

√
2√
3

0 0









. (35)

The configuration matrixH relates the input vector u to the positive thrusts F1, . . . , F4 exerted by the four propellers,
Figure 1.

x
B

y
B

y
I

x
I

Fig. 1. The system is actuated by four mono-directional devices.

According to the proposed procedure we define the sliding manifold s (t, x) = 0 with s = ν − νd, being νd (t) the
desired reference trajectories to be tracked, and the sliding output σ (t, x, u) = ṡ+ Λs, Λ = diag (λi), i = 1, . . . , 4.

The vector ṡ is not available. It is designed the second order sliding mode observer (10) for system (32), from which
we obtain ż and therefore the sliding vector σ̂ defined by (13).

We apply the simplex algorithm (30) with switching logic for bounded mono-directional control actions in order to
steer to zero the sliding output σ̂, Figure 2. According to Theorem 1 in finite time σ is zero and s tends to zero
exponentially, Figure 3. The designed Fi, i = 1, . . . , 4, are continuous, bounded and controlled, since min

i=1,...,4
Fi is

maintained to a fixed value F0, Figure 4.

The discontinuous Ḟi, i = 1, . . . , 4, are designed by (30) and oscillate between positive and negative values, Figure 5.
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Fig. 2. The finite time convergence of σ̂i, i = 1, 2, 3.
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Fig. 3. The exponential convergence of si, i = 1, 2, 3.
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Fig. 4. The continuous, bounded and controlled Fi, i = 1, . . . , 4.

The continuous input vector u = τ is the non-negative linear combination of the columns hi, i = 1, . . . , 4, of the

matrix H defined by (35), that is u =

4
∑

i=1

hiFi (t), Figure 6.
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Fig. 5. The discontinuous Ḟi, i = 1, . . . , 4.
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Fig. 6. The continuous ui = τi, i = 1, 2, 3.

5 Conclusions

The application of the simplex sliding mode control method to the specific case of systems with mono-directional
actuators has been considered. The number of control devices turns out to be minimized if their collocation is arranged
such that the corresponding control vectors form a simplex in the relevant input/output space. The introduction of
integrators in the input channel, for chattering reduction purposes, has been proved to require a modification of the
original methodology to avoid unbounded increment of the actuators intensity. The new control algorithm exploits
the geometrical property of the simplices of vectors to attain the same tracking efficiency with different switching
logics. This fact guarantees an extra degree of freedom, the exploitation of which decouples the tracking control
problem of the system with that of the regulation of each actuator’s intensity.
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