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Abstract. Complex systems in homological algebra present problems of coherence
that can be solved by proving the distributivity of the sublattices of subobjects generated
by the system. The main applications deal with spectral sequences, but the goal of this
paper is to convey the importance of distributive lattices (of subobjects) in homological
algebra, to researchers outside of this field; a parallel role played by orthodox semigroups
(of endorelations) is referred to but not developed here.

Introduction

This brief article is about coherence in homological algebra, for abelian groups (or more
generally for abelian categories). The main applications deal with spectral sequences, but
the core of the article only needs the elementary theory of abelian groups and lattices.

Various parts of homological algebra, from the homology of chain complexes to the
theory of spectral sequences, are based on ‘induction on subquotients’ (i.e. quotients of
subobjects, or - equivalently - subobjects of quotients). However, the coherence of this
procedure of induction makes serious problems, that are often overlooked. The reader
may recall that Mac Lane’s book on ‘Homology’ [M1] gives some sufficient conditions
that ensure that induction is consistent with composition, in Proposition II.6.3; but these
conditions are not invariant under inverting the induced isomorphisms.

Problems may already arise in the simplest situation, canonical isomorphisms between
subquotients of the same object (induced by the identity of the latter): first, such isomor-
phisms need not be closed under composition; second, if we extend them in this sense the
result need not be uniquely determined (as we show in Section 3). Yet, such isomorphisms
are frequently used when working with complicated systems, in particular those that give
rise to spectral sequences.

Indeed, the solution of the coherence problem depends on the distributivity of the
lattices of subobjects generated by the system that we are studying. We prove here, in
Section 6, the following theorem.

Given a sublattice X of the (modular) lattice of all subgroups of an abelian group A,
let us consider the subquotients of A with numerator and denominator belonging to X.
Then the canonical isomorphisms among these subquotients are closed under composition
(and form a coherent system) if and only if the lattice X is distributive.
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This is a reduced, elementary form of our ‘Coherence theorem for homological algebra’.
A more complete form of the theorem will be mentioned, without proof, at the end of
the article, in Section 10. It was proved by the author in a series of papers of the 1970’s
([G2] - [G8]), and used in various papers on ‘Distributive homological algebra’, like [G9]
- [G12]. A self-contained proof will be given in a book in preparation [G13].

The papers mentioned above prove that the following systems are ‘distributive’ (loosely
speaking, this means that they always generate distributive lattices of subobjects), and
their coherence is automatically satisfied:

- bifiltered object,

- sequence of morphisms,

- filtered chain complex,

- double complex,

- Massey’s exact couple [Ma],

- Eilenberg’s exact system [Ei].

The same property of distributivity also permits representations of these structures
by means of sets and lattices of subsets; this yields a precise foundation for the heuristic
tool of Zeeman diagrams [Ze, HiW], as universal models of spectral sequences (see [G9] -
[G13]).

On the other hand, the following systems are not distributive:

- trifiltered object,

- bifiltered chain complex,

and we show in Section 8 a strong form of inconsistency in the latter, that can lead to
gross errors if the interaction of the two spectral sequences is explored further than it is
normally done.

Note that the two spectral sequences of a double complex are usually defined by means
of the associated total complex and its two filtrations. Yet, as claimed above, the double
complex is a distributive system where a consistent theory of two interacting spectral
sequences exists - provided such sequences are defined directly, without introducing direct
sums and the total complex (Section 9).

This article develops part of a conference at CatAlg2011, Gargnano (Italy), in Septem-
ber 2011.

Literature. Spectral sequences in abelian categories and their applications have been
treated in many works on homological algebra and algebraic topology, like [Ei, CE, Gt,
Hu, HiW, M1, Sp, Am, HiS, Sw, We, Mc]. Zeeman diagrams for spectral sequences,
introduced in [Ze], are also expounded in the book by Hilton and Wylie [HiW]. Birkhoff’s
and Grätzer’s books [Bi, Gr] are standard references for lattice theory.

As remarked in Section 10, the coherence theorem draws new, tight links between
homological algebra, lattice theory and the theory of regular, orthodox, quasi-inverse and
inverse semigroups. References for the last topics are given in Section 10.
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Terminology. Lattice always means here an ordered set with finite joins and meets, which
include the least and greatest element: the empty join and meet, respectively. A sublattice
of a lattice has the same least and greatest element; we use the term ‘quasi sublattice’
when we only want to express closure under binary joins and meets. The symbol ⊂ always
denotes weak inclusion (of subsets, subgroups, etc.).

1. Subquotients and regular induction

For the sake of simplicity, we work in the category Ab of abelian groups, but everything
can be extended to abelian categories and even further (see Section 10).

A subquotient S = M/N of an abelian group A is a quotient of a subobject (M) of
A, or equivalently a subobject of a quotient (A/N). It is determined by two subgroups
N ⊂M of A, via a commutative square that is bicartesian, i.e. pullback and pushout:

M // m //

p
����

A

q
����

S //
n
// A/N

(1)

The prime example, of course, is the homology subquotient H = Ker ∂/Im ∂ of a
differential group (A, ∂).

A homomorphism f : A → B is given. If M and H are subobjects of A and B
respectively, and f(M) ⊂ H, we have a commutative diagram with short exact rows

M // m //

f ′

��

A
p // //

f

��

A/M

f ′′

��
H //

h
// B u

// // B/H

(2)

More generally, given two subquotients M/N of A and H/K of B, we say that f has
a regular induction from M/N to H/K whenever

f(M) ⊂ H and f(N) ⊂ K. (3)

Then, we have a regularly induced homomorphism g : M/N → H/K. In fact, one can
form the left diagram below, by applying (2) in two different ways

M // m //

f ′

��

A
q // //

f

��

A/N

f ′′

��

M
q′ // //

f ′

��

M/N //m
′
//

f

��

A/N

f ′′

��
H //

h
// B v

// // B/K H
v′
// // H/K //

h′
// B/K

(4)

Then we get the right diagram above (and the homomorphism g), by epi-mono fac-
torisation of the rows of the left diagram.

Regular induction is (obviously) preserved by composition. But it is a too restricted
notion.
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2. Canonical isomorphisms

We now use the category RelAb of (additive) relations, or (additive) correspondences,
between abelian groups (cf. Mac Lane [M1], Hilton [Hi]).

A relation a : A → B is a subgroup of the direct sum A ⊕ B. It should be viewed as
a ‘partially defined, multi-valued homomorphism’, that sends an element x ∈ A to the
subset {y ∈ B | (x, y) ∈ a} of B. The composite of a with b : B → C is

ba = {(x, z) ∈ A⊕ C | ∃y ∈ B : (x, y) ∈ a, (y, z) ∈ b}.

The converse relation of a : A → B is obtained by reversing pairs, and written as
a] : B → A. This involution is regular in the sense of von Neumann, i.e. aa]a = a, for
all relations a. As a consequence, a monorelation, i.e. a monomorphism in the category
RelAb, is characterised by the condition a]a = 1; an epirelation by the dual condition
aa] = 1.

The category Ab is embedded in its category of relations, identifying a homomor-
phism with its graph. This embedding preserves monomorphisms and epimorphisms (but
we shall see that a monorelation is more general than an injective homomorphism). Iso-
morphisms are the same, in these categories.

Let us come back to the bicartesian square making S into a subquotient M/N of the
abelian group A

M // m //

p
����

A

q
����

S //
n
//

s

::

A/N

(5)

This bicartesian square determines one relation s = mp] = q]n : S → A, that sends
the class [x] ∈ M/N to all the elements of the lateral x + N in A. It is actually a
monorelation (since s]s = id(S)) and all monorelations with values in A are of this type,
up to isomorphism. The subquotients of the abelian group A amount thus to the subobjects
of A in RelAb.

RelAb makes possible to consider a more general notion of induction on subquotients,
as in [M1]. Given a relation a : A → B, a subquotient s : S → A of its domain and a
subquotient t : T → B of its codomain, we say that a induces from s to t the relation

t]as : S → T. (6)

If a is a homomorphism and has a regular induction from S to T , the regularly induced
homomorphism S → T considered above coincides with t]as.

If s, t are subquotients of the same object A, the relation u = t]s : S → T induced
by the identity of A will be called the canonical relation from s to t; and a canonical
isomorphism if it is an isomorphism (of RelAb or Ab, equivalently). The isomorphism u
need not be regularly induced.
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Writing the subquotient s as H/K, and t as H ′/K ′, it is easy to verify the following
properties of the canonical relation u = t]s : H/K → H ′/K ′:

(a) u is everywhere defined ⇔ H ⊂ H ′ ∨K,

(a∗) u has total values ⇔ H ′ ⊂ H ∨K ′,

(b) u has a null annihilator ⇔ H ∧K ′ ⊂ K,

(b∗) u has a null indeterminacy ⇔ H ′ ∧K ⊂ K ′,

(c) u is an isomorphism ⇔ (H ∨K ′ = H ′ ∨K, H ∧K ′ = H ′ ∧K).

It follows that

(d) u is a regularly induced isomorphism ⇔ (K = H ∧K ′, H ′ = H ∨K ′),

which shows that a regularly induced isomorphism is the same as a second-type Noether
isomorphism

H/(H ∧K ′)→ (H ∨K ′)/K ′. (7)

We write H/K ΦH ′/K ′ the property expressed in (c). It is obviously reflexive and
symmetric, but not transitive in general, as we show below.

It is easy to see that, if H/K ΦH ′/K ′, there is a commutative diagram of canonical
isomorphisms (between Φ-related subquotients of A)

(H ∨H ′)/(K ∨K ′)

H/K

44

u // H ′/K ′

jj

(H ∧H ′)/(K ∧K ′)

jj 44 (8)

where the solid arrows are regularly induced (Noether) isomorphisms; this is important,
because regular induction is always respected by composition.

3. A case of incoherence

The following examples show some instances of inconsistency of induction on subquotients:
first, canonical isomorphisms need not be closed under composition; second, if we extend
them in this sense the result need not be uniquely determined.

As in Mac Lane’s book [M1], our examples of inconsistency are based on the lattice
L(A) of subgroups of A = Z ⊕ Z, and more particularly on the (non-distributive) triple
formed of the diagonal ∆ and two of its complements, the subgroups A1 and A2

A1 = Z⊕ 0, A2 = 0⊕ Z,
Ai ∨∆ = A, Ai ∧∆ = 0.

(9)

We thus have the subquotients mi : Ai → A and s = p] : A/∆→ A.
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(a) The identity of A induces two canonical isomorphisms ui = pmi : Ai → A/∆ (regu-
larly induced Noether isomorphisms, by (9)), and a canonical isomorphism u−12 : A/∆→
A2 (that is not regularly induced).

Then, the composed isomorphism w = u−12 u1 : A1 → A2 is not canonical. Indeed:

w : A1 → A/∆→ A2, (x, 0) 7→ [(x, 0)] = [(0,−x)] 7→ (0,−x), (10)

while the canonical relation m]
2.m1 : A1 → A2 has graph {(0, 0)}.

(b) Using the subgroup ∆′ = {(x,−x) | x ∈ Z} instead of the diagonal ∆, we get the
opposite composed isomorphism from A1 to A2

A1 → A/∆′ → A2 (x, 0) 7→ [(x, 0)] = [(0, x)] 7→ (0, x). (11)

This shows that a composite A1 → A2 of canonical isomorphisms between subquotients
of Z⊕ Z is not determined.

Now, a change of sign can be quite important, in homological algebra and algebraic
topology. For instance, it is the case in the usual argument proving that ‘even-dimensional
spheres cannot be combed’: if the sphere Sn has a non-null vector field, then its antipodal
map t : Sn → Sn is homotopic to the identity, and the degree (−1)n+1 of t must be 1. The
conclusion cannot be obtained if we only know the induced homomorphism t∗n : Hn(Sn)→
Hn(Sn) up to sign change.

4. Coherent systems of isomorphisms

Let X be a sublattice of the (modular) lattice L(A) of subgroups of the abelian group
A. We are interested in the set X̂ of all the subquotients of A with numerator and
denominator in X, whose coherence is discussed below.

Plainly, the set X̂ can be identified with the set X2 of decreasing pairs (numerator,
denominator) of X, where the relation (x, y) Φ (x′, y′) is expressed by the following two
equivalent conditions:

(a) x ∨ y′ = x′ ∨ y, x ∧ y′ = x′ ∧ y,

(b) x 6 x′ ∨ y, x′ 6 x ∨ y′, x ∧ y′ 6 y, x′ ∧ y 6 y′.

For a system Σ of subquotients of A (usually of the previous form), we are interested
in the following equivalent properties

(i) whenever u : S → S ′ and v : S ′ → S ′′ are induced isomorphisms between elements of
the system, the composed isomorphism vu coincides with the canonical relation S → S ′′,

(ii) the relation Φ is an equivalence relation among the subquotients of Σ, and all diagrams
of canonical isomorphisms between them commute.

When this holds we say that Σ is a coherent system of subquotients of A. We also
express this fact saying that the canonical isomorphisms among all S ∈ Σ are closed
under composition, or form a coherent system of isomorphisms. (Since Mac Lane’s paper



7

[M2], a coherence theorem in category theory states that, under suitable assumptions, all
the diagrams of a given type commute.)

When such a system has been fixed (e.g. using the Coherence theorem below) we shall
express the (equivalence!) relation S ΦS ′ of Σ by saying that the subquotients S and S ′

are canonically isomorphic (within Σ). But expressing in this way the relation Φ when
transitivity does not hold is misleading and should be carefully avoided.

We have seen that the whole system of subquotients of Z2 is not coherent (Section
3); the same holds for any object A⊕ A, where A is any non trivial object of an abelian
category.

Even when a set Σ = X̂ is coherent, one should not expect that all the induced
homomorphisms (or even less relations) be closed under composition. In fact, the com-
posite of the canonical homomorphisms

A/0→ A/A→ 0/0→ A/0

is null, while the canonical homomorphism A/0 → A/0 is the identity (and all these
subquotients necessarily belong to X̂).

5. Lemma

Let X be a modular lattice. The following conditions are equivalent:

(i) the lattice X is distributive,

(ii) the relation (x, y) Φ (x′, y′) defined above on the set X2 of decreasing pairs of X is an
equivalence relation.

Proof. Let X be distributive, and assume that (x, y) Φ (x′, y′) Φ (x′′, y′′). Then:

x = (x′ ∨ y) ∧x = (x′′ ∨ y′ ∨ y) ∧x 6 x′′ ∨ (y′ ∧x) ∨ y = x′′ ∨ (y ∧x′) ∨ y = x′′ ∨ y.

The other three inequalities of (x, y) Φ (x′′, y′′), in form (b) of Section 4, are proved in a
similar way.

Conversely, suppose that the relation Φ is transitive. Let M = {m′, x, y, z,m′′} be a
quasi sublattice of X, where the meet (resp. join) of any two elements out of x, y, z is m′

(resp. m′′). Then we have (x,m′) Φ (m′′, y) Φ (z,m′), whence (x,m′) Φ (z,m′) and x = z.
In other words, the modular lattice X cannot have a quasi sublattice M as above,

formed of five distinct elements; by a well-kown theorem of lattice theory ([Bi], II.8,
Theorem 13), the lattice X must be distributive.

6. Coherence Theorem of Homological Algebra (Reduced form)

Let X be a sublattice of the lattice L(A) of subgroups of the abelian group A. Then the
following conditions are equivalent:

(i) the lattice X is distributive,
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(ii) the family X̂ is coherent (i.e. the canonical isomorphisms among subquotients of A
with numerator and denominator belonging to X are closed under composition).

Proof. If (ii) holds, the relation Φ is transitive in X̂ (or equivalently in X2) and X is
distributive, by the previous lemma.

Conversely, let us assume that X is distributive, and consider two canonical isomor-
phisms between three subquotients

u : H/K → H ′/K ′, v : H ′/K ′ → H ′′/K ′′. (12)

We must prove that the composite vu is the canonical relation w : H/K → H ′′/K ′′.
By Lemma 5, these three subquotients are Φ-equivalent.

Let us write
H0 = H ∧H ′ ∧H ′′, K0 = K ∧K ′ ∧K ′′.

By Section 2, we can form the following commutative diagram, where all subquotients
are Φ-equivalent, and the solid arrows are regularly induced by id(A)

H/K
u // H ′/K ′

v // H ′′/K ′′

(H ∧H ′)/(K ∧K ′)

OO 33

(H ′ ∧H ′′)/(K ′ ∧K ′′)

kk OO

H0/K0

kk 33
(13)

But we can also form a second commutative diagram, where the solid arrows are again
regularly induced

H/K
w // H ′′/K ′′

(H ∧H ′)/(K ∧K ′)

OO

(H ∧H ′′)/(K ∧K ′′)

jj 44

(H ′ ∧H ′′)/(K ′ ∧K ′′)

OO

H0/K0

jj OO 44
(14)

Since the four solid arrows of the ‘boundary’ of these two diagrams coincide, the thesis
follows: vu = w.

7. Filtered chain complexes

Let us now consider one of the most usual structures giving rise to a spectral sequence, a
filtered chain complex A∗ of abelian groups, with (canonically) bounded filtration

A∗ = ((An), (∂n), (FpAn)). (15)
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This is a chain complex of abelian groups

... An
∂n // An−1 // ... // A1

∂1 // A0 (∂n∂n+1 = 0),

where each component An has a filtration of length n+1, consistently with the differentials:

0 ⊂ F0An ⊂ ... ⊂ FpAn ⊂ ... ⊂ FnAn = An,

∂n+1(FpAn+1) ⊂ FpAn.
(16)

On each component An the filtrations of An+1 and An−1 produce a second finite fil-
tration (of length 2n + 3), by direct and inverse images along the differentials (while the
other components have a trivial effect)

0 ⊂ ∂n+1(F0An+1) ⊂ ... ⊂ ∂n+1(Fn+1An+1) = Im ∂n+1

⊂ Ker ∂n ⊂ ∂−1n (F0An−1) ⊂ ... ⊂ ∂−1n (Fn−1An−1) = An.
(17)

By a well-known Birkhoff theorem on the free modular lattice generated by two chains
([Bi], III.7, Theorem 9), the two filtrations generate a finite, distributive lattice of sub-
groups of An, that can be represented as (a quotient of) a lattice of subsets of the plane.
(Notice the crucial role played here by the condition ∂∂ = 0: without that, the lattice
generated by the data would not be distributive.)

In particular, we are interested in the following subobjects of An, forming a filtration
of FpAn that is the ‘trace’ of the second filtration (17) (as usual, we let n = p + q):

Zr
pq(A∗) = FpAn ∧ ∂

−1(Fp−rAn−1) (relative cycles),

Br
pq(A∗) = FpAn ∧ ∂(Fp+rAn+1) (relative boundaries).

(18)

Now, the term Er
pq, of the spectral sequence of A∗ is usually defined as a subquotient

of An (with n = p + q), by one of the following ‘equivalent’ formulas:

Er
pq(A∗) = Zr

pq/(Zr−1
p−1,q+1 ∨B

r−1
pq ), (19)

Er
pq(A∗) = (Zr

pq ∨Fp−1An)/(Br−1
pq ∨Fp−1An), (20)

that are linked by a canonical isomorphism, regularly induced from the first to the second
subquotient.

The first expression is used, for instance, in Hilton - Wylie [HiW], Section 10.3, and
Spanier [Sp], 9.1. The second is used in Mac Lane’s ‘Homology’ [M1], XI.3. Weibel [We]
uses both, in Section 5.4 (with a different notation).

And indeed, no problem can here arise from using different formulas linked by canonical
isomorphisms, because of the distributivity of the system.
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8. A non-distributive structure: the bifiltered complex

We now construct a bifiltered chain complex C where the terms E2
10(C

′) and E2
10(C

′′) per-
taining to the two filtrations involve the abelian group A = Z ⊕Z and the non-distributive
triple of subgroups already used in Section 3: A1 = Z ⊕ 0, A2 = 0 ⊕Z and ∆ (the diagonal).

Let us start from the filtered chain complex

C ′ = ((Cn), (∂n), (F ′pCn)),

having only two non-trivial components, in degree 0 and 1

C0 = Z, C1 = A = Z ⊕Z,
∂1 : C1 → C0, ∂1(x, y) = x− y,

and the following filtration F ′:

F ′0C0 = C0, F ′0C1 = A1, F ′1C1 = C1. (21)

Using the formulas (19) and (20), the term E2
10(C

′) can be computed with the following
canonically isomorphic subquotients of C1

H/(H ∧K) ∼= (H ∨K)/K,

H = F ′1C1 ∧Ker ∂1, K = F ′0C1.
(22)

Here we get H = ∆, K = A1, which gives for E2
10(C

′) the isomorphic subquotients
∆ ∼= A/A1 of the component C1 = A = Z ⊕Z.

Replacing the filtration F ′ with F ′′, where F ′′0C1 = A2 and the rest is unchanged, we
get a second filtered chain complex C ′′. The term E2

10(C
′′) is computed as above, with

H = ∆ and K = A2; we get now: ∆ ∼= A/A2.
Staying inside one of the filtered complexes C ′ or C ′′, the isomorphism (22) does not

lead to any problem, because of the previous coherence theorem. But if we consider the
bifiltered chain complex C, equipped with both filtrations

C = ((Cn), (∂n), (F ′pCn), (F ′′pCn)), (23)

we get two spectral sequences, in a non-distributive framework where the coherence the-
orem does not apply.

Now, the first formula of (22) seems to tell us that the terms E2
10(C

′), E2
10(C

′′) of
these two systems are precisely the same thing, namely the subgroup ∆ of C1. On the
other hand, the formula (H ∨K)/K gives Z2/A1 or Z2/A2, according to the case. These
are isomorphic groups, of course, but quite different quotients of the component C1. We
do not even know how to define the relation E2

10(C
′)→ E2

10(C
′′) induced by the identity

of C: the first formula would give the identity, while the second would give the ‘chaotic’
relation, of graph E2

10(C
′) ⊕E2

10(C
′′).

Therefore, for a bifiltered chain complex there is no consistent theory involving both
spectral sequences. Errors are normally avoided because the only interrelation of the two
systems which is used in practice is the fact that they both converge to the homology of
C; yet the problem should not be ignored.



11

9. The double complex

This point can be further investigated dealing with double complexes - a distributive
system where a consistent theory of two interacting spectral sequences exists, provided
one does not define them in the usual way, namely via the associated total complex and
its bifiltration.

In fact, let A∗ be a double complex of abelian groups

A∗ = ((Apq), (∂
′
pq), (∂

′′
pq)). (24)

(Apq) is a family of groups, indexed on N× N. The differentials

∂′pq : Apq → Ap−1,q, ∂′′pq : Apq → Ap,q−1,

are assumed to commute (i.e. to form a commutative diagram), and of course to have null
composites Apq → Ap−2,q and Apq → Ap,q−2.

The usual procedure is to construct the associated total complex C = ((Cn), (∂n))

Cn =
⊕

p=0,...n Ap,n−p, upq : Apq → Cp+q,

∂n(x) =
∑

p+q=n up−1,q ∂
′
pq(x) + (−1)p up,q−1 ∂

′′
pq(x) (x ∈ Apq).

(25)

C has two (canonically bounded) filtrations

F ′pCn =
⊕

r=0,...p Ar,n−r, F ′′q Cn =
⊕

r=0,...q An−r,r, (26)

and each of them determines a spectral sequence.
But this is a non-distributive system whose dangers of inconsistency have already been

highlighted above.
Consider the following double complex of abelian groups, with only three non trivial

components
A00 = A01 = A10 = Z, ∂′′01 = −∂′10 = id(Z). (27)

The associated total complex C is precisely the bifiltered chain complex of Section 8,
with

C0 = Z, C1 = A01 ⊕A10 = Z ⊕Z,
∂1(x, y) = ∂′′01(x) + ∂′10(y) = x− y,

and the filtrations F ′, F ′′ described there.
Computing the previous terms on C, as E2

10(C
′) and E2

10(C
′′), one gets subquotients

of C1 whose interaction depends on the formulas we are using, as we have seen above.
Nevertheless, we can introduce the two spectral sequences of A∗ without using direct

sums and the total complex, via the following formulas (cf. [G1], p. 280) that define ′Er
pq

and ′′Er
pq as subquotients of Apq (not of Cp+q)

′Er
pq = (((∂′∗∂′′∗ )

r−1(A) ∧ ∂′′∗(0)) / ((∂′∗∂
′′∗)r−1(0) ∨ ∂′′∗ (A)))pq,

′′Er
pq = (((∂′′∗∂′∗)

r−1(A) ∧ ∂′∗(0)) / ((∂′′∗∂
′∗)r−1(0) ∨ ∂′∗(A)))pq.

(28)
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(Here, the direct and inverse images of subgroups along a homomorphism f : X → Y
are denoted as f∗ : L(X)→ L(Y ) and f ∗ : L(Y )→ L(X), respectively.)

In the abelian case, as proved in [G1], these formulas yield the usual terms up to
canonical isomorphism (even though - plainly - there is no coherent system containing all
these subquotients).

10. The full coherence theorem

We end with mentioning (without proof) a more complete form of our coherence theorem.
As recalled in the Introduction, it was proved by the author in a series of papers of the

1970’s ([G2] - [G8]). A self-contained proof will be given in a book in preparation [G13],
with a statement including many other equivalent conditions, and various applications to
the theory of spectral sequences (some of them already published in [G9] - [G13]).

The required setting is an extension of abelian categories. A p-exact category, i.e. an
exact category in the sense of Puppe and Mitchell (see [Pu, Mt, T1, T2, Br, BrP, HeS,
AHS, FS]), is a category with a zero object, where every map factorises as a cokernel
(of some morphism) followed by a kernel. The setting is selfdual, and the existence of
cartesian products is not assumed - in contrast with Barr-exact categories [Ba].

A p-exact category E is said to be distributive if all its lattices of subobjects are
distributive. The main example is the category I of sets and partial bijections, where
every small distributive p-exact category can be exactly embedded.

Coherence theorem of homological algebra

For a p-exact category E, the following conditions are equivalent:

(i) canonical isomorphisms between subquotients of the same object are closed under com-
position,

(ii) induced isomorphisms between subquotients (induced by arbitrary homomorphisms, or
even by relations) are preserved by composition,

(iii) E is distributive,

(iv) the category of relations RelE is orthodox (i.e. its idempotent endomorphisms are
closed under composition).

Notice that a non-trivial abelian category cannot be distributive: a lattice of sub-
objects L(A ⊕ A) is not distributive, unless A = 0. However, every p-exact category
(including the abelian ones!) has a distributive expansion DstE, a distributive p-exact
category whose objects are the pairs (A,X) consisting of an object A of E and a distribu-
tive sublattice X ⊂ L(A).

Combining (part of) the coherence theorem with the distributive expansion, we get
the restricted form proved above, in Section 6.

Let us also remark that the coherence theorem draws new, tight links between:

- homological algebra,
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- lattice theory,

- the theory of regular, orthodox, quasi-inverse and inverse semigroups.

The latter was developed from the 1960’s by B.M. Schein [Sc], N.R. Reilly and M.E.
Scheiblich [ReS], T.E. Hall [Ha], M. Yamada [Ya], A.H. Clifford and G.B. Preston [CP],
and others. See also J.M. Howie’s book [Ho]. These notions have been extended to
categories in [G2] - [G5].
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Università di Genova
Via Dodecaneso 35
16146-Genova, Italy

Email: grandis@dima.unige.it


