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Hardy type spaces
on certain noncompact manifolds

and applications

G. Mauceri, S. Meda and M. Vallarino

Abstract

In this paper we consider a complete connected noncompact Riemannian manifold M with Ricci
curvature bounded from below, positive injectivity radius and spectral gap b. We introduce a
sequenceX1(M), X2(M), . . . of new Hardy spaces onM , the sequence Y 1(M), Y 2(M), . . . of their
dual spaces, and show that these spaces may be used to obtain endpoint estimates for purely
imaginary powers of the Laplace–Beltrami operator and for more general spectral multipliers
associated to the Laplace–Beltrami operator L on M . Under the additional condition that the

volume of the geodesic balls of radius r is controlled by C rα e2
√
br for some real number α and

for all large r, we prove also an endpoint result for first order Riesz transforms ∇L−1/2.
In particular, these results apply to Riemannian symmetric spaces of the noncompact type.

1. Introduction

The Riesz transform ∇(−∆)−1/2 and the purely imaginary powers (−∆)iu, u in R, of the
Laplacian ∆ are prototypes of singular integral operators on Rn. They are bounded on Lp(Rn)
for all p in (1,∞), and unbounded on L1(Rn) and on L∞(Rn) [38]. Classical results (see
the seminal papers [24, 18]) state that singular integral operators satysfying the so called
Hörmander integral condition are of weak type 1 and bounded from the Hardy space H1(Rn)
to L1(Rn) and from L∞(Rn) to BMO(Rn). These results apply, in particular, to ∇(−∆)−1/2

and (−∆)iu. One reason to choose (−∆)iu as an example of singular integral operators is that
it plays a fundamental role in the functional calculus for −∆, for functions of the Laplacian
may, at least formally, be reconstructed from (−∆)iu via a subordination formula involving
the Mellin transform (see the fundamental works [37, 14]).

Now suppose that M is a Riemannian manifold with Riemannian measure µ, and denote
by −L and ∇ the associated Laplace–Beltrami operator and covariant derivative respectively.
It is natural to speculate whether the analogues of the aforementioned results hold for the
operators ∇L−1/2 and Liu. The multiplier result for generators of semigroups proved in [37,
14] applies to Liu and gives the Lp(M) boundedness of these operators for p in (1,∞). The
Lp(M) boundedness of ∇L−1/2 for p in (1, 2), and without additional assumptions on M ,
seems to be a challenging problem, and it is the object of a very active line of research (see,
for instance, [13, 4] and the references therein).

As far as endpoint estimates for ∇L−1/2 and Liu are concerned, interesting results have
been obtained in the case where µ is doubling and M satisfies some extra assumptions, such as
appropriate on-diagonal estimate for the heat kernel [13], or scaled Poincaré inequality [36, 29,
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5]. Note that when µ is doubling, M is a space of homogeneous type in the sense of Coifman
and Weiss, and a well known theory of atomic Hardy spaces is available [12].

In this paper we consider a complete connected noncompact Riemannian manifold M with
Ricci curvature bounded from below, positive injectivity radius and strictly positive bottom b
of the spectrum of L. It may be worth observing that under these assumptions the Riemannian
measure is nondoubling and that the volume of geodesic balls in M grow exponentially with
the radius. Recall that for a Riemannian manifold satisfying the above assumptions there are
positive constants α, β and C such that

µ
(
B(p, r)

)
≤ C rα e2β r ∀r ∈ [1,∞) ∀p ∈M, (1.1)

where µ
(
B(p, r)

)
denotes the Riemannian volume of the geodesic ball with centre p and

radius r. Notable examples of such manifolds are nonamenable connected unimodular Lie
groups equipped with a left invariant Riemannian distance, and symmetric spaces of the
noncompact type with the Killing metric.

In this setting, weak type 1 estimates for ∇L−1/2 and Liu are known only when M is a
Riemannian symmetric space of the noncompact type [1, 2, 26, 27, 35].

Manifolds satisfying the above assumptions fall into the class of measured metric spaces X
considered in [7], where the authors, following up earlier works of A.D. Ionescu [25] and of
E. Russ [36], defined an atomic Hardy space H1(X) and a space of functions of bounded mean
oscillation BMO(X). Both H1(X) and BMO(X) are defined much as in the classical case of
spaces of homogeneous type, the only difference being that atoms in the definition of H1(X)
are supported in balls with radius at most 1, and that in the definition of BMO(X) averages
are taken only on balls of radius at most 1. As a consequence, they proved that if T is bounded
on L2(X) and its kernel kT satisfies the following local Hörmander’s type condition

sup
B∈B1

sup
y∈B

∫
(2B)c

|kT (x, y)− kT (x, cB)|dµ(x) <∞, (1.2)

where B1 denotes the collection of all balls in X of radius at most 1, then T is bounded on
Lp(X) for all p in (1, 2] and from the atomic Hardy space H1(X) to L1(X).

The starting point of our work is the perhaps surprising fact that when L is the Laplace–
Beltrami operator associated to the Killing metric on Riemannian symmetric spaces of the
noncompact type the operators ∇L−1/2 and Liu, u 6= 0, are unbounded operators from H1(M)
to L1(M). The proof of this fact hinges on quite delicate estimates of the inverse spherical
Fourier transform of the associated multiplier, and will appear in [31]. Note that, as a
consequence, their Schwartz kernels kLiu and k∇L−1/2 do not satisfy (1.2).

The purpose of this paper is to introduce a sequence X1(M), X2(M), . . . of new spaces of
Hardy type on M , and the sequence Y 1(M), Y 2(M), . . . of their dual spaces, and show that
these spaces may be used to obtain endpoint estimates for ∇L−1/2, Liu, and for more general
spectral multipliers of L. The space Xk(M) is defined as follows. Denote by Uβ2 the operator
L (β2I + L)−1. It is straightforward to check that Uβ2 is a bounded injective operator on
L1(M) + L2(M). Denote by Xk(M) the range of the restriction of Ukβ2 to H1(M), endowed
with the norm

‖f‖Xk = ‖U−kβ2 f‖H1 .

By definition, each arrow of the following commutative diagram is an isometric isomorphism
of Banach spaces.
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Thus, Xk(M) is an isometric copy of H1(M) for each positive integer k. Furthermore, we shall
prove (see Section 5) that

H1(M) ⊃ X1(M) ⊃ X2(M) ⊃ · · · ,

with proper inclusions. These spaces have nice interpolation properties; for each positive integer
k, and for every p in (1, 2), Lp(M) is an interpolation space between Xk(M) and L2(M) by
the complex method (see Section 2).
The main results of this paper are contained in Section 4, and justify, a posteriori, the
introduction of the spaces Xk(M). In particular, Theorem 4.3 states that if m is a holomorphic
function in the strip Sβ = {ζ ∈ C : Im(ζ) ∈ (−β, β)} that satisfies

|Djm(ζ)| ≤ C max
(
|ζ2 + β2|−τ−j , |ζ|−j

)
∀ζ ∈ Sβ ∀j ∈ {0, 1, . . . , J}, (1.3)

for some nonnegative τ and for a sufficiently large integer J , then m
(√
L− b

)
is bounded from

H1(M) to L1(M) and from L∞(M) to BMO(M) in the case where b < β2 and from Xk(M) to
H1(M) and from BMO(M) to Y k(M) in the case where b = β2 and k > τ + J . This provides,
in the case where b = β2, endpoint estimates for operators of the form Liu (when τ = 0), but
also for “more singular operators”, such as Liu−τ (I + L)τ , whose kernels have a comparatively
slow decay at infinity. We shall call strongly singular all the multipliers satisfying (1.3). Strongly
singular spectral multipliers were first introduced in [35], where the authors showed that they
satisfy weak type 1 estimates when M is a Riemannian noncompact symmetric spaces. We
remark that the methods of [35] hinge on quite precise estimates of the kernel of these operators,
obtained by using the inversion formula for the spherical Fourier transform. Weak type 1
estimates for such operators seem out of reach in the more general setting of this paper. Note
that strongly singular multipliers may have a rather singular behaviour near the points ±iβ,
and still satisfy an endpoint result for p = 1. We emphasise that this is in sharp constrast with
the Euclidean case, where such a phenomenon cannot occur.

We give applications also to first order Riesz transforms. It follows from work of T. Coulhon
and X.T. Duong [13] that, in our setting, the first order Riesz transform ∇L−1/2 is bounded
on Lp(M) for all p in (1, 2] and that the translated Riesz transform ∇(I + L)−1/2 is of weak
type 1. Russ complemented this result by showing that ∇(I + L)−1/2 map H1(M) into L1(M).
Observe that if we consider the part off the diagonal of the kernel of ∇(I + L)−1/2, then the
corresponding integral operator is bounded on L1(M). This is no longer true for the kernel
of the Riesz transform ∇L−1/2, which decays much slower at infinity. Despite this, we prove
that if b = β2, then ∇L−1/2 is bounded from Xk(M) to L1(M) for large k. Applications of
these spaces to higher order Riesz transforms associated to the Laplace–Beltrami operator on
noncompact symmetric spaces and to multipliers for the spherical Fourier transform will be
considered in a forthcoming paper [31].

The space Xk(M) admits an interesting characterisation in terms of atoms in H1(M) that
satisfy infinitely many cancellation conditions. Its proof, which is rather long, is deferred to a
forthcoming paper [32].
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We now briefly outline the content of the paper. In the next section we define the new
Hardy spaces Xk(M) and their duals Y k(M) in the fairly general framework of the measured
metric spaces considered in [7] and show that they have natural interpolation properties. In
Section 3 we specialise to Riemannian manifolds with Ricci curvature bounded from below,
positive injectivity radius and strictly positive bottom of the spectrum and we prove some
further properties of the new Hardy spaces in this setting. We also state a theorem on the
boundedness on H1(M) of functions of the Laplacian (Theorem 3.4), which is of independent
interest and plays a crucial role in the proof of the main results of this paper. The proof of this
theorem is deferred to Section 5. The main results of the paper, i.e. the endpoint estimates for
strongly singular multipliers and for the Riesz transform are stated and proved in Section 4.

We will use the “variable constant convention”, and denote by C, possibly with sub-
or superscripts, a constant that may vary from place to place and may depend on any
factor quantified (implicitly or explicitly) before its occurrence, but not on factors quantified
afterwards. If T is a bounded linear operator from the Banach space A to the Banach space B,
we shall denote by

∣∣∣∣∣∣T ∣∣∣∣∣∣
A;B

its norm. If A = B we shall simply write
∣∣∣∣∣∣T ∣∣∣∣∣∣

A
instead of

∣∣∣∣∣∣T ∣∣∣∣∣∣
A;A

.

2. New Hardy spaces on metric spaces and interpolation

Suppose that (M,d, µ) is a measured metric space, and denote by B the family of all balls
on M . We assume that µ(M) > 0 and that every ball has finite measure. For each B in B we
denote by cB and rB the centre and the radius of B respectively. Furthermore, we denote by
cB the ball with centre cB and radius c rB . For each scale parameter s in R+, we denote by
Bs the family of all balls B in B such that rB ≤ s.

Basic assumptions 2.1. We assume throughout that M is unbounded and possesses the
following properties:

(i) local doubling property (LD): for every s in R+ there exists a constant Ds such that

µ
(
2B
)
≤ Ds µ

(
B
)

∀B ∈ Bs; (2.1)

(ii) isoperimetric property (I): there exist κ0 and C in R+ such that for every bounded
open set A

µ
({
x ∈ A : d(x,Ac) ≤ κ

})
≥ C κµ(A) ∀κ ∈ (0, κ0];

(iii) approximate midpoint property (AM): there exist R0 in [0,∞) and γ in (1/2, 1) such
that for every pair of points x and y in M with d(x, y) > R0 there exists a point z in
M such that d(x, z) < γ d(x, y) and d(y, z) < γ d(x, y);

(iv) there is a semigroup of linear operators {Ht} acting on L1(M) + L2(M) such that
(a) the restriction of {Ht} to L1(M) is a strongly continuous semigroup of contractions;
(b) the restriction of {Ht} to L2(M) is strongly continuous, and has spectral gap b > 0,

i.e.

‖Htf‖2 ≤ e−bt ‖f‖2 ∀f ∈ L2(M) ∀t ∈ R+;

(c) {Ht} is ultracontractive, i.e. for every t in R+ the operator Ht maps L1(M)
into L∞(M).

Remark 2.2. Assumption (ii) forces µ(M) =∞. In fact, it forces M to have exponential
volume growth (see [7, Proposition 2.5 (i)] for details).
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Remark 2.3. Assumption (iv) has the following straightforward consequences:
(i) {Ht} is a strongly continuous semigroup of contractions on L1(M) + L2(M);
(ii) since for each p in [1, 2] the space Lp(M) is continuously embedded in L1(M) + L2(M),

we may consider the restriction Htp of the operator Ht to Lp(M). Then {Htp} is strongly
continuous on Lp(M), and satisfies the estimate

‖Htpf‖p ≤ e−2b (1−1/p) t ‖f‖p ∀f ∈ Lp(M) ∀t ∈ R+; (2.2)

(iii) by (iv) (a) and (iv) (c) above, for each t in R+ the operator Ht maps L1(M) into
L1(M) ∩ L2(M). Hence Ht maps L1(M) into Lp(M) for each p in [1, 2].

Denote by −G the infinitesimal generator of {Ht} on L1(M) + L2(M). Since {Ht} is
contractive on L1(M) + L2(M), the spectrum of G is contained in the right half plane. Then,
for every σ in R+ we may consider the resolvent operator (σI + G)−1 of {Ht}, that we denote
by Rσ. We denote by Rσ,p the restriction of Rσ to Lp(M), and by −Gp the generator of {Htp}.
Obviously Rσ,p is the resolvent of {Htp} and −Gp is the restriction of −G to Dom(Gp), which
coincides with Rσ

(
Lp(M)

)
.

For every σ in R+ denote by Uσ the operator GRσ. Observe that

Uσ = I − σRσ,

so that Uσ is bounded on L1(M) + L2(M), and its restriction Uσ,p to Lp(M) is bounded on
Lp(M) for every p ∈ [1, 2]. Moreover Uσ and Ht commute for every t in R+.

Proposition 2.4. For each positive integer k the following hold:

(i) if p is in (1, 2], then the operator Ukσ,p is an isomorphism of Lp(M);
(ii) the operator Ukσ is injective on L1(M) + L2(M).

Proof. First we prove (i). Clearly, it suffices to show that Uσ,p is an isomorphism of Lp(M).
By (2.2) the bottom of the spectrum of Gp is positive. Thus G−1

p and σ G−1
p + I are bounded.

Since U−1
σ,p = G−1

p (σI + Gp) and G−1
p (σI + Gp) = σ G−1

p + I, (i) is proved.

Next we prove (ii). It suffices to prove the result in the case where k = 1, since the general
case follows by induction. Suppose that f is a function in L1(M) + L2(M) such that Uσf = 0.
Then Uσ

(
Htf

)
= Ht

(
Uσf

)
= 0 for all t in R+. By the ultracontractivity of Ht, and the fact

that the restriction of Ht to L2(M) is bounded on L2(M), the function Htf is in L2(M) for
all t in R+. Thus Uσ

(
Htf

)
= Uσ,2

(
Htf

)
= 0. Hence Htf = 0, because Uσ,2 is an isomorphism.

Since {Ht} is strongly continuous on L1(M) + L2(M) by Remark 2.3 (i), Htf tends to f in
L1(M) + L2(M) as t tends to 0, and (ii) follows.

We recall the definitions of the atomic Hardy space H1(M) and its dual space BMO(M)
given in [7].

Definition 2.5.
An H1-atom a is a function in L1(M) supported in a ball B with the following properties:

(i)
∫
B
a dµ = 0;

(ii) ‖a‖2 ≤ µ(B)−1/2.
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Definition 2.6. Suppose that s is in R+. The Hardy space H1
s (M) is the space of all

functions g in L1(M) that admit a decomposition of the form

g =
∞∑
k=1

λk ak, (2.3)

where ak is a H1-atom supported in a ball B of Bs, and
∑∞
k=1 |λk| <∞. The norm ‖g‖H1

s
of

g is the infimum of
∑∞
k=1 |λk| over all decompositions (2.3) of g.

The vector space H1
s (M) is independent of s in

(
R0/(1− γ),∞

)
, where R0 and γ are as in Basic

assumptions 2.1 (iii) (see [7, Proposition 5.1]). Furthermore, given s1 and s2 in
(
R0/(1− γ),∞

)
,

the norms ‖·‖H1
s1

and ‖·‖H1
s2

are equivalent.

Notation. We shall denote the space H1
s (M) simply by H1(M), and we endow H1(M)

with the norm H1
s0(M), where s0 = max

(
R0/(1− γ), 1

)
. We note explicitly that if R0 = 0,

then s0 = 1.

The Banach dual of H1(M) is isomorphic [7, Thm 5.1] to the space BMO(M), which we now
define.

Definition 2.7. The space BMO(M) is the space of all locally integrable functions f such
that N(f) <∞, where

N(f) = sup
B∈Bs0

1
µ(B)

∫
B

|f − fB |dµ,

and fB denotes the average of f over B. We endow BMO(M) with the “norm”

‖f‖BMO = N(f).

Remark 2.8. It is straightforward to check that f is in BMO(M) if and only if its sharp
maximal function f ], defined by

f ](x) = sup
B∈Bs0 (x)

1
µ(B)

∫
B

|f − fB |dµ ∀x ∈M,

is in L∞(M). Here Bs0(x) denotes the family of all balls in Bs0 that contain the point x.

In the last part of this section we define the new spaces Xk
σ(M) of Hardy type and their dual

spaces Y kσ (M), and prove an interpolation result, which is relevant for later developments.

Definition 2.9. For each positive integer k and for each σ in R+ we denote by Xk
σ(M)

the Banach space of all L1(M) functions f such that U−kσ f is in H1(M), endowed with the
norm

‖f‖Xk = ‖U−kσ f‖H1 .

Note that U−kσ is, by definition, an isometric isomorphism between Xk
σ(M) and H1(M). In

Section 3, we shall see that Xk
σ(M) may be characterised as the image of H1(M) under a wide

class of maps Vk.
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Remark 2.10. Note that the space Xk
σ(M) is continuously included in L1(M). Indeed,

suppose that f is in Xk
σ(M). Then

‖f‖1 =
∥∥UkσU−kσ f

∥∥
1
≤
∣∣∣∣∣∣Ukσ ∣∣∣∣∣∣1 ∥∥U−kσ f

∥∥
1
≤
∣∣∣∣∣∣Ukσ ∣∣∣∣∣∣1 ∥∥U−kσ f

∥∥
H1

=
∣∣∣∣∣∣Ukσ ∣∣∣∣∣∣1 ∥∥f∥∥Xkσ ,

as required. Note that the last inequality is a consequence of the fact that H1(M) is
continuously included in L1(M).

Definition 2.11. For each positive integer k, and for each σ in R+ we denote by Y kσ (M)
the Banach dual of Xk

σ(M).

Remark 2.12. Since U−kσ is an isometric isomorphism between Xk
σ(M) and H1(M), its

adjoint map
(
U−kσ

)∗ is an isometric isomorphism between BMO(M) and Y kσ (M). Hence∥∥(U−kσ )∗
f
∥∥
Y kσ

= ‖f‖BMO.

Given a compatible couple of Banach spaces X0 and X1 we denote by (X0, X1)[θ] its complex
interpolation space, also denoted by Xθ.

Proposition 2.13. Suppose that (X0, X1) and (Y 0, Y 1) are interpolation pairs of Banach
spaces. Suppose further that T is a bounded linear map from X0 +X1 to Y 0 + Y 1, such that
the restrictions T : X0 → Y 0 and T : X1 → Y 1 are isomorphisms. Then for every θ in (0, 1)
the restriction T : Xθ → Yθ is an isomorphism.

Proof. For every θ in [0, 1] denote by Tθ the restriction of T to Xθ. Define S : Y0 + Y1 →
X0 +X1 by setting

S(y0 + y1) = T −1
0 y0 + T −1

1 y1.

It is straightforward to check that the operator S is well defined, bounded and linear. Moreover
ST is the identity on X0 +X1 and T S is the identity on Y0 + Y1. Thus S = T −1. Hence
Sθ = T −1

θ . Finally, Sθ : Yθ → Xθ is bounded by interpolation. This concludes the proof of the
proposition.

Theorem 2.14. Suppose that σ is in R+, k is a positive integer, and θ is in (0, 1). The
following hold:

(i) if 1/p = 1− θ/2, then
(
Xk
σ(M), L2(M)

)
[θ]

= Lp(M) with equivalent norms;

(ii) if 1/q = (1− θ)/2, then
(
L2(M), Y kσ (M)

)
[θ]

= Lq(M) with equivalent norms.

Proof. To prove (i), we first observe that Ukσ is an isomorphism of H1(M) + L2(M) onto
Xk
σ(M) + L2(M). Then we may apply Proposition 2.13 with Ukσ in place of T , X0 = H1(M),
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Y 0 = Xk
σ(M), X1 = L2(M) = Y 1. By [7, Thm 7.4](

H1(M), L2(M)
)
[θ]

= Lp(M).

By Proposition 2.13, the restriction of Ukσ to Lp(M) is an isomorphism between Lp(M) and(
Xk
σ(M), L2(M)

)
[θ]

. But the restriction of Ukσ to Lp(M) is just Ukσ,p, which is an isomorphism
of Lp(M) by Proposition 2.4. Hence

(
Xk
σ(M), L2(M)

)
[θ]

and Lp(M) are isomorphic Banach
spaces, as required.

Now (ii) follows from (i) by the duality theorem.

3. New Hardy spaces on manifolds

Suppose that M is a connected n-dimensional Riemannian manifold of infinite volume with
Riemannian measure µ.

Basic assumptions 3.1. We make the following assumptions on M :
(i) b > 0;

(ii) Ric ≥ −κ2 for some positive κ and the injectivity radius is positive.

Remark 3.2. It is well known that manifolds with properties (i)-(ii) above satisfy the
uniform ball size condition, i.e.,

inf
{
µ
(
B(p, r)

)
: p ∈M

}
> 0 and sup

{
µ
(
B(p, r)

)
: p ∈M

}
<∞.

See, for instance, [17], where complete references are given.

Note that manifolds satisfying the assumptions above also satisfy the Basic assumptions 2.1.
Indeed, every length metric space satisfies the approximate midpoint property (AM), and, by
standard comparison theorems [9, Thm 3.10], the measure µ is locally doubling. Furthermore,
it is known [7, Section 8] that for manifolds with Ricci curvature bounded from below the
assumption b > 0 is equivalent to the isoperimetric property (I). Finally, the heat semigroup
{Ht} possesses the properties (iv) (a)–(c) of the Basic Assumptions 2.1 [19].

In this section we complement the theory developed in Section 2 by proving that the spaces
Xk
σ(M) and Y kσ (M), in fact, do not depend on σ as long as σ > β2 − b (see Theorem 3.5). Our

main tool for proving this is a H1(M) boundedness result, of independent interest, for functions
of the Laplace–Beltrami operator on M (Theorem 3.4), which will also play an important role
in the proof of Theorem 4.3.

Recall that −L, b and β denote the Laplace–Beltrami operator on M , the bottom of the
L2(M) spectrum of L, and the exponential rate of growth of the volume of geodesic balls (see
(1.1)) respectively. By a result of Brooks [6] b ≤ β2. Further, denote by δ a nonnegative number
such that the following ultracontractive estimate [19, Section 7.5] holds∣∣∣∣∣∣Ht∣∣∣∣∣∣

1;2
≤ C e−bt t−n/4 (1 + t)n/4−δ/2 ∀t ∈ R+. (3.1)

First we define an appropriate function space of holomorphic functions which will be needed
in the statement of Theorem 3.4.

Definition 3.3. Suppose that J is a positive integer and that W is in R+. Denote by SW
the strip {ζ ∈ C : Im(ζ) ∈ (−W,W )} and by H∞(SW ; J) the vector space of all bounded even
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holomorphic functions f in SW for which there exists a positive constant C such that

|Djf(ζ)| ≤ C (1 + |ζ|)−j ∀ζ ∈ SW ∀j ∈ {0, 1, . . . , J}. (3.2)

We denote by ‖f‖SW ;J the infimum of all constants C for which (3.2) holds.

Notation. For the sake of notational simplicity, we denote by D the operator
√
L− b.

Theorem 3.4. Assume that α and β are as in (1.1), and δ as in (3.1). Denote by N the
integer [[n/2 + 1]] + 1. Suppose that J is an integer > max

(
N + 2 + α/2− δ,N + 1/2

)
. Then

there exists a constant C such that

|||m(D)|||H1 ≤ C ‖m‖Sβ ;J ∀m ∈ H∞
(
Sβ ; J

)
.

We emphasise that the width of the strip in Theorem 3.4 is best possible as the case of
symmetric spaces of the noncompact type shows [11]. Note that if M is a symmetric space of
the noncompact type with rank r andHt denotes the semigroup associated to the Killing metric,
then δ is equal to the sum of r/2 and the cardinality of the positive indivisible restricted roots
[15, Thm 3.2 (iii)], and α = (r − 1)/2. Thus, in this case, we need only to assume J > N + 1/2
in Theorem 3.4.

Our result may be compared with [40, Corollary B.3], where the author proved, under much
stronger curvature assumptions on M , that if m is in the symbol class S0

β2 , then m(D) maps
the Goldberg type space h1(M) to L1(M) and L∞(M) into bmo(M).

The proof of Theorem 3.4 is fairly technical and will be given in Section 5. An important
consequence of Theorem 3.4 is that, for fixed k, the spaces Xk

σ(M) do not depend on the
parameter σ, as σ varies in (β2 − b,∞).

Theorem 3.5. The following hold:

(i) if σ1 and σ2 are in (β2 − b,∞), then Xk
σ1

(M) and Xk
σ2

(M) agree as vector spaces, and
their norms are equivalent;

(ii) if σ is in (β2 − b,∞), then H1(M) ⊃ X1
σ(M) ⊃ X2

σ(M) ⊃ · · · with continuous inclu-
sions;

(iii) the inclusions in (ii) are proper.

Proof. First we prove (i). Consider the operator Tσ1,σ2 , defined on L2(M) by

Tσ1,σ2 = U−1
σ1
Uσ2 .

Since both Uσ1 and Uσ2 are isomorphisms on L2(M), so are Tσ1,σ2 and T −1
σ1,σ2

. Observe that
the operators Tσ1,σ2 and T −1

σ1,σ2
are bounded on H1(M). Indeed,

Tσ1,σ2 = (σ1 I + L) (σ2 I + L)−1 = (σ1 − σ2) (σ2 I + L)−1 + I.

Hence the boundedness of Tσ1,σ2 on H1(M) is equivalent to that of (σ2 I + L)−1. To prove
that (σ2 I + L)−1 is bounded on H1(M), it suffices to check that the associated spectral
multiplier ζ 7→ (σ + b+ ζ2)−1 satisfies the hypotheses of Theorem 3.4. We omit the details
of this calculation. A similar argument shows that T −1

σ1,σ2
is bounded on H1(M).
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Thus, Tσ1,σ2 is an isomorphism of H1(M). Since Uσ1Tσ1,σ2U−1
σ2

= I, the identity is an
isomorphism between X1

σ1
(M) and X1

σ2
(M), as required to conclude the proof of (i) in the

case where k = 1. The proof in the case where k ≥ 2 is similar, and is omitted.

Note that (i) is equivalent to the boundedness of Uσ onH1(M). Since Uσ = I − σ (σI + L)−1,
it suffices to prove that the resolvent operator (σI + L)−1 is bounded on H1(M). This has
already been done in the proof of (i), and (ii) follows.

Finally we prove (iii). Choose a function ψ in C∞c (M) with nonvanishing integral. Observe
that Lψ is a multiple of a H1-atom, hence it is in H1(M).

We shall prove that Lk+1ψ is in Xk
σ(M) \Xk+1

σ (M). Indeed, on the one hand

U−kσ
(
Lk+1ψ

)
= (σI + L)k

(
Lψ
)
,

which again is a multiple of an H1-atom, hence is in H1(M). On the other hand

U−(k+1)
σ

(
Lk+1ψ

)
= (σI + L)k+1(ψ),

which may be written as a linear combination of ψ and of terms of the form Ljψ with j in
{1, . . . , k + 1}. Therefore the integral of U−(k+1)

σ

(
Lk+1ψ

)
does not vanish, hence it is not in

H1(M) and Lk+1ψ is not in Xk+1
σ (M), as required.

Definition 3.6. Suppose that k is a positive integer. The space Xk
β2(M) will be denoted

simply by Xk(M).

By Theorem 3.5, for any σ in (β2 − b,∞) and each positive integer k we have that Xk(M) =
Xk
σ(M) as vector spaces, and their norms are equivalent.

Remark 3.7. The space Xk(M) may be characterised as the image of H1(M) under a
wider class of maps. This is done in [33, Subection 4.6]. We briefly describe the result.

For each positive ε there exists a function η in Cc(R) such that the only zeroes of 1− η̂ in
Sβ+ε are the points ±i

√
b (here η̂ denotes the Fourier transform of η). Suppose that k is a

positive integer. Denote by Vη the operator I − η̂(D). The following hold:
(i) the map Vkη is injective on L1(M);

(ii) VkηH1(M) = Xk(M) as vector spaces, and the norm on Xk(M), defined by

‖f‖η,k = ‖V−kη f‖H1 ∀f ∈ Xk(M),

is equivalent to the norm of Xk(M).

4. Main results

In this section we state and prove boundedness results for strongly singular spectral
multipliers and first order Riesz transform associated to the Laplace–Beltrami operator on
complete connected Riemannian manifolds M satisfying the Basic assumptions 3.1.

We recall that in Definition 3.3 we introduced the space H∞(SW ; J) of functions that are
holomorphic and bounded, together with their derivatives up to the order J , in the strip SW ,
and satisfy a Mihlin-type condition at infinity. Here, to deal with a wider class of operators,
we define a larger space of functions that may be singular also at the points ±iW .
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Definition 4.1. Suppose that J is a positive integer, that τ is in [0,∞), and that W is
in R+. The space H(SW ; J, τ) is the vector space of all holomorphic even functions f in the
strip SW for which there exists a positive constant C such that

|Djf(ζ)| ≤ C max
(
|ζ2 +W 2|−τ−j , |ζ|−j

)
∀ζ ∈ SW ∀j ∈ {0, 1, . . . , J}. (4.1)

We denote by ‖f‖SW ;J,τ the infimum of all constants C for which (4.1) holds.

Note that, for each fixed j, the right-hand side of (4.1) is infinite of order −τ − j at ±iW ,
and vanishes of order j at infinity. Thus, if τ = 0, and f is in H(SW ; J, τ), then f satisfies
Mihlin-type conditions both near the points ±iW and at infinity. In particular, the derivatives
of f may be unbounded in any neighbourhood of iW , and of −iW . Finally, if τ is in R+, and
f is in H(SW ; J, τ), then both f and its derivatives up to the order J may be unbounded in
any neighbourhood of iW , and of −iW .

Remark 4.2. An interesting example of a function in H(Sβ ; J, τ) is

m(ζ) = (ζ2 + β2)−iu−τ (ζ2 + β2 + 1)τ ,

where τ is in [0,∞). Note that if b = β2, then m(D) = L−iu−τ (L+ I)τ . It is worth observing
that there are no endpoint results at p = 1 for this operator in the literature when τ > 1. In
the case where M is a symmetric space of the noncompact type, it is known [1, 3, 35] that
m(D) is of weak type 1 if and only if τ ≤ 1, but the proof of this fact uses the spherical Fourier
transform and very specific information on the structure of the symmetric space, and it is
hardly extendable.

Theorem 4.3. Assume that α and β are as in (1.1), and δ as in (3.1). Suppose that τ is
in [0,∞), that J and k are integers, with k > τ + J and J > max

(
N + 2 + α/2− δ,N + 1/2

)
,

where N denotes the integer [[n/2 + 1]] + 1. The following hold:
(i) if b < β2, then there exists a constant C such that

|||m(D)|||H1;L1 ≤ C ‖m‖Sβ;J,τ ∀m ∈ H(Sβ ; J, τ)

and

|||m(D)t|||L∞;BMO ≤ C ‖m‖Sβ;J,τ ∀m ∈ H(Sβ ; J, τ),

where m(D)t denotes the transpose operator of m(D);
(ii) if b = β2, then there exists a constant C such that

|||m(D)|||Xk;H1 ≤ C ‖m‖Sβ;J,τ ∀m ∈ H(Sβ ; J, τ)

and

|||m(D)t|||BMO;Y k ≤ C ‖m‖Sβ;J,τ ∀m ∈ H(Sβ ; J, τ),

where m(D)t denotes the transpose operator of m(D).

Proof. First we prove (i). Consider the map Ũ , defined by

Ũ =
[
L+ (β2 − b)I

]
(β2I + L)−1.

Observe that Ũ = I − b (β2I + L)−1 extends to a bounded operator on L1(M), because the
L1(M)-spectrum of L is contained in the right half-plane. Similarly, the operator I + b [(β2 −
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b)I + L]−1 extends to a bounded operator on L1(M); it is straightforward to check that this
operator is the inverse of Ũ on L1(M). Thus, Ũ is an isomorphism of L1(M), and so is Ũk.

Consequently, m(D) is bounded from H1(M) to L1(M) if and only if Ũkm(D) is
bounded from H1(M) to L1(M). Observe that Ũkm(D) = uk(D), where

uk(ζ) =
( ζ2 + β2

ζ2 + b+ β2

)k
m(ζ).

It is straightforward to check that there exists a constant C such that

|Djuk(ζ)| ≤ C ‖m‖Sβ ;J,τ

(
1 + |ζ|

)−j ∀ζ ∈ Sβ ∀j ∈ {0, 1, . . . , J}.

Here we use the fact that k > τ + J . Thus, uk(D) is bounded on H1(M) by Theorem 3.4, hence
from H1(M) to L1(M), as required to prove the first estimate.

The second follows from the first by a duality argument.

Next we prove (ii). Observe that m(D) = m(D)Ukβ2 U−kβ2 . Since U−kβ2 is an isometric isomor-
phism between Xk(M) and H1(M), to prove that m(D) is bounded from Xk(M) to H1(M) it
suffices to show that the operator m(D)Ukβ2 extends to a bounded operator on H1(M). Note
that m(D)Ukβ2 = vk(D), where

vk(ζ) =
( ζ2 + b

ζ2 + b+ β2

)k
m(ζ).

It is straightforward to check that there exists a constant C such that

|Djvk(ζ)| ≤ C ‖m‖Sβ ;J,τ

(
1 + |ζ|

)−j ∀ζ ∈ Sβ ∀j ∈ {0, 1, . . . , J}.

Here we use the fact that k > τ + J . Thus, vk(D) is bounded on H1(M) by Theorem 3.4, as
required to prove the first estimate. The second follows from the first by a duality argument.

The proof of the theorem is complete.

Remark 4.4. Assume that M has C∞ bounded geometry. By proceeding as in the proof
of Theorem 4.3 and using [7, Thm 10.2] instead Theorem 3.4, we may prove Theorem 4.3 (i)
with J > max(α+ 1, n/2 + 1) in place of J > max

(
N + 2 + α/2− δ,N + 1/2

)
.

Corollary 4.5. Suppose that M is a symmetric space of the noncompact type and that
−L is the Laplace–Beltrami operator with respect to the Killing metric. If k > n/2 + 3, then
Liu is bounded from Xk(M) to H1(M).

Proof. Indeed, it is well known that α = (r − 1)/2, where r is the rank of the symmetric
space, and δ = υ + r/2, where υ denotes the cardinality of the indivisible positive restricted
roots. Notice that 3/2 + α/2− δ ≤ 0, so that the hypotheses of Theorem 4.3 are satisfied
whenever J > n/2 + 2 and k > J , and the required conclusion follows.

We conclude this section with the following endpoint result for the first order Riesz transform.
Our method hinges on the fact that if b = β2 and k is large enough, then the operator Lk (β2I +
L)−k is bounded on H1(M) by Theorem 3.4.
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Theorem 4.6. Assume that α and β are as in (1.1), and δ as in (3.1). Suppose that
b = β2 and that k is an integer > max

(
N + 2 + α/2− δ,N + 1/2

)
, where N denotes the integer

[[n/2 + 1]] + 1. Then the first order Riesz transform ∇L−1/2 is bounded from Xk(M) to L1(M).

Proof. Since Lk (β2I + L)−k is an isometry between H1(M) and Xk(M), it suffices to
prove that ∇Lk−1/2 (β2I + L)−k is bounded from H1(M) to L1(M). Observe that

∇Lk−1/2 (β2I + L)−k = ∇(β2I + L)−1/2 Lk−1/2 (β2I + L)1/2−k.

The right hand side is the composition of the operators Lk−1/2 (β2I + L)1/2−k, which is
bounded on H1(M) by Theorem 3.4 and of the translated Riesz transform ∇(β2I + L)−1/2,
which is bounded from H1(M) to L1(M) by [36]. The required result follows.

5. Operators bounded on H1(M)

This section is devoted to the proof of Theorem 3.5 and is divided in the following subsections:
Subsection 5.1, which contains few preliminary results in one dimensional Fourier analysis;
Subsection 5.2, where we explain the rôle of the wave propagator in the decomposition into
atoms of the image T a of an H1-atom a by an operator T ; Subsection 5.3, where we prove
an economical decomposition of H1-atoms with “big” support into H1-atoms with support in
balls in B1; Subsection 5.4, where we prove Theorem 3.4.

5.1. Some lemmata

This subsection contains a few technical lemmata concerning one-dimensional Fourier
analysis. Some related material may be found in [30, Subsection 2.3], which we shall sometimes
refer to, for a discussion of the motivations behind this rather technical development.

For every f in L1(R) define its Fourier transform f̂ by

f̂(t) =
∫∞
−∞

f(s) e−ist ds ∀t ∈ R.

Suppose that f is a function on R, and that λ is in R+. We denote by fλ and fλ the λ-dilates
of f , defined by

fλ(x) = f(λx) and fλ(x) = λ−1 f(x/λ) ∀x ∈ R. (5.1)

For each ν ≥ −1/2, denote by Jν : R \ {0} → C the modified Bessel function of order ν, defined
by

Jν(t) =
Jν(t)
tν

,

where Jν denotes the standard Bessel function of the first kind and order ν (see, for instance,
[28, formula (5.10.2), p. 114] for the definition). Recall that

J−1/2(t) =

√
2
π

cos t and that J1/2(t) =

√
2
π

sin t
t
.

For each positive integer `, we denote by O` the differential operator t`D` on the real line.
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Lemma 5.1. For every positive integer k there exists a polynomial Pk+1 of degree k + 1
without constant term, such that∫∞

−∞
f(t) cos(vt) dt =

∫∞
−∞

Pk+1(O)f(t)Jk+1/2(tv) dt, (5.2)

for all functions f such that O`f ∈ L1(R) ∩ C0(R) for all ` in {0, 1, . . . , k + 1}.

Proof. The proof uses the definition and some properties of the generalised Riesz means
Rd,z, introduced in [16, Section 1]. We refer the reader to [30, Section 2] for all the prerequisites
needed here. In particular, recall that R3+2k,0 = R3+2k,−kR3,k by [30, Lemma 2.3 (i)]. Now,
by integrating by parts and using [30, Lemma 2.3 (i) and (ii)],∫∞

−∞
f(t) cos(vt) dt = −

∫∞
−∞
Of(t)

sin(vt)
vt

dt

= −
√
π

2

∫∞
−∞
Of(t)

(
R3+2k,0J v1/2

)
(t) dt

= −
√
π

2

∫∞
−∞

R∗3+2k,−k
(
Of
)
(t)
(
R3,kJ v1/2

)
(t) dt

for all v in R. Furthermore, the definitions of R3,k and of J1/2 and an integration by parts
show that (

R3,kJ1/2

)
(u) =

2
Γ(k)

1
u

∫1

0

s (1− s2)k−1

√
2

π
sin(su) ds

=

√
2
π

1
Γ(k + 1)

∫1

0

(1− s2)k cos(su) ds

= 2k Jk+1/2(u).

By [30, Lemma 2.4 (i)] there exist constants c` such that R∗3+2k,−k
(
Of
)
=
∑k
`=0 c`O`+1f , so

that ∫∞
−∞

f(t) cos(vt) dt =
k∑
`=0

c′`

∫∞
−∞
O`
(
Of
)
(t)Jk+1/2(tv) dt,

and the required formula, with Pk+1(s) =
∑k
`=0 c

′
` s
`+1, follows.

Remark 5.2. We shall denote by Pk+1(O)∗ the formal adjoint of the operator Pk+1(O),
i.e. the operator defined by∫∞

−∞
f(t)Pk+1(O)∗g(t) dt =

∫∞
−∞

Pk+1(O)f(t) g(t) dt ∀f, g ∈ C∞c (R).

Note that Pk+1(O)∗ is still a polynomial of degree k + 1 in O and that
Pk+1(O)∗Jk+1/2(vt) = cos(vt), by (5.2).

Denote by ω an even function in C∞c (R) which is supported in [−3/4, 3/4], is equal to 1 in
[−1/4, 1/4], and satisfies ∑

j∈Z
ω(t− j) = 1 ∀t ∈ R.



HARDY SPACES ON NONCOMPACT MANIFOLDS Page 15 of 27

Denote by φ the function ω1/4 − ω, where ω1/4 denotes the 1/4-dilate of ω. Then φ is smooth,
even and vanishes in the complement of the set {t ∈ R : 1/4 ≤ |t| ≤ 4}. For a fixed R in (0, 1]
and for each positive integer i, denote by Ei the set {t ∈ R : 4i−1R ≤ |t| ≤ 4i+1R}. Clearly
φ1/(4iR) is supported in Ei, and

∑∞
i=1 φ

1/(4iR) = 1 in R \ (−R,R). Denote by d the integer
[[log4(3/R)]] + 1. To avoid cumbersome notation, we write ρi instead of 1/(4iR). Then

ωρ0 +
d∑
i=1

φρi = 1 on [−3, 3]. (5.3)

Definition 5.3. We say that a function g : R→ C satisfies a Mihlin condition [24] of order
J at infinity on the real line if there exists a constant C such that

|D`g(t)| ≤ C (1 + |t|)−` ∀t ∈ R ∀` ∈ {0, . . . , J}. (5.4)

We denote by ‖g‖Mih(J) the infimum of all constants C for which (5.4) holds.

Lemma 5.4. Suppose that k is a nonnegative integer, and that K is an even tempered
distribution on R such that ‖K̂‖Mih(k+2) is finite. The following hold:

(i) for each ` in {0, . . . , k} the function tO`K is in L∞(R), and there exists a constant C
such that

‖tO`K‖∞ ≤ C ‖K̂‖Mih(k+2) ∀` ∈ {0, . . . , k};

(ii) if k ≥ 1 and the support of K is contained in [−1, 1], then K̂ =
∑d
i=0 Si, where the

functions Si : R→ C are defined by

S0(λ) = (ω̂ρ0 ∗ K̂)(λ) +
k∑
j=1

cj,k

∫∞
−∞

K(t)Ojω(ρ0t)Ok−jJk+1/2(λt) dt (5.5)

for suitable constants cj,k, and, for i in {1, . . . , d},

Si(λ) =
1

2π

∫∞
−∞

φρi(t)Pk+1(O)K(t)Jk+1/2(λt) dt; (5.6)

(iii) if the support of K is contained in [−1, 1], then there exists a constant C such that

‖S0‖∞ ≤ C ‖K̂‖Mih(2).

Proof. First we prove (i) in the case where k = 0. Since K̂ satisfies a Mihlin condition of
order 2 at infinity, D2K̂ is in L1(R) (see (5.4)), and we may define F : R→ C by

F (t) =
∫∞
−∞

D2K̂(ζ) eiζt dζ.

By elementary Fourier analysis tK(t) = −t−1 F (t). Observe that F (0) = 0, because

F (0) = lim
A→∞

∫A
−A

D2K̂(ζ) dζ

= 2 lim
A→∞

DK̂(A)

= 0,
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where we have used the fact that K is even and DK̂ vanishes at infinity, because ‖K̂‖Mih(2) is
finite. Furthermore

F (t) = F (t)− F (0)

=
∫∞
−∞

D2K̂(ζ) (eiζt − 1) dζ.

Suppose that t is positive. Then we write the last integral as the sum of the integrals over the
sets {ζ ∈ R : |ζ| ≤ 1/t} and {ζ ∈ R : |ζ| > 1/t}, and estimate them separately.

To treat the first we integrate by parts, and obtain∫
|ζ|≤1/t

D2K̂(ζ) (eiζt − 1) dζ

= DK̂(1/t) (ei − 1)−DK̂(−1/t) (e−i − 1)− it
∫
|ζ|≤1/t

DK̂(ζ) eiζt dζ.

Since DK̂ is odd, its integral over [−1/t, 1/t] vanishes, so that the last integral may be rewritten
as ∫

|ζ|≤1/t

DK̂(ζ) (eiζt − 1) dζ.

Hence ∣∣∣∫
|ζ|≤1/t

D2K̂(ζ) (eiζt − 1) dζ
∣∣∣

≤ C ‖K̂‖Mih(2)
|t|

1 + |t|
+ C t2

∫
|ζ|≤1/t

|ζ DK̂(ζ)|dζ

≤ C ‖K̂‖Mih(2) |t| ∀t ∈ R+.

To estimate the second, write∣∣∣∫
|ζ|>1/t

D2K̂(ζ) (eiζt − 1) dζ
∣∣∣ ≤ C ‖K̂‖Mih(2)

∫
|ζ|>1/t

1
1 + ζ2

dζ

≤ C ‖K̂‖Mih(2) |t| ∀t ∈ R+.

Finally, since K is even,

‖tK‖∞ ≤ sup
t∈R

|F (t)|
|t|

≤ C ‖K̂‖Mih(2),

as required to conclude the proof of (i) in the case where k = 0.
Next we assume that k ≥ 1. By the case k = 0 applied to O`K, we see that

‖tO`K‖∞ ≤ C ‖Ô`K‖Mih(2).

Since Ô`K =
∑`
j=0 αj,`OjK̂ for suitable constants αj,`,

‖Ô`K‖Mih(2) ≤ C
∑̀
j=0

‖OjK̂‖Mih(2)

≤ C ‖K̂‖Mih(2+`),

which is clearly dominated by C ‖K̂‖Mih(k+2), as required to conclude the proof of (i).
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Now we prove (ii). Suppose that ε is in (0, 1). Clearly K̂(λ) is the limit of (ω̂ε K̂)(λ) as ε
tends to 0. By Fourier inversion formula and Lemma 5.1

(ω̂ε K̂)(λ) =
1

2π

∫∞
−∞

ωε ∗K(t) cos(λt) dt

=
1

2π

∫∞
−∞

Pk+1(O)(ωε ∗K)(t)Jk+1/2(λt) dt ∀λ ∈ R.

We write the right-hand side as
∑d
i=0 Si(λ; ε), where

S0(λ; ε) =
1

2π

∫∞
−∞

ωρ0(t)Pk+1(O)(ωε ∗K)(t)Jk+1/2(λt) dt ∀λ ∈ R, (5.7)

and, for each i in {1, . . . , d},

Si(λ; ε) =
1

2π

∫∞
−∞

φρi(t)Pk+1(O)(ωε ∗K)(t)Jk+1/2(λt) dt ∀λ ∈ R.

Observe that

S0(λ; ε) =
1

2π

∫∞
−∞

(ωε ∗K)(t) Pk+1(O)∗(ωρ0 J λk+1/2)(t) dt.

Note that Pk+1(O)∗(ωρ0 J λk+1/2) may be written as

ωρ0 Pk+1(O)∗(J λk+1/2) +
k∑
j=1

c′j,k (Ojω)ρ0 (Ok−jJk+1/2)λ,

for suitable constants c′j,k, and that Pk+1(O)∗(J λk+1/2)(t) = cos(tλ), by Remark 5.2. Hence

S0(λ; ε)

=
[
ω̂ρ0 ∗ (ω̂ε K̂)

]
(λ) +

k∑
j=1

cj,k

∫∞
−∞

(ωε ∗K)(t) (Ojω)ρ0(t) (Ok−jJk+1/2)λ(t) dt.

Note that for each positive integer j the function Ojω vanishes in [−1/4, 1/4], and that
the restriction of K to [−1/4, 1/4]c is a bounded function by (i) (with k = 0). Then it is
straightforward to check that S0(λ; ε) tends to S0(λ) for all λ in R.

To prove that Si(λ; ε) tends to Si(λ) for all λ in R and all i in {1, . . . , d}, observe that

2π Si(λ; ε) =
〈
φρi J λk+1/2, Pk+1(O)(ωε ∗K)

〉
=
〈
Pk+1(O)∗(φρi J λk+1/2), ωε ∗K

〉
,

where 〈·, ·〉 denotes the duality between test functions and distributions on R. Now we let ε
tend to 0 and obtain

2π Si(λ; ε)→
〈
Pk+1(O)∗(φρi J λk+1/2),K

〉
=
〈
φρi J λk+1/2, Pk+1(O)K

〉
.

By (i) the distribution Pk+1(O)K is a bounded function on the support of φρi , so that the
right hand side is exactly 2π Si(λ), thereby concluding the proof of (ii).
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Finally, to prove (iii), observe that

|S0(λ)| ≤ |(ω̂ρ0 ∗ K̂)(λ)|+ C

k∑
j=1

∫∞
−∞
|K(t)| |(Ojω)ρ0(t)|dt

≤ C ‖K̂‖∞ + C ‖tK‖∞
k∑
j=1

∫∞
−∞
|t|−1 |(Ojω)ρ0(t)|dt

≤ C ‖K̂‖Mih(2) ∀λ ∈ R,

as required. We have used (i) (with k = 0) in the second inequality above.

5.2. A remark on the wave propagator

We shall need to prove that certain operators map H1-atoms into H1(M). In particular, we
need to show that the image of an atom a has integral 0.

Notation. For notational convenience, we denote by D1 the operator
√
L− b+ κ2 (κ is defined

in the Basic assumptions 3.1).

Suppose that T is an operator bounded on L2(M). We denote by kT its Schwartz kernel
(with respect to the Riemannian density µ).

Proposition 5.5. Suppose that ν is in [−1/2,∞), that w is in L1(R), and that a is a
H1-atom. Define the operator Wν(D) on L2(M) spectrally by

Wν(D)f =
∫∞
−∞

w(t)Jν(tD)f dt ∀f ∈ L2(M).

The following hold:
(i)

∫
M
Wν(D)a dµ = 0;

(ii)
∫
M
S0(D)adµ = 0 (S0 is defined in (5.5)).

The same conclusions hold if we replace the operator D by the operator D1.

Proof. We observe preliminarly that if a is a H1-atom, then∫
M

cos(tD)a dµ = 0 ∀t ∈ R+. (5.8)

Indeed, cos(tD)a is in L2(M), because cos(tD) is bounded on L2(M), and is supported in a
ball of radius t+ rB , where B is any ball that contains the support of a. Therefore, cos(tD)a
is in L1(M), and ∫

M

cos(tD)adµ = lim
N→∞

∫
M

1B(cB ,N) cos(tD)a dµ.

Now, the last integral is the inner product
(
cos(tD)a,1B(cB ,N)

)
in L2(M), and is equal to(

a, cos(tD)1B(cB ,N)

)
, because cos(tD) is self adjoint. Observe that cos(tD)1B(cB ,N) is equal to

cosh(
√
bt) on B(cB , N − t), because both functions are solutions of the wave equation ∂2

t u+
Lu = bu in B(cB , N)× (0,∞) and satisfy the same initial conditions u(x, 0) = 1, ∂tu(x, 0) = 0
in B(cB , N). Hence, they coincide in {(x, t) : d(x, cB) < N − t}, by standard energy estimates.
If N is so big that B(cB , N − t) contains the support of a, then(

a, cos(tD)1B(cB ,N)

)
= cosh(

√
bt)

∫
M

adµ = 0,
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and (5.8) follows.
A straightforward consequence of (5.8) is that for any ν in (−1/2,∞) and for every H1-atom

a ∫
M

Jν(tD)a dµ = 0 ∀t ∈ R+. (5.9)

Indeed,

Jν(tD)a = ν + 2√
π Γ(ν + 1/2)

∫1

0

(1− s2)ν−1/2 cos(stD)a ds,

and the required conclusion follows from Fubini’s Theorem. It is straightforward to check that
similar considerations apply to the operator D1, so that for each ν in [−1/2,∞)∫

M

Jν(tD1)a dµ = 0 ∀t ∈ R+.

To prove (i) we just observe that∫
M

Wν(D)adµ =
∫
M

dµ
∫∞
−∞

w(t)Jν(tD)a dt

=
∫∞
−∞

dt w(t)
∫
M

Jν(tD)a dµ = 0,

where the change of the order of integration is justified by Fubini’s theorem.

Next we prove (ii). By (5.5), the function S0(D)a may be written as the sum of

(ω̂ρ0 ∗ K̂)(D)a and
k∑
j=1

cj,k

∫∞
−∞

K(t)Ojω(ρ0t)Ok−jJk+1/2(tD)a dt,

where K is a compactly supported distribution on R such that K̂ is bounded and tK is
in L∞(R). It is a straightforward consequence of (i) that the integral of each summand of
the sum above is equal to 0. Thus, to prove that the integral of S0(D)a is 0, it suffices to
show that the integral of (ω̂ρ0 ∗ K̂)(D)a makes sense and is equal to 0. Since K̂ is bounded,
ωε K̂ tends pointwise and boundedly to K̂ as ε tends to 0. Then ω̂ρ0 ∗ (ωε K̂) tends pointwise
and boundedly to ω̂ρ0 ∗ K̂ as ε tends to 0 by the Lebesgue dominated convergence theorem.
Therefore the operator ω̂ρ0 ∗ (ωε K̂)(D) tends to the operator ω̂ρ0 ∗ K̂(D) in the strong operator
topology of L2(M). Consequently ω̂ρ0 ∗ (ωε K̂)(D)a tends to ω̂ρ0 ∗ K̂(D)a in L2(M) as ε tends
to 0.

Suppose that the support of a is contained in the ball B. Since the function ωρ0 (ω̂ε ∗K) is
in L1(R), [

ω̂ρ0 ∗ (ωεK̂)
]
(D)a =

1
2π

∫∞
−∞

ωρ0(t) (ω̂ε ∗K)(t) cos(tD)adt.

Since the support of ωρ0 (ω̂ε ∗K) is contained in [−1, 1], all the functions
[
ω̂ρ0 ∗ (ωεK̂)

]
(D)a

are supported in the ball B(cB , rB + 1) by finite propagation speed, and∫
M

[
ω̂ρ0 ∗ (ωεK̂)

]
(D)adµ = 0

by (i). Thus, the function ω̂ρ0 ∗ K̂(D)a is also supported in B(cB , rB + 1). Hence ω̂ρ0 ∗
(ωε K̂)(D)a tends to ω̂ρ0 ∗ K̂(D)a in L1(M) as ε tends to 0, so that∫

M

(ω̂ρ0 ∗ K̂)(D)a dµ = lim
ε→0

∫
M

ω̂ρ0 ∗ (ωε K̂)(D)a dµ = 0,

as required to conclude the proof of (ii).
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Remark 5.6. Note that for every ν in [−1/2,∞) the function λ 7→ Jν(tλ) is even and of
entire of exponential type t, so that kernel kJν(tD) of the operator Jν(tD) is supported in the
set {(x, y) ∈M ×M : d(x, y) ≤ t} by the finite propagation speed. A similar remark applies to
the kernel of the operator Jν(tD1).

5.3. Economical decomposition of atoms

The following lemma produces an economical decomposition of atoms supported in “big”
balls as finite linear combination of atoms supported in balls of radius at most 1, and is key to
prove Theorem 3.4 below. The idea is “to transport charges along geodesics”.

Lemma 5.7. There exists a constant C such that for every H1-atom a supported in a ball
B of radius rB > 1

‖a‖H1 ≤ C rB ,

where ‖a‖H1 is the atomic norm in H1(M) associated to the scale 1.

Proof. Denote by S a 1/3-discretisation of M , i.e. a set of points in M that is maximal
with respect to the property

min{d(z, w) : z, w ∈ S, z 6= w} > 1/3, and d(S, x) ≤ 1/3 ∀x ∈M.

The family {B(z, 1) : z ∈ S} is a covering of M which is uniformly locally finite, by the uniform
ball size and the locally doubling properties. By the same token, the set B ∩S is finite and has
at most N points z1, . . . , zN , with N ≤ C µ(B), where C is a constant which does not depend
on B. Denote by Bj the ball with centre zj and radius 1, and by {ψj : j = 1, . . . , N} a partition
of unity on B subordinated to the covering {Bj : j = 1, . . . , N}.

Fix j in {1, . . . , N} and denote by z0
j , . . . , z

Nj
j points on a minimizing geodesic joining zj and

cB , with the property that z0
j = zj , z

Nj
j = cB , and d(zhj , z

h+1
j ) is approximately equal to 1/3.

Note that Nj ≤ 4rB . Denote by Bhj the ball B(zhj , 1/12), for j = 1, . . . , N and h = 0, . . . , Nj .
Then the balls Bhj are disjoint, Bhj ⊂ B(zhj , 1) ∩B(zh+1

j , 1) and B
Nj
j = B(cB , 1/12).

Denote by φhj a nonnegative function in C∞c (Bhj ) that has integral 1. By the uniform ball size
property we may choose the functions φhj so that there exists a constant A such that ‖φhj ‖2 ≤ A
for all h and j.

Now, denote by a0
j the function aψj . Clearly

a =
N∑
j=1

ψj a =
N∑
j=1

a0
j .

Next, define

a1
j = a0

j − φ0
j

∫
M

a0
j dµ and ahj = (φh−2

j − φh−1
j )

∫
M

a0
j dµ, 2 ≤ h ≤ Nj + 1.
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Then, for every h in {1, . . . , Nj}, the support of ahj is contained in B(zh−1
j , 1), the integral of

ahj vanishes and

‖ahj ‖2 ≤ 2A
∫
M

|a0
j |dµ

≤ C ‖a0
j‖2 µ(Bj)1/2

≤ C ‖a0
j‖2 µ(Bhj )−1/2.

In the last two inequalities we have used the fact that for each r in R+ the supremum of µ(B)
over all balls B of radius r is finite by the uniform ball size property. Hence there exists a
constant C, independent of j and h, such that

‖ahj ‖H1 ≤ C ‖a0
j‖2. (5.10)

Moreover

a0
j =

Nj+1∑
h=1

ahj + φ
Nj
j

∫
M

a0
j dµ.

Thus

a =
N∑
j=1

Nj+1∑
h=1

ahj ,

because
∑
j

∫
M
a0
j dµ =

∫
M
a dµ = 0 and all the functions φ

Nj
j , j = 1, . . . , Nj coincide, for

B
Nj
j = B(cB , 1/12). Now we use (5.10) and the fact that Nj ≤ C rB , and conclude that

‖a‖H1 ≤ C
N∑
j=1

Nj+1∑
h=1

‖a0
j‖2

≤ C rB
N∑
j=1

‖a0
j‖2.

Then we use Schwarz’s inequality and the fact that N ≤ C µ(B), and obtain that

‖a‖H1 ≤ C rB N1/2
( N∑
j=1

‖a0
j‖2

2
)1/2

≤ C rB µ(B)1/2 ‖a‖2
≤ C rB .

The last inequality follows because a is a H1-atom supported in the ball B.
This completes the proof of the lemma.

5.4. Proof of Theorem 3.4

For the reader’s convenience, we recall one of the properties of functions in H∞(SW ; J) (see
Definition 3.3), which will be key in the proof of Theorem 3.4.

Lemma 5.8 [21, Lemma 5.4]. Suppose that J is an integer ≥ 2, and that W is in R+. Then
there exists a positive constant C such that for every function f in H∞

(
SW ; J

)
, and for every

positive integer h ≤ J − 2

|Ohf̂(t)| ≤ C ‖f‖SW ;J |t|h−J e−W |t| ∀t ∈ R \ {0}.
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We restate Theorem 3.4 for the reader’s convenience.

Theorem. 3.5 Assume that α and β are as in (1.1), and δ as in (3.1). Denote by N the
integer [[n/2 + 1]] + 1. Suppose that J is an integer > max

(
N + 2 + α/2− δ,N + 1/2

)
. Then

there exists a constant C such that

|||m(D)|||H1 ≤ C ‖m‖Sβ ;J ∀m ∈ H∞
(
Sβ ; J

)
.

Proof. For notational convenience, in this proof we shall write J instead of JN−1/2.

Step I: reduction of the problem. We claim that it suffices to prove that for each H1-atom a
the function m(D) a may be written as the sum of atoms with supports contained in balls of
B1, with `1 norm of the coefficients controlled by C ‖m‖Sβ ;J .

Indeed, by arguing as in [34, Thm 4.1], we may then show that m(D) extends to a bounded
operator from H1(M) to L1(M), with norm dominated by C ‖m‖Sβ ;J . Note that [34, Thm 4.1]
is stated for spaces of homogeneous type. However, its proof extends to the present setting.
Now, suppose that f is a function in H1(M) and that f =

∑
j λj aj is an atomic decomposition

of f with ‖f‖H1 ≥
∑
j |λj | − ε. Then m(D)f =

∑
j λjm(D)aj , where the series is convergent

in L1(M), because m(D) extends to a bounded operator from H1(M) to L1(M). But the
partial sums of the series

∑
j λjm(D)aj is a Cauchy sequence in H1(M), hence the series is

convergent in H1(M), and the sum must be the function m(D)f . Then

‖m(D)f‖H1 ≤
∑
j

|λj | ‖m(D)aj‖H1

≤ C ‖m‖Sβ ;J

∑
j

|λj |

≤ C ‖m‖Sβ ;J (‖f‖H1 + ε),

and the required conclusion follows by taking the infimum of both sides with respect to all
admissible decompositions of f .

Step II: splitting of the operator. Let ω be the cut-off function defined in Section 3. Clearly
ω̂ ∗m and m− ω̂ ∗m are bounded functions. Define the operators S and T spectrally by

S = (ω̂ ∗m)(D) and T = (m− ω̂ ∗m)(D).

Then m(D) = S + T . We analyse the operators S and T in Step III and Step IV respectively.

Suppose that a is a H1-atom supported in B(p,R) for some p in M and R ≤ 1.

Step III: analysis of S. In the following, we shall need to estimate the L2(M) norm of the
differential of the kernel of certain operators related to S. To this end, and to be able to apply
[30, Proposition 2.2 (iii)], we write the operator S as a function of the operator D1, rather
than of D. Recall that D1 =

√
D2 + κ2.

Since ω̂ ∗m is an even entire function of exponential type 1, the function S, defined by

S(ζ) = (ω̂ ∗m)
(√

ζ2 − κ2
)

∀ζ ∈ C,

is well defined, and is of exponential type 1. Hence its Fourier transform has support in [−1, 1].
It is straightforward to check that

S = S(D1),

and that
‖S‖Mih(J) ≤ C ‖ω̂ ∗m‖Mih(J),
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where the constant C does not depend on m. By arguing much as in the proof of [21,
Proposition 5.3], we may show that ‖ω̂ ∗m‖Mih(J) ≤ C ‖m‖Mih(J), where C is independent
of m. Clearly

‖m‖Mih(J) ≤ ‖m‖Sβ ;J ∀m ∈ H∞(Sβ ; J).

Hence there exists a constant C such that

‖S‖Mih(J) ≤ C ‖m‖Sβ ;J ∀m ∈ H∞(Sβ ; J). (5.11)

Define the functions Si as in (5.5) and (5.6), but with N − 1 in place of k and the Fourier
transform of S in place of K. We further decompose S as

∑d
i=0 Si(D1), where d is as in (5.3).

The function S0 is bounded by Lemma 5.4 (iii), hence S0(D1) is bounded on L2(M) by the
spectral theorem, and

|||S0(D1)|||2 ≤ ‖S0‖∞ ≤ C ‖S‖Mih(2) ≤ C ‖m‖Sβ ;J .

Observe that the support of the kernel of the operator Si(D1) is contained in {(x, y) : d(x, y) ≤
4i+1R} by the finite propagation speed. Thus the support of Si(D1)a is contained in the ball
with centre p and radius (4i+1 + 1)R, which henceforth we denote by Bi. In particular S0(D1)a
is supported in B0 = B(p, 5R), and

‖S0(D1)a‖2 ≤ C |||S0(D1)|||2 ‖a‖2 ≤ C R−n/2 ‖m‖Sβ ;J .

Furthermore, the integral of S0(D1)a vanishes by Proposition 5.5 (ii), so that S0(D1) a is a
constant multiple of a H1-atom.

Denote by kSi(D1) the integral kernel of the operator Si(D1). Observe that

Si(D1) a(x) =
∫
B(p,R)

a(y)
[
kSi(D1)(x, y)− kSi(D1)(x, p)

]
dµ(y).

By Minkowski’s integral inequality and the fact that the support of Si(D1) a is contained in
Bi, we have that

‖Si(D1) a‖2 = ‖Si(D1) a‖L2(Bi)

≤
∫
B(p,R)

|a(y)| Ii(y) dµ(y),

where
Ii(y) = ‖kSi(D1)(·, y)− kSi(D1)(·, p)‖L2(Bi) ∀y ∈ B(p,R).

To estimate Ii(y), we observe that

Ii(y) ≤ d(y, p) sup
z∈M

∥∥d2kSi(D1)(·, z)
∥∥
L2(Bi)

and, by Lemma 5.4 (ii) (with k = N − 1),

d2kSi(D1)(·, z) =
1

2π

∫∞
−∞

φρi(t)PN (O)Ŝ(t) d2kJ (tD1)(·, z) dt.

Recall that φρi is supported in Ei = {t ∈ R : 4i−1R ≤ |t| ≤ 4i+1R}, that the support of Ŝ is
contained in [−1, 1] and that d(p, y) < R. Then, by [30, Proposition 2.2 (ii)] (with J in place
of F ), there exists a constant C, independent of i and R, such that

Ii(y) ≤ C d(y, p)
∫∞
−∞

φρi(t) |PNO)Ŝ(t)| sup
z∈M

∥∥d2kJ (tD1)(·, z)
∥∥
L2(Bi)

dt

≤ C ‖tPN (O)Ŝ‖∞R

∫
Ei

|t|−n/2−2 dt

≤ C ‖m‖Sβ ;J R (4iR)−n/2−1 .
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Thus,

‖Si(D1) a‖2 ≤ C ‖m‖Sβ ;J 4−i (4iR)−n/2 ‖a‖1
≤ C ‖m‖Sβ ;J 4−i µ(Bi)−1/2.

Furthermore the integral of Si(D1) a vanishes by Proposition 5.5 (i), so that the function
4i Si(D1) a is a constant multiple of a H1-atom. Thus

‖S a‖H1 ≤ C ‖m‖Sβ ;J

∞∑
i=0

4−i

≤ C ‖m‖Sβ ;J .

Step IV: analysis of T . For each j in {1, 2, 3, . . .}, define ωj by the formula

ωj(t) = ω(t− j) + ω(t+ j) ∀t ∈ R. (5.12)

Observe that
∑∞
j=1 ωj = 1− ω and that the support of ωj is contained in the set of all t in R

such that j − 3/4 ≤ |t| ≤ j + 3/4.
Since m is in H∞

(
Sβ ; J

)
and J ≥ N + 2, the function m̂ and its derivatives up to

the order N are rapidly decreasing at infinity by Lemma 5.8, so that O`(ωj m̂) is in
L1(R) ∩ C0(R+) for all ` in {0, . . . , N}, and so does PN (O)(ωj m̂). In the rest of this proof,
we write Ωj,N instead of PN (O)(ωj m̂). Observe that the support of Ωj,N is contained in
{t ∈ R : j − 3/4 ≤ |t| ≤ j + 3/4}.

Define the function Tj : R→ C by

Tj(λ) =
∫∞
−∞

Ωj,N (t)J (tλ) dt ∀λ ∈ R. (5.13)

We may use the observation that (m− ω̂ ∗m)̂ =
∑∞
j=1 ωj m̂ and formula (5.2), and write

(m− ω̂ ∗m)(λ) =
1

2π

∫∞
−∞

(
1− ω(t)

)
m̂(t) cos(tλ) dt

=
∞∑
j=1

Tj(λ).

Then, by the spectral theorem,

T a =
∞∑
j=1

Tj(D)a.

By the asymptotics of JN−1/2 [28, formula (5.11.6), p. 122]

sup
s>0
|(1 + s)N J (s)| <∞.

Since N − 1/2 > (n+ 1)/2, we may apply [30, Proposition 2.2 (i)] and conclude that

‖J (tD)a‖2 ≤ ‖a‖1
∣∣∣∣∣∣J (tD)

∣∣∣∣∣∣
1;2

≤ sup
y∈M

∥∥kJ (tD)(·, y)
∥∥

2

≤ C |t|−n/2
(
1 + |t|

)n/2−δ ∀t ∈ R \ {0}.
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Then J (tD)a is supported in B(p, t+R), and has integral 0 by Proposition 5.5 (i). Observe
that

‖Tj(D)a‖2 ≤ C
∫∞
−∞
|Ωj,N (t)| ‖J (tD)a‖2 dt

≤ C
∫ j+3/4

j−3/4

|Ωj,N (t)| |t|−n/2
(
1 + |t|

)n/2−δ dt (5.14)

≤ C ‖m‖Sβ ;J j
N−J−δ e−β j ∀j ∈ {1, 2, . . .}.

In the last inequality we have used Lemma 5.8 and [30, Proposition 2.2 (i)]. Note that
jδ+J−N−α/2 Tj(D)a is a constant multiple of a H1-atom. Indeed, Tj(D)a is a function in L2(M)
with support contained in B

(
p, j + 1

)
, and has integral 0 by Proposition 5.5 (i). Moreover

‖jδ+J−N−α/2 Tj(D)a‖2 ≤ C ‖m‖Sβ ;J j
−α/2 e−β j

≤ C ‖m‖Sβ ;J µ
(
B(p, j + 1)

)−1/2 ∀j ∈ {1, 2, . . .}.
Hence we may write

T a =
∞∑
j=1

λj a
′
j ,

where a′j is a H1-atom supported in B
(
p, j + 1

)
, and

λj = C ‖m‖Sβ ;J j
N+α/2−J−δ.

By Lemma 5.7 we have ‖a′j‖H1 ≤ C j, so that

‖T a‖H1 ≤
∞∑
j=1

|λj | ‖a′j‖H1

≤ C ‖m‖Sβ ;J

∞∑
j=1

j1+N+α/2−J−δ,

which is finite (and independent of a) because J > 2 +N + α/2− δ.

Step V: conclusion. By Step III and Step IV there exists a constant C such that for every
H1-atom a with support contained in a ball of radius at most 1

‖Sa‖H1 + ‖T a‖H1 ≤ C ‖m‖Sβ ;J .

Then Step II implies that
‖m(D)a‖H1 ≤ C ‖m‖Sβ ;J .

The required conclusion follows from Step I.
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Università di Genova
Via Dodecaneso 35
I-16146 Genova
Italy

mauceri@dima.unige.it

S. Meda and M. Vallarino
Dipartimento di Matematica e Applicazioni
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