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Abstract

We consider the problem of expected power utility maximization from terminal wealth in
diffusion market models under partial information. Explicit expressions for the value-process
and for the optimal strategy are obtained for some interesting special cases. In particular,
a closed form solution is given in terms of a PDE with terminal condition for Markovian
models. An illustration of the optimal strategy is provided by means of some numerical
simulations.
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1 Introduction

We deal with the issue of finding the optimal investment strategy, when trading takes place on a
finite interval [0, T ] and the quality of the investment is measured by the expected power utility
of the related terminal wealth. Moreover, the strategy is based on the investor’s observations,
which may not include all market information.
Utility maximization problems with partial information have been studied extensively and under
various setups, to name but a few works dealing with this subject we mention [2, 3, 4, 5, 6, 9,
15, 16, 21, 24, 26, 29].
We focus on two Brownian models in which we are able to solve the dynamic control problem
related to the portfolio optimization explicitly. These models can be seen as particular cases of
the semimartingale model treated in [6] admitting an explicit solution. Indeed, in such cases
the solution of the backward stochastic differential equation (BSDE) characterizing the value
process related to the problem at issue and given in [6] admits an explicit expression. Moreover,
for some specific examples also the optimal strategy can be written explicitly and simulated
numerically.

We consider the power function u(x) = xp

p , defined on x > 0 with p < 0 and constant
relative risk aversion parameter 1− p, and solve the problem of maximizing the expected value
of power utility of the value of the portfolio at the final time T . In mathematical terms, we
consider the problem

maximize E

[
(Xx,π

T )p

p

]
over all π ∈ Π, (P1)
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where the value of the portfolio in T , Xx,π
T , depends on x and π, respectively, the initial capital

and the proportion of wealth invested in the risky asset. The proportion π is chosen in a certain
class Π (to be defined in the sequel) of self-financing strategies adapted to the observed filtration.
The process of returns associated to the risky asset is denoted by Rt and the usual assumption
that there exists a bank account which pays no interests is made. Furthermore, without loss of
generality, we set x = 1. It is not difficult to see that X1,π

t = Xπ
t = 1 +

∫ t
0 X

π
u−πudRu describes

the wealth process corresponding to the self-financing strategy π. Since Xπ
t is the solution of a

Doléans equation and p < 0, Problem (P1) can be stated in exponential form

minimize E
[
EpT (π ·R)

]
over all π ∈ Π, (P2)

where Et(X) indicates the Doléans-Dade exponential of X.
In Sections 2 and 3, two different Brownian settings are characterized by choosing the dy-

namics of the returns Rt and Problem (P2) is solved specifying the filtration representing the
flow of observable information.

In Section 2, we consider a stochastic volatility model as in [7, 10, 22], where the coefficients
of the dynamics of returns Rt depend on an observable factor ηt. We suppose that the two
Brownian motions driving respectively Rt and the stochastic factor ηt have a stochastic cor-
relation that depends only on the stochastic factor. A similar assumption is met and justified
from an economic point of view in an example of [8]. One can think ηt as the price of a not
traded asset (e.g. a volatility or a consumer price index) or of an asset tradable in principle but
not traded in practice because of restrictions of some kind such as liquidity, legal issues, etc.
Furthermore, we suppose the agent have gaps in the observation of the returns and we compute
the optimal strategy relying on the observable factor.
We characterize the solution of the problem through a Brownian BSDE with quadratic growth.
If the correlation is constant, we obtain the expression of both the value process, by directly
solving the BSDE, and of the optimal strategy. The proof heavily relies on the correlation being
constant and it is enough that ρt is a deterministic function of time for it to fail.
When ρt is stochastic and not constant in time, we can still express the solution of the opti-
mization problem at a fixed time t in a form which preserves the same structure obtained for
constant ρ. In this case, the goal is reached by deriving lower and upper bounds for the value
process and then by interpolation. This strategy is in the same spirit of [8], a major difference
being that we derive lower and upper bounds by using BSDEs.
In Section 2.3 we deal with information sufficiency: we compare our results to the one obtained
for a more general diffusion model in full information and discuss the conditions on the model
under which the two power utility maximization problems yield the same solution. In particular,
it turns out that the conditions we consider in the partial information setting are sufficient for
getting the same result as in the full information case.
In the specific case of Markovian coefficients and constant ρ, we obtain the explicit formulae
of the optimal strategy in terms of solutions of PDEs. The key point is the establishment of
the connection between the BSDE for the value process and the classical Bellman equation for
the value function related to the same problem. The PDE characterization allows by classical
numerical results to simulate strategies and value functions. Moreover, we illustrate numerically
risk aversion asymptotics of the optimal strategies proved in [6] and [23].

Section 3 is devoted to an application to the so called disorder problem (see, e.g., [29] and
the literature therein). The dynamics of the asset returns (with constant volatility σ) is given
by

dRt = µI(t≥τ)dt+ σdWt,
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i.e. the trend in the returns process changes value from 0 to some constant µ 6= 0 at a random
time τ with a given priori distribution. The observed filtration is the one generated by Rt,
indicated by FR. The solution of Problem (P2) is given in terms of the a posteriori distribution
pt = P (τ ≤ t|FRt ). In particular, the value function related to (P2) is proved to be the solution
of a linear PDE. We conclude the section providing some numerical illustrations.

2 Itô model

We consider a continuous market model composed of a non risky asset whose price is supposed
to be equal to 1 and of a risky asset. The dynamics of the risky asset returns is represented by
an Itô process and is denoted by Rt, while ηt represents an observable factor. The dynamics of
Rt and ηt

dRt =µtdt+ σtdW
1
t , (1)

dηt =btdt+ atdWt (2)

depend on two correlated Brownian motions W 1
t and Wt with stochastic correlation ρt ∈ [−1, 1],

ρtdt = d〈W 1,W 〉t defined on a complete probability space (Ω, F, P ) equipped with a filtration F .
We suppose F is the P−augmented filtration generated by two independent Brownian motions

W 1
t and W 0

t , i.e. F = (FW
1,W 0

t , t ∈ [0, T ]) and F = FW
1,W 0

T .
Thus, we can write the Brownian motion W as

Wt =

∫ t

0
ρsdW

1
s +

∫ t

0

√
1− ρ2

sdW
0
s ,

with ρt denoting the Ft−adapted instantaneous correlation between W 1
t and Wt.

To emphasize the information available to the agent we denote by G the flow of observable
events and rewrite the optimization problem (P2),

minimize E
[
EpT (π ·R)

]
over all π ∈ Π(G). (P3)

where the class of strategies depends on G.
Then, we study the problem with G = F to be termed “full information” case. After that, we

compare the two situations and find necessary and sufficient conditions on the model under which
the two problems give the same solution. We refer to this part of the section as “sufficiency
of information”. We can roughly summarize our plan as follows: we solve the optimization
Problem (P3) when the strategy is chosen in a proper set respectively of Fη (in the former case)
and, of F (in the latter case) adapted processes, then we find the best strategy in closed form
and compare the obtained results.

We start by considering G = Fη, which means the agent relies only on the observable factor
ηt and not on the returns Rt. This could seem restrictive but it is an intermediate step before
studying the more realistic situation of delays and gaps in the observation of the return, which
is the object of our ongoing research.
We refer to the case G = Fη as “partial information” and we solve Problem (P3) under suitable
hypotheses (conditions 1)–5) below) on the model (1)-(2).

The class of strategies are chosen to be

Π(G) = {π : G − predictable, πσ ·W 1 ∈ BMO(F)} (3)
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and
Vt = ess inf

π∈Π(G)
E[EptT (π ·R)|Gt],

is the related value process. We use EtT (X) to denote the ratio ET (X)
Et(X) .

Remark 2.1. We could use the class of strategies

Π(G) = {π : G − predictable such that Epts(πσ ·W 1); t ≤ s ≤ T ∈ class D}

and prove the part of the theorem related to stochastic ρ exactly as in [8]. As it is apparent
from the proof in that paper, a key technical point is based on the BMO property of the
strategies, which is recovered through a localization procedure. We require it in the definition
of the admissible strategies (3), since we use stochastic control techniques to give a BSDE
characterization of the dynamic value of Problem (P3) (see [6]).

2.1 Partial information

Let us focus on G = Fη. We consider model (1)-(2) and assume µt, σt, at and bt are non
anticipative functionals such that

1)
∫ T

0
µ2t
σ2
t
dt is bounded,

2) µt, σt, at and bt are Fη−adapted,
3) σ2

t > 0, a2
t > 0,

4) equation (2) admits a unique strong solution,
5) ρt is Fη−adapted.

Note that the dynamics of the returns process Rt is determined by the observable factor ηt
and by W 1

t , since all coefficients in the model are Fη non anticipative functionals hence we can
write, e.g., µt = µ(t, η). In particular, we observe that, under conditions 1)–5), Fη = FW (see
[17]) and FR,η = FW 1,W ⊆ FW 1,W 0

= F .
It is not difficult to see that under conditions 1)–5), Theorem 1 of [6] can be applied yielding

the characterization of the value process related to the partial information problem, i.e. G = Fη,
as the unique bounded positive solution of a BSDE. That result is adapted here to the Brownian
setting. Let us denote by q = p

p−1 the exponent conjugate to p.

Theorem 2.1. Let conditions 1) − 5) hold true. Then, the value process Vt is the unique
solution of the BSDE

Yt = Y0 +
q

2

∫ t

0

(θuYu + ψuρu)2

Yu
du+

∫ t

0
ψudWu, YT = 1 (4)

satisfying the two sided inequality
c ≤ Yt ≤ C, (5)

where c and C are two constants not depending on t such that 0 < c ≤ C ≤ 1 and

θt =
µt
σt

stands for the market price of risk. Moreover, the optimal strategy is of the form

π∗t =
(1− q)
σt

(
θt +

ρtψt
Yt

)
, (6)

where (Y, ψ) is solution of (4).
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Remark 2.2. The process

Ṽt = ess inf
π∈Π(Fη)

E[EptT (π · R̂) exp {p(p− 1)

2

∫ T

t
π2
u(1− ρ̂2

u)σ2du}|Fηt ],

where X̂t = E [Xt|Fηt ] denotes for the projection on the observable filtration, represents the
value process related to a power utility optimization problem with a multiplicative correction
factor.
We observe that assuming σ2

t > 0 and Fη−adapted and that
∫ T

0 θ̂2
t dt is bounded, Ṽt is the

unique bounded positive solution of the (4) where in place of the market price of risk θ and the
instantaneous correlation ρ, appear respectively θ̂ and ρ̂t. This follows from a careful look at
the proof of Theorem 1 of [6]. Under conditions 1)–5), it is proved to be equivalent to Problem
(P3) (for details, see [6]).

Here and afterwards, with some abuse of notation, we often refer to Y as the solution of the
BSDE (4), keeping in mind that the solution is the couple (Y, ψ).
The BSDE characterization of the dynamic value process Vt of Problem (P3) under partial

information leads first to find an upper and a lower bound for Vt to be provided in Proposition
2.1. When ρ is deterministic, the two bounds coincide and we find an explicit form of the value
process in Corollary 2.1. In contrast, if ρt is stochastic by interpolation we derive a formula for
Vt (for fixed t) in Theorem 2.2.
Let us define the measure Q̃ by

dQ̃

dP
= ET (−q θ ·W 1) (7)

and W̃ denotes the Q̃-Brownian motion W̃t = Wt + q
∫ t

0 ρuθudu with respect to Fη. Indeed, W̃

is also a Q̃−Brownian motion with respect to F .

Proposition 2.1. Assume conditions 1) − 5) hold true. Then, the value process Vt related
to Problem (P3) satisfies(

EQ̃[e−
q(1−qρ2)

2

∫ T
t θ2udu)|Fηt ]

) 1
1−qρ2

≤ Vt ≤
(
EQ̃[e−

q(1−qρ2)
2

∫ T
t θ2udu)|Fηt ]

) 1
1−qρ2

, (8)

where
ρ = sup

u≥t
‖ρu‖L∞ and ρ = inf

u≥t
‖ρu‖L∞ . (9)

Proof. Let Yu be a solution of (4). By Ito’s formula, we can write the BSDE satisfied by
Zu = lnYu under the measure Q̃

dZu =
q

2
θ2
udu+ ψ̄udW̃u −

1

2
(1− qρ2

u)ψ̄2
udu, ZT = 0, (10)

with ψ̄u = ψu
Yu

. We fix t ∈ [0, T ], and after multiplying the left and right side of (10) by the

positive constant 1− qρ2, we integrate the BSDE from t to T . Using the terminal condition, we
get to

−q
2

∫ T

t
(1− qρ2)θ2

udu=(1− qρ2)Zt +

∫ T

t

(
(1− qρ2)ψ̄udW̃u −

1

2
(1− qρ2)2ψ̄2

udu

)
− q

2
(1− qρ2)

∫ T

t
(ρ2 − ρ2

u)ψ̄2
udu.
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By the previous equation we immediately have

e−
q
2

∫ T
t (1−qρ2)θ2udu = Y 1−qρ2

t EtT
(

(1− qρ2)ψ̄ · W̃
)
e−

q
2

(1−qρ2)
∫ T
t (ρ2−ρ2u)ψ̄u

2
du. (11)

We observe that with respect to Q̃ (1 − qρ2)ψ̄ · W̃ is a BMO(Fη)−martingale. This follows
from (5), recalling that ψ̄u = ψu

Yu
, and Lemma 1 in [6] which states that the martingale part of

the BSDE (4) is in BMO. At = e−
q
2

(1−qρ2)
∫ t
0 (ρ2−ρ2u)ψ̄2

udu is a bounded decreasing process and, by

Theorem 2.3 in [13], Jt = Et
(

(1− qρ2)ψ̄ · W̃
)

is a positive Q̃ uniformly integrable martingale.

Thus the product JtAt(ρ) is a Q̃ supermartingale. Considering the conditional expectation with
respect to Fηt in (11), we find a lower bound for Yt, that is

Y 1−qρ2
t ≥ EQ̃

[
e−

q
2

∫ T
t (1−qρ2)θ2udu|Fηt

]
.

The upper bound is obtained in a similar manner by using ρ instead of ρ, in that case the

product JtAt(ρ) is a Q̃ (generalized) submartingale and we reach the opposite inequality.

As a corollary, we immediately obtain the explicit solution of BSDE (4) when ρ is constant,
since ρ = ρ.

Corollary 2.1. Assume conditions 1)−4) and suppose ρ is constant. Then, the value process
Vt is equal to

Vt =

(
EQ̃[e−

q(1−qρ2)
2

∫ T
t θ2udu)|Fηt ]

) 1
1−qρ2

. (12)

Moreover, the optimal strategy π∗ is identified by

π∗t =
(1− q)
σt

(
θt +

ρht

(1− qρ2)(c+
∫ t

0 hudW̃u)

)
, (13)

where ht is the integrand in the integral representation

e−
q(1−qρ2)

2

∫ T
0 θ2t dt = c+

∫ T

0
htdW̃t. (14)

Proof. The expression in (12) follows immediately from (8) since the lower and upper bounds
of Vt coincide. Otherwise, one could easily repeat the proof of Proposition 2.1 observing that
JtAt(ρ) = Jt is a Q̃−martingale.
To derive the optimal strategy, we use Theorem 2.1, which gives the closed form of the optimal
strategy in terms of the solution of the BSDE (4). We want to find an expression for ψ

Y = ψ̄
which appears in (6), using the integral representation (14) and (12).

More precisely, from (12) and (14) we can write

Vt = e
q
2

∫ t
0 θ

2
udu

(
c+

∫ t

0
hudW̃u

) 1
1−qρ2

,

hence, Zt = lnVt satisfies the following BSDE

dZt =
q

2
θ2
t dt+

1

1− qρ2

(
ht

(c+
∫ t

0 hudW̃u)
dW̃t −

h2
t

2(c+
∫ t

0 hudW̃u)2
dt

)
, ZT = 0.
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Comparing this BSDE with (10), we immediately get

ψ̄t =
ht

(1− qρ2)(c+
∫ t

0 hudW̃u)

and therefore (13).

Remark 2.3. If, furthermore µ and σ are constant, then h = 0 in (14) and the optimal

strategy boils down to π∗t = (1−q)µ
σ2 , which keeps a constant proportion of money invested in the

risky asset. The same strategy will be optimal when ρ = 0, since in that case the information
on η will not affect the portfolio optimization problem.

In the opposite case of two perfectly correlated Brownian motions, i.e. ρ2 = 1, (14) coincides
with the necessary and sufficient condition for the p−optimal martingale measures to coincide
with the minimal martingale measure (see Theorem 1 or Corollary 3 in [25]). Thus, our result

Vt =
(
EQ̃[e−

q(1−q)
2

∫ T
t θ2udu)|Fηt ]

) 1
1−q

(15)

confirms the well known relation between portfolio optimization and the dual problem in terms
of martingale measures (see, e.g., Proposition 2.3 in [18]). Indeed,

Vt =
(
E[EqtT (−θ ·W 1)|Fηt ]

) 1
1−q ,

where ET (−θ ·W 1) is the minimal martingale measure.

Let us now consider the case of a stochastic ρ. We can still express Vt in a form which
preserves, for any ω, the same structure it has when ρ is constant. Indeed, adapting Theorem 1
in [8], we find the following result.

Theorem 2.2. Under the assumptions 1)−5), there exists a Fηt −measurable random variable
ρ̃t taking values in the interval [ρ, ρ], defined in (9), such that

Vt(ω) =

(
EQ̃[e−

q(1−qρ2)
2

∫ T
t θ2udu)|Fηt ]

) 1
1−qρ2 ∣∣

ρ=ρ̃t(ω)
,

for almost all ω ∈ Ω.

Proof. We sketch the line of reasoning for sake of completeness (for the complete proof and
details, we refer to [8]). Let us define f(·, ·) : [ρ, ρ]× Ω→ R by

f(ρ, ω) :=

(
EQ̃[e−

q(1−qρ2)
2

∫ T
t θ2udu|Fηt ](ω)

) 1
1−qρ2

.

By condition 1), dominated convergence and Jensen’s inequality, the function f admits a version
which is continuous and non increasing in ρ for each ω. Using this version and the intermediate
value theorem, we conclude that there exist a ρ̃t such that for almost all ω ∈ Ω

f(ρ̃t(ω), ω) = Vt(ω).

It is left to show that ρ̃t is Fηt measurable and in order to do this one can follow the proof of
Theorem 1 in [8].
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2.2 Full information

Expected utility maximization problems have been studied under various degrees of generality
in the case agents have full access to the market information.

It is well known (see, e.g, [14]) that in a general semimartingale model provided there exists
an equivalent local martingale measure, the expected power utility maximization from terminal
wealth admits a unique solution in the space of predictable R−integrable strategies π such that
the corresponding wealth process is non negative. When the returns process is a continuous
semimartingale, a characterization of the value process related to expected power utility max-
imization in terms of a BSDE can be found as, e.g., in [18] under quite general assumptions.
Along the lines of Theorem 3.1 in [18], we can obtain the same result in our Brownian model
(1)-(2).

In this section, we will assume that µt, σt are FW 1,W 0
progressively measurable processes

such that
1)
∫ T

0
µ2t
σ2
t
dt is bounded,

2′) σ2
t > 0.

Note that condition 1), assumed also in Section 2.1, implies the existence of the minimal martin-
gale measure (hence the set of martingale measures is not empty) and, since Rt is continuous,
the assumptions of the Theorem 3.1 of [18] are satisfied. By standard dynamic programming
arguments, the optimality principle (Proposition 2.1 in [18]) can be proved and we obtain the
existence of a solution of the BSDE (16) by directly showing that the value process solves it,
without resorting to general existence results from BSDEs’ theory.

We refer to [18] for details. However, since we focus on the specific case p < 0 and since our
choice of admissible strategies is different from that of [18], we include a proof of the following
known result. Note that it could be obtained applying Corollary 2 of [6]. Nevertheless we believe
that our proof shows that the choice of the set of admissible strategies is not really important
for the conclusion of Proposition 2.2 to hold.

Proposition 2.2. Assume conditions 1) and 2’) hold true. Then the value process V F
t ,

related to Problem (P3) when G = F , is characterized as the unique bounded positive solution
of the following BSDE

Y F
t = Y F

0 +
q

2

∫ t

0

(θuY
F
u + ψFu )2

Y F
u

du+

∫ t

0
ψFu dW

1
u +

∫ t

0
ψ⊥u

F
dW 0

u , Y F
T = 1 (16)

where W 0 is a F−Brownian motion orthogonal to W 1 and F = FW 0,W 1
, and the optimal

strategy is of the form

π∗t =
(1− q)
σt

(
θt +

ψFt
Y F
t

)
, (17)

with (Y F
t , ψ

F
t , ψ

⊥
t
F

) solution of (16).

Proof. By [18], we know that there exists a unique bounded solution of the BSDE (16). Indeed,
in Theorem 3.1 of [18] the unique bounded solution is provided by

Ṽt = ess inf
π∈Π̃(F)

E[EptT (π ·R) | Ft],

which represents the value process related to Problem (P2) where the set of admissible strategies
is

Π̃(F) = {π : F − predictable s.t. E(EpT (π ·R)) <∞}. (18)
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Note that condition 1) implies assumption B∗ of Theorem 3.1 and that Ṽt is the unique solution
bounded from below by a positive constant (by duality arguments) and from above by 1 (since
the null strategy belongs to Π̃(F)). Therefore, 0 < c ≤ Ṽt ≤ 1. Moreover, in [18], it is also
shown that the strategy π∗t defined in (17) is optimal and belongs to the class Π̃(F).

We want to show that Ṽt = V F
t .

To see Ṽt ≥ V F
t , we first prove that π∗t belongs to Π(F).

Let Y F be any solution of (16), satisfying c ≤ Y F
t ≤ 1, where c is a positive constant. By

writing Ito’s formula for (Y F
t )2 and using the boundary condition, we show that the martingale

part of Y F belongs to BMO(F) and, in particular, ψF ·W 1 does. Indeed, we have

(Y F
T )2 − (Y F

τ )2 =1− (Y F
τ )2

=q

∫ T

τ
(θuY

F
u + ψFu )2du+

∫ T

τ
2Y F

u (ψFu dW
1
u + ψ⊥u

F
dW 0

u )

+

∫ T

τ

(
ψFu )2 + (ψ⊥u

F
)2
)
du,

where τ is any F−stopping time. Then∫ T

τ

(
ψFu )2 + (ψ⊥u

F
)2
)
du ≤1− q

∫ T

τ
(θuY

F
u + ψFu )2du

− 2

∫ T

τ
Y F
u (ψFu dW

1
u + ψ⊥u

F
dW 0

u ) (19)

≤1− 2

∫ T

τ
Y F
u (ψFu dW

1
u + ψ⊥u

F
dW 0

u ).

Without loss of generality we will assume that ψF · W 1 + ψ⊥
F · W 0 is a square integrable

martingale, otherwise one can use localization arguments. By taking the conditional expectation
in (19), we find that

E[

∫ T

τ

(
ψFu )2 + (ψ⊥u

F
)2
)
du|Fτ ] ≤ 1. (20)

Then,

(1− q)2E[

∫ T

τ

(
θu +

ψFu
Y F
u

)2du|Fτ ] ≤ (1− q)22E[

∫ T

τ

(
θ2
u +

ψFu
2

Y F
u

2

)
du|Fτ ],

which is bounded by a positive constant because of Y F ≥ c, condition 1) and (20). This proves
that π∗t belongs to Π(F) and that V F

t ≤ Ṽt.

Now, we prove the opposite inequality.
We consider the product ṼtEpt (π ·R) for any π ∈ Π(F). By Ito’ s formula, after some computa-
tions, one can write

ṼtEpt (π ·R) = Ṽ0Et
(
(pπσ +

ψF

Ṽ
) ·W 1 +

ψ⊥
F

Ṽ
·W 0

)
e
p(p−1)

2

∫ t
0

(
πuσu− 1

(1−p) (µu
σu

+
ψFu
Ṽu

)
)2
du
,

9



where we use (Ṽt, ψ
F
t , ψ

⊥
t
F

) to denote the unique solution of (16). Since π belongs to Π(F), Ṽ

is bounded and by (20), we have that pπσ + ψF

Ṽ
·W 1 + ψ⊥

F

Ṽ
is a BMO(F) martingale and, by

Theorem 2.3 in [13], the exponential martingale

Et
(
(pπσ +

ψF

V
) ·W 1 +

ψ⊥
F

V
·W 0

)
is uniformly integrable. ṼtEpt (π ·R) is a (generalized) submartingale, since it is the product of a
positive uniformly integrable exponential martingale and a strictly positive increasing process.
Therefore,

Ṽt ≤ E(EptT (π ·R) | Ft) a.s.

and
Ṽt ≤ V F

t a.s..

Thus Ṽt coincides with V F
t and, as consequence, V F

t is the unique bounded positive solution
of (16).

2.3 Sufficiency of information

In this section we discuss the conditions on the model which guarantee that the value processes
related to the two problems with G = Fη and G = F , respectively, coincide. The key point is
played by the BSDE characterization of the value processes we gave previously.
We refer to [21] for related results in exponential hedging and in the continuous semimartingale
setting. We stress that in our Brownian model, as we shall see, these conditions turn out to be
concrete hypotheses on the model coefficients.

We recall the model (1)-(2) defined on the complete probability space (Ω, F, P ), equipped

with the P−augmented filtration F = (FW
1,W 0

t , t ∈ [0, T ]), where W 0
t and W 1

t are two in-
dependent Brownian motions. Moreover, Wt is a Brownian motion correlated with W 1 with
instantaneous stochastic correlation ρt. We assume the observed information is given by the
flow Fη and, for simplicity, we make the standing assumption Fη = FW . Fη = FW holds, for
instance, if 2), 3) and 4) are satisfied, but we are not requiring these conditions here.

Definition 2.1. We will say that the filtration G is sufficient for the optimization problem

minimize E
[
EpT (π ·R)

]
over all π ∈ Π(F), (P4)

with
Π(F) = {π : F − predictable, πσ ·W 1 ∈ BMO(F)},

if V0(G) = V F
0 where (as before) V F

t denotes the value process related to (P4) and

Vt(G) = ess inf
π∈Π(G)

E[EptT (π ·R)|Gt].

Recall that Π(G) is the subset of strategies in Π(F) which are G−predictable and note that
Vt(Fη) = Vt and Vt(F) = V F

t .

10



Remark 2.4. If the information given by the flow Fη is sufficient, i.e.

V0 = V F
0 ,

then, the optimal strategy in the full information problem π∗F will be in Π(Fη) and

V F
t = E

[
EptT (π∗F ·R)|Ft

]
.

Thus, we will have that the value Vt will be given by

Vt = E
[
EptT (π∗F ·R)|Fηt

]
= E

[
V F
t |F

η
t

]
.

Moreover, if the returns process R is observable (Fη−adapted), then

E
[
EptT (π∗F ·R)|Ft

]
= E

[
EptT (π∗F ·R)|Fηt

]
,

where the last equality is due to the fact that every Fη−martingale is a F−local martingale.
Therefore Vt = V F

t .

Theorem 2.3. Suppose conditions 1) and 2′) are satisfied, and σ is Fη−adapted. Vt = V F
t

if and only if V F
t satisfies the following BSDE

Yt = Y0 +
q

2

∫ t

0

(θ̂uYu + ψuρ̂u)2

Yu
du+

∫ t

0
ψudWu, YT = 1, (21)

where the process ψ is Fη−predictable and θ̂t = E [θt|Fηt ] and ρ̂t = E [ρt|Fηt ] are the projection
of θt and ρt on Fηt .

Proof. Under conditions 1) and 2′), by Proposition 2.2, V F
t is the unique (bounded strictly

positive) solution of the BSDE (16) and the optimal strategy is (17).
Let V F

t = Vt. Since V F
0 = V0, the optimal strategy πF

∗
is Fη−predictable. Since σ is

Fη−adapted, from (17) we see that

θt +
ψFt
V F
t

= θ̂t +
ψ̂Ft
V F
t

. (22)

V F is Fη−adapted and, by (22) and (16) also the part of bounded variation is Fη−adapted.
Thus, the martingale part of V F is Fη−adapted and hence it is a Fη−martingale. Under the
standing assumption Fη = FW , by the martingale representation theorem, we can write∫ t

0
ψFu dW

1
u +

∫ t

0
ψ⊥u

F
dW 0

u =

∫ t

0
ψudWu, (23)

where ψ is a Fη−predictable process.
Taking the covariation of the left and right-hand side in (23) with respect to W 1 we obtain∫ t

0
ψFu du =

∫ t

0
ψuρudu.

Clearly ψ̂Ft = ψtρ̂t, which plugged together with (23) and (22) into (16), shows that V F
t is

solution of the BSDE (21), which is considerably simpler than (16).

11



Viceversa, if V F
t is solution of the BSDE (21), V F

t is Fη−adapted by Remark 2.2.
Since all the Fη−martingale are F−local martingale, the canonical decomposition given

by the BSDE (21) coincides with the one given by the BSDE (16) (see, e.g., (9.27) in [12]).
Comparing the parts of bounded variation it follows that

(θ̂tV
F
t + ψtρ̂t)

2 = (θtV
F
t + ψtρt)

2.

This gives θtV
F
t + ψtρt and therefore the optimal strategy (17) are Fη−adapted.

Therefore,
V F
t = E[EptT (π∗F ·R)|Ft] = E[EptT (π∗F ·R)|Fηt ],

the second equality since V F
t is Fη−adapted.

π∗F ∈ Π(Fη) we have

E[EptT (π∗F ·R)|Fηt ] ≥ ess inf
π∈Π(Fη)

E[EptT (π ·R)|Fηt ] = Vt.

On the other end, V F
t ≤ Vt, therefore the equality V F

t = Vt follows.

Corollary 2.2. If all the conditions of Theorem 2.1 are satisfied, then Vt = V F
t .

From Theorem 2.1, the process Vt is the unique bounded strictly positive solution of equation
(21). Note that under 1)–5), θ̂t = θt and ρ̂t = ρt.
Using Wt =

∫ t
0 ρsdW

1
s +

∫ t
0

√
1− ρ2

sdW
0
s in (21), we see that from the solution (Yt, ψt) of the

BSDE (21), we can define the triplet Y F
t = Yt, ψ

F
t = ρtψt and ψ⊥t

F
=
√

1− ρ2
tψt and that the

triplet (Y F
t , ψ

F
t , ψ

⊥
t
F

) solves the BSDE (16).
Thus, by Proposition 2.2, Y F

t = V F
t and so V F

t = Vt.

Remark 2.5. When the correlation ρ is constant, conditions 1)–4) guarantee the filtration
Fη− is sufficient for the problem P4. Indeed, as a consequence of Corollary 2.1, we have that if
conditions 1)–4) hold and ρ constant, then V F

t = Vt and takes the form (12).
Indeed, one can prove that Vt satisfies (21) with

ψt =
e
q
2

∫ t
0 θ

2
udu

1− qρ2

(
c+

∫ t

0
hudW̃u

) qρ2

1−qρ2

ht, (24)

by Corollary 2.1, and then, as in Corollary 2.2, that Vt = V F
t .

2.4 Markovian model

In this section, we assume conditions 1) − 4) and the correlation ρ to be constant. Thus, by
Corollary 2.2, the problems in partial and full information are equivalent. Assuming Markovian
coefficients in the model, we can rewrite the explicit formulas of the value process (12) and the
optimal strategy (14) obtained in Corollary 2.1 in terms of the solution of a PDE.

We introduce the function

K(t, x) = EQ̃[e−
q(1−qρ2)

2

∫ T
t θ2(u,ηu)du | ηt = x], (25)

with Q̃ defined in (7), so that the value process Vt is equal to K(t, ηt)
1

1−qρ2 .
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Proposition 2.3. Assume conditions 1) − 4) and ρ constant. Then the value process takes

the form Vt = (K(t, ηt))
1

1−qρ2 , where K(t, x) is the solution of the PDE

Kt(t, x) +Kx(b(t, x)− qρθa(t, x)) +
1

2
a2(t, x)Kxx(t, x)−K(t, x)(

q

2
(1− qρ2)θ2(t, x)) = 0, (26)

with terminal condition K(T, x) = 1 and Kt,Kx and Kxx denoting partial derivatives of K.
Moreover, the optimal strategy π∗t is identified by

π∗t =
(1− q)
σ(t, ηt)

(
θ(t, ηt) +

Kx(t, ηt)

(1− qρ2)K(t, ηt)
ρa(t, ηt)

)
,

where K(t, x) satisfies the PDE (26).

Proof. We recall from Proposition 2.1 and (10), that Zt = lnVt satisfies the following BSDE

dZt = −1

2
(ψ̄2

t (1− qρ2)− qθ2
t )dt+ ψ̄tdW̃t

and ZT = 0, where ψ̄t = ψt
Yt

and W̃t = Wt + qρ
∫ t

0 θudu.

Then, integrating over the interval [0, T ] and multiplying by (1− qρ2), we obtain

(1− qρ2)Z0 + (1− qρ2)

∫ T

0
ψ̄udW̃u −

(1− qρ2)2

2

∫ T

0
ψ̄2
udu = −q

2
(1− qρ2)

∫ T

0
θ2
u(u, ηu)du

and by taking the exponential on both sides we have

cET ((1− qρ2)ψ̄ · W̃ ) = e−
q
2

(1−qρ2)
∫ T
0 θ2u(u,ηu)du, (27)

where c = eZ0(1−qρ2).
Now, (25) and (27) imply that

K(t, ηt) = ce
q(1−qρ2)

2

∫ t
0 θ

2(u,ηu)duEt((1− qρ2)ψ̄ · W̃ ).

Hence, by the product rule, we have that K(t, ηt) solves the following backward equation

dK(t, ηt) = K(t, ηt)(
q(1− qρ2)

2
θ2(t, ηt)dt+ ((1− qρ2)ψ̄tdW̃t)), K(T, ηT ) = 1. (28)

On the other hand, since the dynamics of ηt under Q̃ is

dηt = b(t, ηt)dt+ a(t, ηt)(dW̃t − qρθt(t, ηt)dt),

by applying Ito’s formula to K(t, ηt), we can write

dK(t, ηt) =Kx(t, ηt)(b(t, ηt)dt+ a(t, ηt)(dW̃t − ρqθ(t, ηt)dt)) +Kt(t, ηt)dt (29)

+
1

2
Kxx(t, ηt)a

2(t, x)dt.

Comparing (28) with (29) and equalizing the martingale part and finite variation part we obtain
that

ψ̄t(t, ηt) =
Kx(t, ηt)a(t, ηt)

(1− qρ2)K(t, ηt)
,
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and the optimal strategy π∗ takes on the following form

π∗(t, ηt) =
(1− q)
σ(t, ηt)

(
θ(t, ηt) +

Kx(t, ηt)

(1− qρ2)K(t, ηt)
ρa(t, ηt)

)
,

where K(t, x) satisfies the PDE

K(t, x)
q(1− qρ2)

2
θ2(t, x) = Kx(t, x)(b(t, x)− a(t, x)ρqθ(t, ηt)) +Kt(t, x) +

1

2
Kxx(t, x)a2(t, x),

for each t ∈ (0, T ) and K(T, x) = 1.
By a classical result, under regularity conditions on the coefficients (see, e.g., [28]), there exists
K ∈ C1,2([0, T ]× R), satisfying (26), with terminal condition K(T, x) = 1.

Remark 2.6. Note that the process ht appearing in (14) can be written as

h(t, ηt) = e
q
2

(1−qρ2)
∫ t
0 θ

2(u,ηu)duKx(t, ηt)a(t, ηt).

Example 2.1. In [1] and [11], the authors study insurance related derivatives based on some
nontradable underlings, which are correlated with tradable assets. They calculate exponential
utility-based indifference prices by using a representation in terms of solutions of BSDE with
quadratic growth generators. In particular, in [1] they provide simple sufficient conditions for
general BSDE to satisfy a Markov property and to be differentiable with respect to the ini-
tial condition of the forward equation with quadratic nonlinearity. The problem of numerical
approximation for BSDE and the convergence of numerical approximation schemes is treated
in [11]. For such systems of stochastic equations path regularity of the solution processes is
instrumental.

Similarly to [1], we proved that the problem of p-power utility maximization leads to study
a BSDE with quadratic growth.

For the Markovian model (1)-(2) studied in Section 2.4, we characterized the optimal strategy
in terms of the PDE which we will use to simulate it in concrete examples. The advantage of
using PDEs (instead of the BSDEs) is due to well known convergence of the discretized solution
for numerical methods.
We consider the following example of the Markovian model (1)-(2):

dRt =0.1ηtdt+ 0.04dW 1
t ,

dηt =ηtdt+ ηtdWt.

We choose T = 1, a constant correlation coefficient ρ and p = −0.25 (or equivalently q = 0.2).
In order to obtain the optimal strategy, it is sufficient to simulate the dynamic of η and solve

the PDE equation by standard numerical techniques. In Figure 1 different paths of the optimal
strategy related to different values of the correlation coefficient ρ are displayed.

FIGURE 1 AROUND HERE

According to the simulation, it seems the investor should invest up to 4 times his wealth on
the risky asset at the beginning. This is clearly due to the influence of the initial data. Moreover,
the simulation better performs as the time goes to maturity.
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Since we have an explicit formula for the optimal strategy and a quite simple way to simulate
it at our disposal, we keep ρ fixed and study the behavior of the strategy for different values
of the risk aversion coefficient. The optimal strategy for the p−power utility optimization, for
p < 0, is denoted by π∗(p); π∗(−∞) and π∗(0) stand for the extremal cases. It is well known
that those extremal cases correspond to the optimal strategies related to the exponential and
logarithmic utility maximization problems, respectively. See the Appendix and [6] for details.

Table 1 displays Monte Carlo estimates of the norm ‖((1− p)π∗(p)− π∗(−∞)) · ρσW‖H2 as
the value of p varies. The simulation of π∗(−∞) has been obtained in the same manner by using
the PDE in Eq. (21) in [21]. We can observe that as p tends to −∞ the norm goes to 0.

p q ‖((1− p)π∗(p)− π∗(−∞)) · ρσW‖H2

-0.11 0.10 0.063

-0.43 0.30 0.036

-1.00 0.50 0.19

-2.33 0.70 0.06

-99.00 0.99 0.00

Table 1: Monte Carlo estimates of the norm as p varies (p→ −∞)

This result is not surprising. Indeed, it is known from [6, 23], that the optimal strategies of
the power utility problem converge (in H2) to that of the exponential one as p→ −∞.

Similarly, the norm ‖(π∗(p)−π∗(0)) ·ρσW‖H2 , as p→ 0 tends to 0 (see Table 2), confirming
the theoretical findings of [23] (see the Appendix), which applies also to our particular model in
the partial information setting.

p q ‖(π∗(p)− π∗(0)) · ρσW‖H2

-2.33 0.70 0.024

-1.00 0.50 0.023

-0.43 0.30 0.008

-0.11 0.10 0.001

-0.01 0.01 0.000

Table 2: Monte Carlo estimates of the norm as p varies (p→ 0)

3 Application to the disorder problem

In this section power utility maximization is solved by deriving the explicit formula for the
optimal strategy in the case the observation come from the asset prices (or by the returns).
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The model is related to the so-called disorder problem: the drift of the asset return is
supposed to change value (from 0 to a constant µ, µ 6= 0) at a random time, which is not
observable. So, the dynamics of the risky asset returns is

dRt = µI(t≥τ)dt+ σdW 1
t , (30)

where W 1 and the random variable τ are defined on the complete probability space (Ω, F, P )
equipped with the P−augmented filtration F = (Ft, t ∈ [0, T ]), F = FT . The random variable
τ has the following distribution

P (τ = 0) = p̄, and P (τ > t | τ > 0) = e−γt, for all t ∈ [0, T ]

for some known constants p̄ ∈ [0, 1] and γ > 0. We assume that the Brownian motion W 1 and
the random variable τ are independent.
We remark that we observe the process R but we can not see when the random time τ occurs;
equivalently, we can not distinguish wether the movements of R are due to the drift or to the
diffusion component. The filtration G is here represented by FR, so that in this case the returns
are G−adapted.
This feature makes the portfolio maximization problem easier to solve: all we need is to rewrite
the canonical decomposition of R with respect to the smaller filtration and solve the problem as
in the full information case (see, e.g. [22] and [24]).

Denote by pt = P (τ ≤ t | FRt ) the a posteriori probability process. The canonical decompo-
sition of R with respect to FR is

dRt = µptdt+ σdWt,

where W is a FR−Brownian motion (the “innovation process”, see [17]).

Thus, we consider Problem (P3) with G = FR. Note that FW ⊆ FR. The characterization
of the value process is

Yt = Y0 +
q

2

∫ t

0

(θpuYu + ψu)2

Yu
du+

∫ t

0
ψudWu, YT = 1, (31)

where θ = µ
σ . Moreover, the optimal strategy is

π∗t =
(1− q)
σ

(
θpt +

ψt
Yt

)
. (32)

This result can be easily deduced, e.g., from [24] or from our Proposition 2.2. Note that∫ T
0

(µpt
σ

)2
dt ≤ C and σ is a positive constant, so that 1) and 2’) are satisfied and that any

FR−martingale admits the representation as a stochastic integral with respect to the innova-
tion process, i.e.

∫ t
0 ψudWu (see Theorem 5.17 in [27]).

We keep the notation similar to that of Section 2; for instance, any martingale with respect to
the observed filtration is written as a stochastic integral with respect to the Brownian motion W
in both cases, but there are some differences. Here the observable filtration is the one generated
by the returns R, which are known, whereas in the previous section they were not. Moreover,
W (the innovation process) is a Brownian motion only under the observed filtration and not
with respect to F , while in Section 2 it was with respect to both.
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From [27], it follows that the process pt satisfies the stochastic differential equation

pt = p0 + θ

∫ t

0
pu(1− pu)dWu + γ

∫ t

0
(1− pu)du. (33)

Moreover, introduce the measure

dQ

dP
= ET (−qθ

∫ ·
0
pudWu).

In the following proposition we find an explicit expression for the value process and for the
optimal strategy.

Proposition 3.1. The value process of Problem (P3) admits the following expression

Vt = EQ(e−
q(1−q)

2

∫ T
t θ2p2udu|FRt )

1
1−q (34)

and the optimal strategy is equal to

π∗t =
(1− q)
σ

(
θpt +

ht

(1− q)(c+
∫ t

0 hudWu)

)
, (35)

where ht is the integrand of the integral representation

e−
q(1−q)

2

∫ T
0 θ2p2udu = c+

∫ T

0
hudW̃u,

where W̃t = Wt + qθ
∫ t

0 pudu is a (FR, Q)−Brownian motion.

Proof. Let us consider a positive bounded solution of the BSDE (31) Yt.
By Ito’s formula, setting ψ̄ = ψ

Y , we find that Zt = lnYt is the solution of

Zt = Z0 +
1

2

∫ t

0

(
q
(
θpu + ψ̄u

)2 − ψ̄2
u

)
du+

∫ t

0
ψ̄udWu, ZT = 0. (36)

Hence, using the boundary condition, we have

−q
2

∫ T

0
θ2p2

tdt = Z0 +
(q − 1)

2

∫ T

0
ψ̄2
t dt+

∫ T

0
ψ̄tdWt + qθ

∫ T

0
ptψ̄tdt.

Note that by Girsanov theorem W̃t = Wt + qθ
∫ t

0 pudu is a (FR, Q)−Brownian motion.
Hence, multiplying by 1 − q and taking the exponential of both sides of the previous equality
we obtain

e−
q(1−q)

2

∫ T
0 θ2p2udu = cET ((1− q)ψ̄ · W̃ ),

where c = e(1−q)Z0 .
On the one hand, since Et((1− q)ψ̄ · W̃ ) is a (FR, Q)−martingale, we have that

EQ
(
ET ((1− q)ψ̄ · W̃ )|FRt

)
= Et((1− q)ψ̄ · W̃ ). (37)

On the other hand, by the representation theorem (see [17, Theorem 5.4]) we have

EQ
(
e−

q(1−q)
2

∫ T
0 θ2p2udu|FRt

)
= c+

∫ t

0
hudW̃u. (38)

17



Thus, taking into account that the Doléans exponential Et((1− q)ψ̄ · W̃ ) is solution of

dXt = Xt−(1− q)ψ̄tdW̃t, from (37) and (38) we obtain

ψ̄t =
ht

(1− q)(c+
∫ t

0 hudW̃u)
.

Now, by (36) we find

Zt −
q

2

∫ t

0
θ2p2

udu = Z0 +

∫ t

0
ψ̄udW̃u −

(1− q)
2

∫ t

0
ψ̄2
udu,

which, again multiplying by (1− q) and taking the exponential, by (37) implies that

e(1−q)Zt = EQ
(
e−

q(1−q)
2

∫ T
t θ2p2udu|FRt

)
.

Therefore, Vt is given by (34) and, by (32), the optimal strategy is equal to (35).

Remark 3.1. The optimal strategy essentially relies on the a posteriori distribution. If we
compare this strategy to the optimal one computed observing the filtration F , i.e. knowing τ ,
in place of pt we will have the function It≥τ . It is clear that the two strategies will be different
unless It≥τ is FR−adapted and this happens only if τ is deterministic since we assumed W 1 and
τ independent.

Remark 3.2. Note that the expression (15) in Section 2, which describes the value process
corresponding to the particular case ρ2 = 1, resembles (34), where in place of θt, Q̃ and Fη
appear θpt, Q and FR, respectively. Indeed, there are several analogies; in particular in the Itô
model when ρ2 = 1 the returns are observable.

Now, we use the fact that the process (pt,FRt ), solution of (33), is a strong Markov process.
Indeed, by Proposition 3.1, we can characterize the value process as the solution of a linear
PDE and we can express the optimal strategy in terms of the solution of this linear PDE and
of its partial derivatives. The following proposition is reminiscent Proposition 2.3, in which we
assumed η to be Markovian.

Proposition 3.2. The value process related to Problem (P3) takes on the form Vt =

(K(t, pt))
1

1−q , where pt satisfies (33) and K(t, x) is C1,2([0, T ]× (0, 1)) and satisfies

−q(1− q)
2

θ2x2K(t, x)+Kx(t, x)(1−x)(γ−qθ2x2)+Kt(t, x)+
1

2
Kxx(t, x)θ2x2(1−x)2 = 0, (39)

with the final condition K(T, x) = 1.
Besides, the optimal strategy is equal to

π∗t =
(1− q)
σ

(
θpt +

Kx(t, pt)θpt(1− pt)
(1− q)K(t, pt)

)
. (40)

Proof. Since the process (pt,FRt ), solution of (33), is a strong Markov process, by Proposition 3.1

one has Vt = (K(t, pt))
1

1−q , with

K(t, x) = EQ
(
e−

q(1−q)
2

θ2
∫ T
t p2udu|pt = x

)
. (41)
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By (33), under the measure Q, the process pt satisfies the stochastic differential equation

pt = p0 + θ

∫ t

0
pu(1− pu)dW̃u +

∫ t

0

(
γ − qθ2p2

u

)
(1− pu)du. (42)

Using Ito’s formula

d(K(t, pt)e
− q(1−q)

2
θ2

∫ t
0 p

2
udu) = e−

q(1−q)
2

θ2
∫ t
0 p

2
udu
(
Kx(t, pt)θpt(1− pt)dW̃t

+
(
− q(1− q)

2
θ2p2

tK(t, pt) + (1− pt)(γ − qθ2p2
t )Kx(t, pt)

+Kt(t, pt) +
1

2
Kxx(t, pt)θ

2p2
t (1− pt)2

)
dt
)
, (43)

where Kt,Kx,Kxx are partial derivatives of K.

Since K(t, pt)e
− q(1−q)

2
θ2

∫ t
0 p

2
udu is a (FR, Q)−martingale by (38), (41) and (43) we have that

K(t, x) satisfies (39) with the final condition K(T, x) = 1.
The existence of a solution K ∈ C1,2([0, T ]× R) of (39) follows from [28].

Hence, since Zt = 1
1−q lnK(t, pt) by (34) and (41), equalizing the martingale part of the two

expressions, we find

ψ̄t =
Kx(t, pt)θpt(1− pt)
K(t, pt)(1− q)

. (44)

Substituting (44) in (32) we obtain the optimal strategy (40).

Example 3.1. Similarly to Example 2.1, in order to simulate the optimal strategy we use an
algorithm based on the theory of the finite elements to find a solution of the PDE and simulate
the process p by (33). In Figure 2, we plot a possible path of the optimal strategy π∗ for the
power utility maximization with q = 0.8 and with the choice of parameters in the disorder
problem µ = 0.3 σ = 0.4 and γ = 0.5.

FIGURE 2 AROUND HERE

We can observe that the trend depends strongly on the choice of the parameters. Indeed, the
stopping time is related to pt, whose dynamic follows (42) (with p0 = 0.1).

4 Appendix

In [6, 23], the authors proved the convergence of the optimal strategies related to the power
utility maximization to the one of the exponential as the power risk aversion goes to infinity.
The results are obtained in the continuous semimartingale setting for partial and full information,
respectively. In [23], the author also studies the convergence of the optimal strategies to the
logarithmic one as the risk aversion tends to 1 (in full information). An analogous result holds
in the partial information case. We briefly summarize the theoretical results, which we have
referred to in the examples of Section 2.1.

In the exponential utility maximization problem

maximize E
[
− exp(−Xx,θ

T )
]

over all θ ∈ Π(G), (P5)
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Xx,θ
T denotes the final value of a portfolio starting from the initial capital x and the strategy θ

is the dollar amount invested in the asset. The characterization of the optimal strategy θ∗ can
be found in [21]. In [6], under some technical assumptions that are satisfied if 1)− 5) hold true,
the p−optimal strategy π∗(p) (in terms of proportion) scaled by the risk aversion coefficient
(1 − p) is proved to converge to the optimal exponential strategy θ∗, where the convergence is
understood in the norm BMO(F) (recall the class Π(G)). More precisely we refer to (1)-(2),
and translating Corollary 3 of [6] to our setting, we have the following

Theorem 4.1. Let conditions 1)− 5) be satisfied. Then

‖((1− p)π∗(p)− θ∗) · M̂ ‖BMO(F )→ 0 as p→ −∞.

where M̂ is ρσ ·W .

This kind of convergence may seem surprising at first glance. A nice heuristic argument
which explains it through the convergence of an auxiliary sequence of shifted power utilities is
in [23].

With reference to the logarithmic utility maximization problem

maximize E
[
log(Xx,π

T )
]

over all π ∈ Π(G), (P6)

here the strategy represents the proportion of wealth invested in the asset (as for the power util-
ity). Similarly to [6], it can be proved that the value process related to (P6) can be characterized
by a BSDE and that the optimal strategy is of the form

π∗t =
µt
σt
.

Moreover, the following convergence result can be shown

Theorem 4.2. Let conditions 1)− 3) be satisfied. Then

‖(π∗(p)− π∗) · M̂‖BMO(F) → 0, p→ 0,

where M̂ is ρσ ·W .

The convergence of the strategy in BMO(F) implies the convergence in L2(ρσ ·W ) and this
one is the convergence illustrated in Example 2.1, where we denote θ∗ with π∗(−∞) and π∗ with
π∗(0).
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