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Preface

This Ph.D. Thesis is focused on two main arguments which find a common denominator in

the respective applications to biomedical problems. The most part of the Thesis is dedicated

to inverse scattering, the problem of retrieving some physical information of an object (called

scatterer) from the knowledge of scattered field data. The resolution of the inverse scattering

problem is, for example, behind the operation of a microwave tomography device and, more in

general, the range of applicability of inverse scattering techniques is wide but always related

to imaging: non destructive testing, seismic imaging and biomedical imaging are only some of

the possible examples. The rest of the Thesis is dedicated to the description of the problem

of cryosurgery planning and to its resolution through the use of a particular method based on

stochastic optimization. Cryosurgery is a technique utilized to fight different types of cancer

through the insertion of freezing probes inside the tumoral tissue: when freezed, the tissue is

heavily damaged and the cryosurgery planning is the problem of setting the free parameters of

the operation in order to limit the action of cold just to the tumoral tissue, without involving

healthy regions.

The aim of the Thesis is to analyze some crucial mathematical aspects of these two different

fields but maintaining a special attention to their applications to realistic and relevant biomed-

ical situations: in particular, the problem of early detecting breast tumors and the problem of

defeating prostate tumors with minimal invasivity are the two contexts in which the inverse

scattering and the cryosurgery planning techniques presented in this Thesis are respectively

tested.

From a more strictly mathematical viewpoint, the part of the Thesis dedicated to inverse

scattering mainly deals with the linear sampling method, a technique born almost twenty years

ago which allows the reconstruction of shape and position of an object from the knowledge of

electromagnetic or acoustic scattering data. The original subjects presented in the Thesis are

collected in Chapters three and four which basically develop the arguments of [7, 55, 56, 57]

and cover:

• An analysis of the theory concerning the linear sampling method based on its physical

interpretation, with the aim of trying to cover some lacks in the theoretical justification

of the operation of the method. The linear sampling method is a technique which does
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not rise from physical laws and the central argument of the proposed interpretation is

to consider the far field equation (i.e. the equation whose resolution is at the basis of

the method) as a constraint on the power fluxes of the scattered wave. Following this

approach, the operation of the method is justified after some assumptions on the flow

lines of the scattered field (Chapter three and [7]).

• The definition of a hybrid technique where the use of the linear sampling method together

with an inhomogeneous-background formulation of the scattering problem allows the re-

duction of the complexity of the scattering scenario and facilitate the proper convergence

of quantitative techniques. This approach can be relevant in the case of small inclusions

embedded in an inhomogeneous background of large dimension (Chapter four and [55]).

• The definition of a technique able to obtain, from the knowledge of the smallest transmis-

sion eigenvalue, a constant approximation of the refractive index of the scatterer. Given

a scatterer, a transmission eigenvalue is a wave number for which no wave is scattered.

This technique is useful to complement qualitative methods such as the linear sampling

method since, by nature, they are not able to provide any quantitative information on

the scatterer and since the operation of the here proposed technique requires the use of

a qualitative method in several important steps (Chapter four and [56, 57]).

The literature regarding cryosurgery planning techniques is very short. As an original

contribution, the Thesis presents a planning technique based on the ant colony optimization

method, a stochastic optimization method of wide range of applicability. The definition of

this (inverse) planning technique requires the construction and the implementation of a direct

method able to compute, given some freezing sources, the temperature distribution inside a

biological tissue by solving the associated problem for heat propagation in biological tissues.

The formulations and the numerical validations of the direct and the inverse techniques are

presented in Chapters two and five. Many of the arguments relate to [54].



Introduction

After the two decades of ’80s and ’90s, when AIDS was considered the new plague, cancer has

become the modern illness. Although it was probably already known more than four thousands

years ago (the most ancient document concerning cancer is dated back to Egyptians), the

incidence of cancer has incredibly grown up in the last century and this unstoppable growth

has seemed not to be weakened by all the efforts that medicine and science in general are, at

present, employing. Although it is difficult to identify precise causes, the dangerousness that

cancer has assumed in the last two decades for humanity seems to be in a great part related

to the modern human life-style: for this reason, someone speaks about cancer as the illness

of modernity. Pollution, sedentariness, unhealthy diets and the increase of the average life

duration are considered as relevant elements that can favor the occurrence of cancer and that

have importantly contributed to the growth of cancer incidence.

At the origin of cancer there is the mutation of particular genes that allows the uncontrolled

growth of tumoral cells. When these cells are malign, they can detach and invade other areas

and give life to new tumors. Cancer can affect different kinds of organs, in different forms and

with different intensities: for these reasons, many are the procedures able to detect and treat

cancer and the choice of the most appropriate modality may change depending on type of can-

cer, on type of organ affected and on environmental considerations. In last years, the support

that science has given to medicine for cancer fighting has been huge: the war that humans

are moving to tumor is not anymore performed only through surgery removal, chemotherapy

or radiotherapy but new families of more and more sophisticated diagnosis and therapy tech-

niques based on surprising and unthinkable physical, chemical and biological phenomena are

rising. However, the most sophisticated are the techniques employed and the widest is the

range of scientific phenomena that one technique exploits, the strongest is the necessity of

mathematical systems that rule or monitor the progress of such techniques. More in general,

a common point between many of the most used techniques in cancer detection and therapy is

the utilization of sophisticated mathematical deployments. Sometimes they are just auxiliary

tools making the medical doctor’s activity easier and less risky for the patient but more often

advanced mathematical instruments are entirely required for the whole operation of diagnosis

or therapy.

This Thesis proposes a description and an analysis of some mathematical techniques that
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have a direct application to cancer detection and treatment. In particular, although the range

of applicability of the presented methods is wider and not only related to medicine, the Thesis

is focused on providing mathematical tools for the treatment of two particular kinds of tumors:

breast cancer and prostate cancer. More specifically, the main part of the Thesis is dedicated

to investigate, from many different points of views, the so-called scattering problem that is

the problem that rules the behavior of acoustic and electromagnetic waves when they are

sent against an object, and whose resolution allows the operation of a microwave tomography

device. Although presented basing on a purely mathematic point of view, each technique will be

tested against realistic mammographic situations in order to assess the efficacy of the presented

methods when applied in the framework of mammographic screenings. A second and smaller

part of the Thesis is dedicated to cryosurgery planning : cryosurgery is a therapy technique

by which a tumor is fought by making its cells freezing through an opportune insertion of

freezing probes. Mathematics gives an important contribution in the planning of a cryosurgery

operation: in fact, before each operation, many free parameters, such as positions and insertion

depths of the probes, have to be fixed depending on the shape of the portion of tissue that has

to be freezed and on the temperature that probes are able to reach.

The development of microwave mammography and prostate cryosurgery can represent an

important step forward in the war that humans are fighting against cancer. The set up of a

device able to detect breast tumors at early stages is a target that, if achieved avoiding the

employment of X-rays or other invasive techniques, can bring to a drastic reduction of the

mortality due to breast cancer. In fact, it is a common opinion that, particularly for what

concerns breast cancer, an early-stage detection of the tumor is the most important element to

be reached for having chances to survive. A reasonable reliability of an early-stage diagnosis

can be achieved only by subjecting the patient to very frequent controls, i.e. to a screening

procedure. At present, X-ray mammography is the most effective technique for detecting breast

tumors but its invasiveness limits its applicability to large scale screening; the introduction of

microwave mammography screenings can avoid this drawback and allow as many control as

one wants, since microwaves are non-invasive.

If microwave mammography is a detection technique (i.e. it is utilized in order to find the

presence of a tumor), cryosurgery is a therapy instrument, able to defeat the tumor when it has

been identified by medical imaging modalities. Cryosurgery is a recently developed technique

which is starting to be used for the treatments of prostate and liver tumors after it has been

introduced for the medication of skin tumors and of other skin diseased. If assisted by an

efficient planning tool, cryosurgery is able to minimize the side effects that cancer therapies

generally cause and to guaranty good possibilities to completely defeat the tumor.

The operation of a microwave tomography device is based on the resolution of a problem

called inverse scattering problem which, in principle, allows the reconstruction of the physical

parameters of an object from the knowledge (on some points) of the value of the field that
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has been scattered. More precisely, when one sends a wave against a penetrable object, such a

wave is everywhere scattered by the object (called scatterer) depending on the point by point

value of its refractive index. The way in which the total electromagnetic or acoustic field is

scattered depending on the value of the refractive index of the scatterer and on the incident

field is generally ruled by a differential problem called direct scattering problem. Hence, the

resolution of a direct scattering problem provides the value of the field in the whole space. The

value of the field on some points (i.e. where receiving antennas are placed) provides the data of

the inverse scattering problem, whose resolution aims to provide information on the refractive

index of the scatterer.

Although both problems take place in the same physical domain, from a mathematical

point of view the direct and the inverse are two extremely different problems. One (the direct

problem) is well-posed in the sense of Hadamard while the other (the inverse problem) is

ill-posed. In other words, the direct scattering problem admits always one solution and this

solution depends continuously on the data; on the other hand, it is not always clear if the

inverse scattering problem has one single solution and, moreover, this solution is always non-

continuously dependent from the data. The ill-posedness of the inverse scattering problem

prevents its trivial resolution and oblige to make use of regularization techniques that the

direct scattering problem does not need at all. Due to the greater simplicity of the problem,

almost everything has been said about the direct scattering problem and, at present, research

mostly concerns on how to speed up numerical methods providing field values. On the contrary,

in the framework of the inverse scattering problem, many are the targets that still have to be

achieved: the rush to develop methods able to improve the quality of the reconstructions is

very challenging and, also from a purely theoretical point of view, the number of open problems

is still big.

The part of the Thesis dedicated to inverse scattering basically deals with the linear sam-

pling method, a qualitative technique which allows the detection of position and shape of the

scatterer from field data but does not provide any kind of quantitative information on its refrac-

tive index. The idea inside the Thesis is to first investigate the theoretical foundation (Chapter

3, Section 2) and the quality of the operation (Chapter 3, Section 1) of the method when ap-

plied to microwave mammography and then to use it as a tool placed side by side to other

techniques in order to achieve better or new results. More precisely, it will be shown that the

linear sampling method can be used as a zooming instrument able to narrow the domain under

investigation guarantying improvements in the reconstructions of other quantitative techniques

(Chapter 4, Section 1); moreover, it will be shown that, exploiting the proved ability of the

method of detecting also those wave number for which the scatterer is invisible (i.e. the so-

called transmission eigenvalues), an innovative technique providing constant estimates on the

refractive index could be formulated (Chapter 4, Section 2).

The cryosurgery planning problem is the problem of setting those free parameters that has
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to be fixed before a cryosurgery operation; in general, this problem refers directly to those

parameters that are patient-dependent and more related to the physics of heat propagation

than to physiological considerations. The input of a cryosurgery planning problem is the shape

and the location of the portion of tissue that has to be freezed; the output is a configuration

of parameters such that the corresponding freezing front fits as much as possible the boundary

of the tumoral region without invading the healthy areas. In other words, since the goal of

the operation is to freeze the tumoral up to its boundary, the cryosurgery planning problem

can be seen as that inverse problem where, from the knowledge of the temperature on the

boundary of the target region, one wants to find the initial conditions that have brought to

such a temperature distribution. In this perspective, it is again fair to speak about a direct

problem and of an inverse problem, where the direct problem will be that problem where, given

the initial conditions, one looks for the corresponding the temperature distribution.

Similarly to the case of the scattering problem, one can see that the direct cryosurgery

problem is well posed in the sense of Hadamard, while the inverse problem is ill posed. The

present Thesis is interested in investigating the inverse cryosurgery problem, nevertheless also

the direct cryosurgery problem plays a relevant role and this is due to the fact that many

inverse techniques operate iteratively and requiring, at each iteration, the numerical resolution

of the direct problem. In particular, in this Thesis, after an introductive presentation of the

existing techniques concerning the direct and the inverse problem, an enthalpy-based numerical

approach to the direct problem will be presented (Chapter 2, Section 2) while, finally, an

innovative inverse (i.e. planning) technique based on stochastic optimization will be proposed

and tested against simple prostate phantoms (Chapter 5).

Summing up, the structure of the Thesis is the following. Chapter 1 presents some general-

ities about breast cancer, prostate cancer and cancer in general by shortly analyzing causes, in-

cidences and therapies. Chapter 2 introduces microwave tomography and prostate cryosurgery

by explaining the principles of their practical operation and the mathematics which rules the

physical phenomena and the methodologies at their bases. Chapter 3 and 4 are entirely dedi-

cated to inverse scattering: in Chapter 3, Section 1 the linear sampling method is introduced

and its efficacy when applied to breast cancer detection is tested while Chapter 3, Section 2

tries to give the answer to some open problems concerning the theoretical foundation of the

linear sampling method; Chapter 4, Section 1 proposes an hybrid technique based on the inte-

gration of the linear sampling method to quantitative techniques while in Chapter 4, Section

2 a new technique able to compute estimates on the value of the refractive index of a scatterer

is formulated. Finally, in Chapter 5, the subject changes back to cryosurgery: in fact, an

inversion method based on a stochastic optimization approach is presented and its practical

efficacy assessed through realistic numerical simulations.



CHAPTER 1

Breast and prostate cancer

Breast and prostate cancer are two of the most common and diffused forms of cancer. Both

can take place with the age and in correspondence of unhealthy habits and life styles. Breast

cancer is often lethal if not early-detected, while prostate cancer is less dangerous than other

types of cancer if properly cured. Cancer takes place as a degenerated growth of cells that,

when the tumor is or become malign, can be able to detach and invade other healthy tissues.

Hence, even in the case in which only a non-vital organ has developed a tumor, cancer has to

be cured, otherwise new organs will be contaminated bringing to the death of the person.

The aim of this chapter is to provide a short introduction to the medical and statistical

aspects of cancer. Due to the interest that these two particular types of cancer will assume

in the following of this Thesis, we will focus on breast cancer and prostate cancer. More

specifically, in the first section, some general information about cancer will be provided, while

second and third sections will be dedicated to breast and prostate cancer.
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1.1. Some generalities on cancer

It is not possible to refer to cancer as to a general disease which could affect the human body:

cancer affects different kind of organs in different manners and the way in which a specific type

of cancer manifests itself can depend on a large number of factors such as the part of body

affected by tumor, the type of cancer and its properties. Nevertheless, all the different types

of cancer have something in common: each kind of cancer is originated by an out of control

growth of cells.

Normally, cells have some genetic control tools on the multiplication and on the proliferation

of the cell itself, where the specific task of these tools is to prevent ”wrong” cells to survive.

When this control over the cells lacks, cells starts to reproduce in an unchecked way. In this

manner, cancer process starts and a large number of new cells are generated: in particular,

what happen is that abnormal cells survive giving rice to a new group of abnormal cells and so

on. At this point, the body has no control on the growing of these cells and the disease called

cancer starts.

In general, all the different kinds of cancer can be grouped into two families: benign cancers

and malign cancers. The main difference between these two families consists in the property,

which can belong (malign cancers) or not belong (benign cancers) to the cancerous cell, of

leaving the tissue where cancer started and colonizing other healthy tissues. Often a benign

cancer becomes malign after some time; in other cases, cancers do not transform from benign

into malign for years or they jump the step of benign cancer and manifests itself as malign

from the beginning.

The wrong behaviors of cells which give rice to cancer have a common origin: in fact, all

of them, are originated by a sum of different DNA mutations. These mutations can happen

during intervals of time of different lengths and many can be their causes. In rare cases, these

causes can already been found in the genes of a person, hence inherited from family members;

in other cases, they can be related to habits, life style or to the place where one spends most of

his time. For example, when associated to a weak genetic resistance to cancer-causing agents,

bad habits like smoking cigarettes or drinking big amounts of alcohol, as well as sedentary life

style or unbalanced diets, can contribute to the cancer arise. Environmental causes can also be

at the basis of a cancer affection: for example, large time expositions to ultraviolet sun light or

to certain chemical substances as well as to smog, petrol, carbon or asbestos can cause those

genetic mutations inside the cells that give rice to cancer.

In Italy, the 4% of the population is affected by cancer and, for the 55% of them, cancer has

been diagnosed more than five years ago. In 2010, the number of the living persons affected by

cancer has been doubled with respect to 1992: the reasons can be addressed to the increasing

of the number of new cases (due to the increase of the average duration of life and to the
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increase of the incidence of some kinds of tumor) but also to the improvement achieved in

fighting tumors and in keeping alive cancer-affected persons. In Europe, in 2006, 3.2 millions

of new cases have been diagnosed (53% of males and 47% of females) and 1.7 millions of deaths

(56% of males and 44% of females) due to cancers has been registered.

In Italy, the most diagnosed cancer for women is breast cancer (in 2010 the number of

women living together with this disease has reached the 42% of all the living cancer affected

women): in general, it has been valued that breast cancer affects one Italian woman over 10

and it represents the 25% of the tumors affecting women. Instead, the main tumor affecting

males is represented by prostate cancer: the 22% of cancer-affected men has this disease and

it has been valued that each man over 16 will be affected by prostate cancer. The incidence of

this kind of disease is continuously increasing and, again, it has been doubled in the last ten

years.123

1.2. Breast cancer

Female breast is made of a series of 15 or 20 glands connected by ducts and surrounded first

by fat tissue and than by a skin layer. Breast cancer starts with the uncontrolled proliferation

of glandular or duct cells that are transformed into malign cells. A woman over 10 is affected

by breast cancer which represents the 25% of all the tumors affecting women. It is one of the

first causes of women death and it constitutes the 17% of cancer deaths.

Some personal situations or behaviors can increase the probability of being affected by

breast cancer. First of all, the age: the 80% of woman affected by breast cancer are over 50

years old; then, the presence of particular genes called BRCA1 and BRCA2 can bring to the

formation of breast cancer and, overall in the case of cancer affecting young women, having

relatives who had this disease increase the probability of a person to be affected by cancer.

Often, breast cancer is associated to a an exceeding presence of oestrogenic hormones: for this

reason, a good diet where foods which have a good interaction with hormones metabolism are

privileged, is generally suggested. More generally, a diet made of good quantities of vegetables

or fruits and frequent sport activities can help to prevent the occurrence of cancer; obesity and

smoke has to be avoided.

Breast cancer generally does not present any symptom. Eventually, in rare occasions, the

occurrence of nodules can be felt by palpation or even been visible. The most part of breast

cancers are diagnosed through the use of X-ray mammography (or through ultrasound scan

when the woman is young). Although, in general, it is a grave disease, in the case of early

1Data provided by AIRTUM (Associazion Italiana dei Registri Tumori)
2Data provided by AIRC (Associazione Italiana Ricerca sul Cancro)
3Data provided by IARC (International Agency of Research on Cancer)
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detections, breast cancer can be cured and the probability to survive can be very high. For

these reasons, the most important tool that humans have to fight this disease is to set up an

efficient system able to detect the presence of a tumor when it is still at an early stage. In

Italy, women are advised to subject to a X-ray mammographic session every two years when

they are older than fifty but the cadence can vary depending on the risk factors previously

mentioned. Younger women can resort to ultrasound scan when they belong to high risk cases

or when there is the evidence of a presence of nodules. Anyway, in general, all the women are

suggested to visit a specialist at least once a year.

Breast cancer is generally cured through the removal of the area affected by cancer and of

the lymph node which is closer to the tumoral area. When the tumor is at a serious stage, the

breast is entirely removed. In order to erase also the microscopical cells that can be detached

from the removed tumoral area, the patient has to subject to several cycles of anticancer

medicines. A part from chemotherapy, also radiotherapy techniques are, at present, applied in

order to reduce presence and power of tumoral cells. Finally, once the tumor has been removed,

some high risk patients can be subjected to hormonal cures in order to reduce the possibility

of relapses.

It is clear that, at present, the most promising way in order to fight breast cancer is the

large scale screening where one has at disposal tools and devices for subjecting all the women to

frequent controls. Although X-ray mammography is actually effectively used in this sense and

its good operation has been proved by many years of use, there are still some open problems

which has to be faced and some drawbacks which has to be overcome. Sometimes, X-ray

mammography does not provide a clear evidence of the possible presence of a tumor due to

the denseness of the tissue: in this cases, the only way to diagnose for the medical doctor is

to compare the actual X-ray slice with several previous ones. Moreover, it is well known that

X-rays are invasive and that there is a bound over which a person can not be anymore exposed

to the effect of X-rays. For these reasons, researchers are working to find different techniques

able to increase the resolution of the images that a medical doctor has to examine and, at the

same time, reduce the invasiveness of the technique in order to enable women to subject to

more frequent controls.

The possibility to apply microwave tomography to the detection of breast cancer is an issue

which many researchers and many institutions are currently investigating and which could

represent a step forward in the war against breast cancer. Once its effectiveness is proved, such

a device can be extremely useful for what concerns large scale screening since the invasiveness of

microwaves is well accepted to be nonexistent and costs could be very held down. Unfortunately,

at present, the quality of the resolution provided by this application is not as good as medicine

expects and a lot of work has still to be done in order to make microwave able to compete with

X-rays for detecting cancer.4

4Data provided by AIRC (Associazione Italiana Ricerca sul Cancro)
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1.3. Prostate cancer

Prostate is a gland belonging only to men and producing a part of the seminal fluid released

during ejaculation. It is situated in front of rectum with a dimension comparable to the

dimension of a nut which can grow up to create problems to the urinary system because of

age or of some pathologies. Prostate cancer starts with an abnormal grow of cells generally

belonging to the internal part of the gland.

In recent years, it has been proved that a man each 16 will be affected by prostate cancer

during his life. The incidence of prostate cancer, that is the number of new cases in a given

time, is continuously increasing due to the increase of the average duration of life and to the

invention of a new type of exam called PSA able to monitoring the status of the gland by

checking, inside the blood, the level of presence of a molecule that only prostate produces.

Fortunately, prostate cancer is not one of the most dangerous type of cancer since, if the tumor

is detected at an early stage, the probability to survive can be very high. For example, at

present, the average of the patients alive after more than five years from the diagnosis is of

70% which can be considered a very good result if one take also into account the average high

age of the patients.

Similarly to breast cancer, age, familiarity and hormones are the most influent factors in

causing the occurrence of prostate cancer. The possibilities of being affected by this disease are

very small for under forty years old persons but they increase tremendously after fifty years.

Two prostate tumors every three are diagnosed to over 65 years old persons and researchers

estimate that between 70 and 90 % of over-80 years old men is affected by prostate cancer

although in some cases the tumor does not manifest itself. The probability of being affected

by cancer doubles if one has at least one relative which had this disease. Moreover, high

levels of hormones like testosterone or IGF1, as well as the presence of mutations in BRCA1,

BRCA2 and HPC1 genes, can have an influence in the occurrence of this disease. Finally,

the probability of being taken ill with prostate cancer can be linked to non-correct life styles:

for example, obesity, lack of physical activity, sedentariness can help the take place of cancer

process.

In its first stage, prostate cancer does not present any symptom. Only later, when the

gland increases its dimension, a person can understand the presence of some problems, most

of the time by remarking difficulties or pain in urinating or abnormal need of urinating or

presence of blood traces in urine and sperm. Nevertheless, it has to be taken into account that,

often, similar symptoms can be related to benign diseases and hence, when such kinds of prob-

lems occur, a urological medical examination is recommended before taking any conclusions.

Frequent urological medical examinations after a certain age as well as a healthy life style is

the prescription that every medical doctor would suggest in order to reduce the probability of
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incurring in malign prostate cancers. When, after PSA tests and medical doctor visits, the

suspect of a prostate tumor remains, a biopsy on some samples of prostate cells will confirm

the eventual presence of cancer. Then, the status and the gravity of the tumor will be assessed

through medical imaging modalities as TC (computerized tomography) and MRI (Magnetic

Resonance Imaging).

At present, the range of possible therapies that can be utilized in order to cure prostate

cancer is wide. In general, medical doctors focus on a specific therapy depending on the personal

features of the patient, that are age, illness gravity, presence of other diseases and even patient

preferences. In some cases, the preferred strategy could even be not to cure the patient and

wait for further evolutions of the disease by continuous monitoring the cancer status: this is the

case of old patients and patients with other more serious diseases and where prostate cancer is

at a beginning stage. More often, prostate tumor is cured by a surgery removal of the entire

gland and of the closer lymph nodes. When the tumor is at an advanced stage, radiotherapy

and hormonotherapy are used to kill cells that have not been removed and that can move and

affect other organs. A whole removal of the gland is not the only solution for fighting prostate

cancer: for example, IORT (Intra Operative Radiation Therapy) and brachytherapy are two

techniques that are of common use for treating early stage prostate cancers.

Again as examples of prostate cancer therapies, several techniques are still under investiga-

tion: cryosurgery is a technique which aims to the destruction of the tumoral cells by making

them reaching extremely low temperatures through the insertion - inside the tumoral region - of

freezing probes. Then HIFU-technique obstruct the growth of tumoral cells by bombing them

through ultrasound waves. Finally, researchers are experimenting some vaccines able to push

the immune defence system to react against the tumor as well as anti-angiogenic medicines

which are thought to stop the formation of blood-vessels in the tumoral area, preventing the

tumor to receive the feeding needed to grow and survive.5

5Data provided by AIRC (Associazione Italiana Ricerca sul Cancro)



CHAPTER 2

The mathematics of microwave

tomography and cryosurgery

In this chapter, we will give an introduction about the mathematical background behind mi-

crowave tomography and cryosurgery operation.

The mathematical problem associated to microwave tomography is generally called scat-

tering problem preceded by the words direct or inverse when one refers to the problem of

computing the value of the field given a scatterer (direct problem) or to the problem of re-

trieving information on the scatterer given field measurements (inverse problem). The direct

problem is generally solved to simulate the data of a tomographic experiment while the in-

verse scattering problem formalizes, in a mathematical framework, what is requested during a

microwave tomography session.

If tomography is a diagnosis tool, cryosurgery is a therapy instrument in the sense that,

through cryosurgery, tumors are fought by decreasing the temperature of their cells. In fact, the

achievement of extremely low temperatures inside a tissue allows the growth of crystals, whose

formation affects the health of the cell. In other words, the aim of a cryosurgery operation is to

kill tumoral cells through the power of cold and, hence, the mathematical problem behind this

operation is concerned with the equations ruling heat propagation in biological tissues. We

will speak about direct problem when, given the location of the freezing sources (i.e. boundary

conditions) one wants to seek the temperature distribution after a give time. Otherwise, if

one is interested in finding location or, more generally, information on the sources from the

knowledge of the temperature in some points, we will speak about inverse problem.

Section 2.1 is concerned with with microwave tomography and will first provide a brief

description of the origin and of the operation of a tomography device. Then, in subsections

2.1.1 and 2.1.2, the direct scattering problem ruling the behavior of the field given a scat-

terer will be faced from theoretical and computational point of views. Finally, Section 2.1.3

offers an overview on the methods for solving the inverse scattering problem of reconstructing



8 2 The mathematics of microwave tomography and cryosurgery

information on the scatterer given field data.

The second part of this chapter (i.e. Section 2.2) regards cryosurgery: Section 2.2.1 presents

the cryosurgery operation by introducing the physical principles at its basis and by shortly

describing the practice of the operation. Section 2.2.2 resumes the dynamic of heat propagation

by starting from pure substances to biological tissues. Then an enthalpy-based approach to

the modelization of heat propagation with phase change in biological tissues is described in

Section 2.2.3 and, in Subsection 2.2.4 the problem of the planning of a cryosurgery operation

is finally introduced.
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2.1. Microwave tomography

The word ”tomography” is generally referred to that medical imaging modality where a three

dimensional representation of the structure of an object is provided by a series of two dimen-

sional images. The principle of a tomograph is to send a wave against an object and to measure

the scattered field on some antennas placed on the same plane of the emitter. A tomograph

can operate based on different physical phenomena: for example, the most common X-ray

tomography (CT) is utilized for practical applications since many years, as well as the gamma

ray (or photon-emission) tomography (SPECT) and the positron emission tomography (PET).

X-ray tomography is, at present, the most utilized modality for what concerns human body

imaging. It guaranties good results at reasonable costs but has the drawback, as well as many

other imaging modalities, to be invasive, due to the fact that X-rays are very energetic. For

this reason, there is a threshold on the number of X-ray tomographies which a person can be

subjected to and, this fact, limits its application to screening modality.

During the last decades, many efforts have been done in order to extend this medical imaging

modality to microwaves [110]. The reason is due to the fact that, through the use of microwaves,

the invasiveness of tomography is completely erased: hence, a microwave tomography could

be, for example, utilized as a screening tool for fighting those tumors whose incidence is very

high and whose causes are too less understood (e.g. breast cancer) or in general be very useful

for every kind of medical protocol requiring frequent patient controls.

Figure 2.1: A very simple scheme of the structure of a X-ray tomography device. X-rays move on straight

lines from emitting to receiving antennas and the whole device structure turns around the investigation area in

order to provide a full view of the body.

Although inspired by the same principle, all the tomography modality have differences and

these differences are also expressed in the corresponding devices. If we consider, for example,
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the most simple scheme of a CT scanner, it will be made of two lines of antennas (one emitting

and one receiving) of the same length (see Figure 2.1), with the rectangle formed by the two

segments and by the conjunction of their vertices embedding the object (i.e. body) and rotating

around an axis. X-rays move on straight lines and the presence on their ways of the object

decreases the ray intensity of a factor proportional to density of the body on that line but

does not modify its direction: for this reason, a line of emitters and a line of measurements are

enough to have a complete description of the object when they can rotate around it.

A microwave is, by its nature, oscillating and hence it does not move by straight lines. And

when a microwave crashes a penetrable object, it penetrates the object being refracted in all

the directions, and scattered in the whole space. For this reason, a scanner whose antennas are

lay in parallel lines provide a too small amount of data for the resolution of the problem and a

placement of the measuring antennas on a curve around the object and on the same plane of

the direction of the incident wave results more appropriate and more utilized.

Nevertheless, the fact that a microwave is scattered towards all the direction when it crashes

an object, brought to the birth of a three dimensional tomography where field data are collected

all around the three dimensional object and not only on a single plane. In this case, a fully 3D

reconstruction of the object is sought from the data.

2.1.1. The direct scattering problem

The direct scattering problem is the problem of describing how a wave is scattered by a medium,

when an incident wave is sent from far away against it. The associated differential problem

assumes different formulations depending on the physical situation involved: for example, the

formulation of the problem is different depending on the type of wave utilized (e.g. acoustic or

electromagnetic), on the polarization of the wave (in the case of electromagnetic scattering),

on the physical properties of the scatterer (e.g. penetrable medium, conductor, etc.), on the

dimension of the problem that one is considering or on other factors. In this section we will

propose a survey on the definition of the scattering problem in the case of penetrable media, in

acoustic and electromagnetic regime: the propagation of an acoustic wave will be ruled by the

equations of continuum mechanics for an inviscid fluid whereas, in the electromagnetic case,

the propagation of the wave will be ruled by Maxwell equations. All the formulations will refer

to the scattering phenomenon by time-harmonic waves.

In the case of the propagation of an acoustic wave of small amplitude, the velocity vector
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field v(x, t) - with x ∈ R3 (space) and t ∈ [0,+∞[ (time) - is solution of the following system

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p = 0 (2.1)

∂ρ

∂t
+∇ · (ρv) = 0 (2.2)

p = f(ρ, S) (2.3)

∂S

∂t
+ v · ∇S = 0 (2.4)

where p(x, t) is the pressure field, ρ(x, t) the density, S(x, t) the specific entropy and f a

fluid-dependent function.

Linearizing v, p, ρ and S around the static case corresponding to v = 0, p = p0 = const,

ρ = ρ0, S = S0, p0 = f(ρ0, S0) (see [41]), we obtain that

∂2p

∂t2
= c2(x)ρ0(x)∇ · ( 1

ρ0(x)
∇p) (2.5)

c2(x) =
∂

∂ρ
f(ρ0(x), S0(x)). (2.6)

If we assume that p is time-harmonic of angular frequency ω

p(x, t) = Re{u(x) exp−iωt} (2.7)

and that terms involving ∇ρ0 are negligible, we obtain that the pressure field satisfies

∆u+
ω2

c2
u = 0 (2.8)

where c(x) is the sound speed. Defined the wave number k and the refractive index n

k :=
ω

c0
(2.9)

n(x) :=
c20

c2(x)
, (2.10)

the direct acoustic scattering problem by penetrable object is

∆u+ nu = 0 R3 or R2 (2.11)

u = ui + us R3 or R2 (2.12)

lim
r→∞

(
∂us

∂r
− ikus) = 0 (2.13)

where ui and us are the incident and the scattered field and r = |x|. Equation (2.13) is

called Sommerfeld radiation condition and states the decay of the scattered field far from the

scatterer. Although presented for x ∈ R3, the same arguments are valid for x ∈ R2.
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Since, for what concerns tomographic applications, waves are sent from antennas posed

outside the region under investigation D, we will assume that the index of refraction is homo-

geneous, well-known and equal to 1 outside a ball B containing D; hence, that the function

m = 1 − n has compact support. The value of the index of refraction inside B will identify

the presence of the scatterer: n(x) will be a complex number (a complex n corresponds to an

absorbing medium), positive in real and imaginary part, and - for what concerns this Thesis,

such that Re(n(x)) > 1 for each x.

Figure 2.2: The direct scattering problem.

The scattering of an incident electromagnetic field by a scatterer D is ruled by Maxwell

equations

∇× Ẽ + µ0
∂H̃
∂t

= 0 (2.14)

∇× H̃ + ε∂Ẽ
∂t

= J (2.15)

J = σẼ (2.16)

∇E = η
ε0

(2.17)

where Ẽ(x, t) and H̃(x, t) are respectively the electric and the magnetic field, J(x, t) is the

current density, ε(x) is the electric permittivity, µ0 the magnetic permeability of the vacuum

(we do not consider ferromagnetic scatterers), η is the total charge density and σ(x) is the

electric conductivity. Defined ε0 as the electric permittivity of the vacuum, if we assume that
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electric and magnetic field are time harmonic, i.e.

Ẽ(x, t) = 1√
ε0
E(x) exp−iωt (2.18)

H̃(x, t) = 1√
µ0
H(x) exp−iωt (2.19)

we have that E and H satisfy

∇× E − ikH = 0 (2.20)

∇×H + ik 1
ε0
(ε+ iσ

ω
)E = 0 (2.21)

with k = ω
√
ε0µ0.

Substituting H = 1
ik
∇ × E in (2.21) and using ∇E = 0, (η=0 can be assumed when the

incident field is emitted sufficiently far from the scatterer), one obtains

∇2E + k2NE = 0 (2.22)

where N(x) = 1
ε0
(ε(x) + iσ(x)

ω
).

On the contrary, if one substitutes E = −ik
N

∇×H in equation (2.20), it will follows that

∇× [
1

N
(∇×H)] + k2H = 0. (2.23)

If we assume that the scatterer is an infinitely long cylinder of cross section D and that

it is orthotropic, (i.e. N(x) does not depend on the coordinate whose axis is parallel to the

cylinder axis), equations (2.22) and (2.23) can be simplified by taking proper polarizations

of the electromagnetic field. If the incident field is polarized perpendicular to the axis of the

cylinder then the electric field will be constant in the direction of the cylinder; this polarization

is known in literature as transverse magnetic polarization (TM). On the other hand, if the

incident field is polarized parallel to the axis of the cylinder, the magnetic field will have only

one component in the direction of the cylinder; this polarization is known as transverse electric

polarization (TE). When the incident field is respectively TM and TE polarized, it is possible

to prove that equations (2.22) and (2.23) become

∆uH + k2nuH = 0 (2.24)

∇ · ( 1
n
∇uE) + k2uE = 0 (2.25)

where uH and uE are the vector fields respectively associated to H and E and n is the two-

entries index of refraction. In other words, if we assume that the cylinder axis is parallel to

x3, third coordinate axis, it will be true that H = (0, 0, uH(x1, x2)) and E = (0, 0, uE(x1, x2))

where uH and uE satisfy (2.24) and (2.25).



14 2 The mathematics of microwave tomography and cryosurgery

Summing up, the direct scattering problem for electromagnetic waves, when the scatterer

is assumed to be an infinite cylinder of cross section D, is defined as

∆u+ k2nu = 0 R2 (2.26)

u = ui + us R2 (2.27)

lim
r→∞

(
∂us

∂r
− ikus) = 0 (2.28)

for TM-polarization and as

∇ · ( 1
n
∇uE) + k2uE = 0 R2 (2.29)

u = ui + us R2 (2.30)

lim
r→∞

(
∂us

∂r
− ikus) = 0 (2.31)

in the case of TE-polarization.

In [41], [37] and [45] it is established that, given a scatterer of index of refraction n (subjected

to some regularity conditions) and an incident field ui, problems (2.11)-(2.13), (2.26)-(2.28) and

(2.29)-(2.31) have a unique solution continuously dependent on the initial data n and ui (or,

in other words, that the those problems are well posed in sense of Hadamard [50]).

Problems (2.11)-(2.13) and (2.26)-(2.28) can be equivalently rewritten in integral formula-

tion as

u(x) = ui(x)−
∫
D

Φ(x, y)(1− n(y))u(y)dy (2.32)

where Φ is the Green’s function of the background (for example, Φ(x, y) = i
4
H1

0 (k|x−y|) if the
background is the vacuum, with H

(1)
0 is the zero-order Hankel function of the first kind). (2.32)

is called Lippmann-Schwinger equation and in [41] it is proved to be equivalent to (2.11)-(2.13)

and (2.26)-(2.28) respectively for x ∈ R3 or x ∈ R2 and for n ∈ C1. Analogously, (2.29)-(2.31)

admits an equivalent integral formulation which can be found for example in [45].

A deeper analysis of the origin and the role of the Lippmann-Schwinger formulation for

inverse scattering problems can be found in Section 4 of this Thesis.

2.1.2. Numerical techniques for the direct scattering problem

The computation of an electromagnetic or an acoustic field can be performed through a wide

range of typologies of numerical methods. When one deals with scatterers of particular shape

(that are, for example, cylinders or sphere) the easiest way to compute the field is using its

analytic expansion. Otherwise, if the shape of the scatterer is general, the solution to the

differential problem describing the behavior of the field with respect to incident field and to

the index of refraction can be obtained by the use of different methods, such as, for example,

finite-difference methods, integral equation methods or finite-element methods.
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In this section we will show the principles of some numerical methods utilized for providing

the data used to test the inversion procedure presented in this Thesis. In particular we will

investigate the 2D TM electromagnetic cases of a spherical penetrable scatterer (from two

different view points) and of a generic penetrable scatterer and the case of the acoustic scat-

tering of a 3D sound-soft impenetrable sphere. Further, a brief discussion of the other possible

methodologies of resolution for the direct scattering problem will be provided.

Let first consider the case of a TM electromagnetic scattering (see (2.26)-(2.28)) by a circular

penetrable object of radial dependent refractive index n. In the case of incident plane waves,

the total field u solution of (2.26)-(2.28) is of the form

u(x) =
+∞∑

m=−∞

[αℓ
mH

(1)
m (krx

√
n(x)) + βℓ

mJm(krx
√
n(x))] expimθx (2.33)

in the region ℓ where n(x) is constant, where (rx, θx) are the polar coordinates of x and where

Hm and Jm are respectively Hankel and Bessel functions. The coefficients αℓ
m and βℓ

m only

depend on the incident field and on the geometry. If ℓ = 0 denotes the outer domain (the

vacuum or a general homogeneous background) and ℓ = L denotes the inner homogeneous

domain then αL
m = 0 and β0

m = 0 correspond to the expansion of the incident field in the

neighborhood of the outer boundary. More precisely, using the Jacobi-Anger expansion [41],

the incident field is expanded as

ui(x) =
+∞∑

m=−∞

β0
mJm(krx) exp

imθx . (2.34)

The remaining coefficients in expansion (2.33) are determined by imposing the continuity of

the total field and of its normal derivative on the interfaces. One obtains for each harmonic m

a system of 2L equations for 2L unknowns. Truncating the infinite series to a value m = M ,

the resolution of the 2M systems provide the coefficients and hence the value of the total field

u [57, 53].

If the shape of the scatterer is general, it is not anymore possible to use the asymptotic

expansion in order to achieve an approximation of the value of the total field u. The so

called method of moments [88] provides an approximation of u by discretizing the Lippmann-

Schwinger equation (2.32).

If Φ(x, y) = i
4
H1

0 (k|x− y|) then the total field u is solution of

u(x) = ui(x)− k2

∫
R2

(1− n)(y)u(y)Φ(x, y)dy. (2.35)

Since 1 − n vanishes outside the scatterer, we assume to divide its cross section into L cells,

small enough to be able to consider n and u constants inside each cell. Then, equation (2.35)
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can be rewritten as

u(xm) = ui(xm)− k2

L∑
j=1

(1− n(xj))u(xj)

∫
cell−j

Φ(xm, y)dy (2.36)

where j = 1, . . . ,m and xm identifies the center of each cell.

The approximation of∫
j−cell

i

4
H1

0 (k|xm − y|)dy ≃
{ iπka

2
J1(ka)H

1
0 (k|xm − xj|) m ̸= j

i
2
[πkaH1

1 (ka) + 2i] m = j
(2.37)

where a =
√
∆/π and ∆ the area of the cell transforms (2.35) into a linear system.

Once one has computed the value of u on each pixel of belonging to the support of 1 − n

by solving a system of the type (A − I)u⃗ = u⃗i, the value of u outside the region where the

scatterer lyes is computable through (2.35). We remark that the operation of the method can

be accelerated through the use of fast Fourier transform as explained in [15, 109].

Let consider the scattering by a 3D sound soft impenetrable scatterer of spherical shape.

The value of the total field u can be computed analogously to the 2D electromagnetic case

(2.33). If we move to spherical coordinates

x = r sin(θ) cos(φ) y = r sin(θ) sin(φ) x = r cos(θ), (2.38)

and we suppose to send an incident wave ui = expikz = expikrcos(θ) parallel to the z axis, then

incident field and scattered field assumes [63] the form of

ui(x) =
∞∑

m=0

(2m+ 1)(−i)mj(1)m (kr)Pm(cos(θ)) (2.39)

us(x) =
∞∑

m=0

cmh
(1)
m (kr)Pm(cos(θ)) (2.40)

where jm and hm are the spherical Bessel and Hankel functions and Pm is the Legendre Poly-

nomial of order m [41]. Again, truncating the series at m = M and imposing the boundary

condition us = −ui on the surface of the sphere it is possible to compute cm and hence the

value of us.

The three methods described above have been used for computing the data of the numerical

simulations presented in the following of the Thesis. In general, the literature is full of different

types of methods able to compute the value of the field: for example, in [76] are discussed all

the issues concerning the application of a finite element method to electromagnetism as well as

in [39, 41] theoretical and computational aspects of integral equation methods in scattering are

presented. In [59], an overview on the methods of moments for inverse scattering is provided.
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2.1.3. The inverse scattering problem

The inverse scattering problem is generally intended as the problem of retrieving the whole

information on the scatterer from the only knowledge of the scattered field measured far from

it. With respect to the direct problem, the inverse scattering problem presents many more

difficulties in its resolution since, as it will be clarified in the following, it is ill-posed in the sense

of Hadamard (uniqueness of the solution is not always guarantied and there is no continuous

dependence of the solution from the data) and non-linear. For these reasons we will see that the

definition of ”inverse scattering problem” could be weakened up to the problem of ”retrieving

information” on the scatterer. A weakening in the inversion purposes shall allow the overcoming

of some of the pathologies which affects the whole inverse scattering problem: this is the case

of qualitative methods where the only problem of reconstructing the shape (and not the whole

value of the index of refraction!) will be faced, leading to a reformulation of the problem where

the uniqueness of the solution is guarantied and non-linearity is avoided.

Figure 2.3: The inverse scattering problem.

Although it has been proved in [41] that in the case of time-harmonic acoustic scattering

in three dimensions (i.e. problem (2.11)-(2.13)) different scatterers provide different far field

patterns, it is still unclear if the same is valid for the two dimensional time-harmonic electro-

magnetic problems (2.26)-(2.28) and (2.29)-(2.31). Moreover numerical evidences (see [81] or

[23]) suggest that, in these cases, to a single far field pattern could correspond more than one

refractive index. For these reasons, the existence of a unique solution to the inverse scattering

problem of reconstructing the point wise value of the index of refraction by the knowledge of
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the far field at a single frequency on a circle (in 2 dimensions) or on a sphere (in 3 dimensions)

Ω, has been well established just for the three dimensional case. Nevertheless, the uniqueness

result can be achieved also in the two dimensional electromagnetic case when we suppose to

have at disposal data on a circle and for an interval of frequencies (see [41]). In [41] it is proved

that far field measurements at fixed frequency uniquely identify the shape of a scatterer or,

more generally, its discontinuities with respect to a known background.

If we call F the operator mapping the index of refraction n in the far field pattern u∞, it is

possible to show, (for example in [15] for F : C0(D̄)∪C1(D) → C0(Ω) in the 2D electromagnetic

case), that F is compact and then that the inverse scattering problem is ill-posed. In particular,

the compactness of F encodes the lack of continuous dependence of the solution from the initial

data of the inverse scattering problem.

The set of the existing inversion technique for the resolution of an inverse scattering problem

can be divided in four big families which differentiate based either on the purposes of the

methods (i.e. if the target is or is not the reconstruction of the whole information on n), on

the approximation utilized or on the type of technique employed: the families of quantitative

methods, of Born-approximation methods, of qualitative methods and the family of spectral-

quantitative methods.

The aim of quantitative methods and of Born-approximation methods is a full reconstruc-

tion of the value of the index of refraction. The inversion is performed by applying iterative

techniques to functionals opportunely defined in order to both keep connected the measured

field to the reconstructed refractive index and to avoid the occurrence of situations in which the

procedure sticks into local minima. Quantitative methods face the inverse scattering problem

in its full non-linearity, whereas in Born-approximation methods the operator F is linearized.

Both the techniques present advantages and disadvantages: Born methods are lighter than

quantitative methods in terms of computational weight but can be applied only to situation of

weak scattering [41]; on the other hand quantitative methods are, at least in theory, applicable

to every kind of scattering situations but practical evidence suggests that these methods often

converge to local minima when they are not initialized with a proper a priori information. Ex-

amples of quantitative methods for inverse scattering can be found in [104], [12], [41] and [50]

while Born-approximation techniques have been proposed for example in [41] and [48].[95] and

[52] present some applications of Born-approximation and quantitative techniques to breast

cancer detection by microwaves.

Qualitative methods are a recent range of methods where, instead of retrieving a point wise

information on the value of the index of refraction, one attempts to reconstruct just location

and shape of the scatterer. From a mathematical point of view, this change of perspective

for what concerns the concept of ”inverse scattering problem” leads to a reformulation of the

problem where the operator F is not anymore central in the inversion procedure since it is
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substituted by the so called far field operator F : L2(Ω) → L2(Ω),

[Fg](x̂) =

∫
Ω

u∞(x̂, d)g(d)ds(d) (2.41)

where x̂ ∈ Ω and u∞ is the measured scattered field. Qualitative methods are based on

the solution of a one-parameter family of linear equations and provide just a visual and not

step-like reconstruction of the scatterer since such a reconstruction is obtained exploiting the

behavior of the norm of its solutions which explodes next to the boundary of the scatterer and

remains large outside. The advantages of qualitative methods are that they are faster than

traditional methods and that they do not require at all any kind of a priori information on

the inclusion; unfortunately, when one deals with media embedded in non-empty background,

a rather precise knowledge of the index of refraction of the background is necessary. The

most famous and utilized qualitative methods are the linear sampling method [38, 46, 45,

37] and the factorization method [66, 68]: although most of the theoretical background is in

common, they distinguish since the factorization method is more theoretically justified than the

linear sampling method whereas the linear sampling method is much more generally applicable.

Other qualitative methods can be found in [6, 36, 83]; [47, 16] are examples of applications of

qualitative techniques to microwave mammography.

In the last years a new generation of techniques is growing up: these methods base their

operation on the knowledge of a discrete set of wave numbers - spectrum - of the scatterer,

that is the set of wave numbers for which the inclusion remains ”invisible” to the incident

field. The existence, for each (non-absorbing) scatterer, of a set of such wave numbers - called

transmission eigenvalues [41, 78] - was a well known fact to the scientific community since many

years [40] but transmission eigenvalues were considered just as values for which qualitative

methods could not operate. A notable increase of the interest into the field of transmission

eigenvalues has been registered when it has been proved that transmission eigenvalues are

detectable from far field data [26] and that they encode information on the index of refraction

of the scatterer [29, 25]: these two facts gave rise to a new family of inversion methods, the here-

called spectral-quantitative methods. The literature concerning spectral-quantitative methods

is still short and, at this moment, the state of the art for these methods is able just to associate

a constant estimate of the index of refraction to the knowledge of the first real transmission

eigenvalue (see [97],[56] and [57]). Nevertheless, theoretical results indicate that the spectrum

carries much more information on the scatterer than a simple estimate (see [31], [43] and [24]);

for example, it has been proved [24] that the knowledge of the whole spectrum is sufficient to

uniquely determine a radially symmetric index of refraction. These basis, together with the

fact that the detectability of transmission eigenvalues has been extended to many different

scattering situations, suggest the grow of spectral-quantitative methods during the next years.
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2.2. Cryosurgery

Cryosurgery is a minimally invasive technique aiming at the destruction of cancerous tissues

by application of extremely cold temperatures. It may be used in the treatment of localized

prostate and liver carcinomas, in alternative to resection, radiation and chemotherapy [34, 102,

107, 33, 94].

The cooling and the subsequent destruction of living tissues is performed by insertion of

multiple cryoprobes in the shape of long hypodermic needles connected to an external generator

of supercooled fluid [91]. Subtraction of heat from the biological system leads to a phase change

from the liquid to the solid state, starting around the tip of the cryprobes. The process is carried

on until the entire cancerous tissue is frozen with temperature range of the solid phase below

the lethal limit. To obtain an effective destruction of cancerous tissues several freezing-thawing

cycles at appropriate temperature variation rates may be required [33]. To minimize cryoinjury

to the surrounding healthy cells and blood vessels, cryoheaters have also been developed, to be

inserted into the tissues [86, 91].

The aim of this section is to give an introduction about all the aspects playing a role in

cryosurgical operation. We will describe the practical aspects concerning how the operation is

carried out and the physical aspects of heat propagation in a tissue. Then, the problem of the

planning of a cryosurgery operation will be presented providing an overview about the state of

the art in cryosurgery planning.

2.2.1. The cryosurgery operation

A cryosurgery operation consists in the insertion of a number of cryoprobec into the portion

of biological tissue that needs to be treated and to its freezing up to a lethal temperature.

The target tissue could consist in a whole organ, as in the case of a prostate affected by

carcinoma where the destruction of the whole organ’s tissue is considered less risky than ad

hoc treatments, or in little parts of organs, as in the case of the liver, whose operation is

necessary to the body and where any kind of treatment can not compromise the whole status

of the organ [93]. Cryosurgery is also used to treat superficial masses as skin tumors [77].

During a cryosurgery operation the tissue is carried to extremely low temperatures through

the action of the cryoprobes which - connected to a supercooled fluid generator - reach freezing

temperatures on their boundaries and subtract heat from the tissue by contact. In order to

achieve such a temperature, the cryoprobes are connected by thermic insulated tubes to a

generator where a fluid is cooled and then pushed into the tubes up to the cryoprobes. When

the fluid has reached the cryoprobe the heat exchange begins and the fluid starts loosing its

cooling power. Hence the fluid is moved back to the generator and replaced by new cooler fluid
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and so on.

The action of cold on the tissues is in general destructive and it becomes lethal when

the tissue is kept for an amount of time under the temperature of −45oC [51]. Moreover

the employment of freezing and thawing cycles have been showed to improve the efficacy of

cryosurgical treatments [51].

But, since a freezing temperature is destructive for a general biological tissue and not just

for the cancerous one, the successive issue in a cryosurgical operation is to find a way to

preserve healthy tissues from the action of the cryoprobes. For this reason, in parallel with

the born of cryosurgery devices, several planning techniques have been developed. The aim

of these techniques is to set those experimental parameters which can be case-dependent and

related to the physics of heat propagation: for examples the main aim of a planning technique

for cryosurgery is to set the optimal position of the cryoprobes with respect with the portion

of tissue to treat; other examples can be the definition of the optimal insertion depth, of the

optimal shape of the probes or of the optimal duration of the operation.

Finally it has to be mentioned that, in order to answer to the necessity of keep enough hot

the healthy organs, the insertion into the healthy tissue of heating probes called cryoheaters

[86] has recently been considered.

2.2.2. Heat propagation with phase change: from pure substances to

biological tissues

The temperature distribution θ in an open set S (contained in R,R2 or R3) of pure substance

is modeled by the following differential problem

ρc ∂
∂t
θ(x, t) = k∆θ(x, t) S (2.42)

θ(x, t) = f(x) ∂S (2.43)

θ(x, 0) = g(x) S (2.44)

where t represents the time, x is the spacial coordinate, f and g are the assigned boundary and

initial condition, ρ, c and k are respectively mass density, specific heat and thermal conductivity.

The well posedness of (2.42)-(2.44) has been already deeply analyzed and stated for example

in [106].

When initial conditions and boundary conditions are one above the phase change tempera-

ture of the substance and one under that temperature, a phase change in the substance occurs.

The consequences of a phase change is that parts of S would see a modification in the corre-

sponding thermal parameters and that some energy is dissipated for the phase change as latent

heat.
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If one does not consider the contribute of the latent heat, the thermal distribution in case

of phase change is the solution of the so called Stefan Problem

ρ1c1
∂
∂t
θ(x, t) = ∇(k1∇θ(x, t)) S1 (2.45)

ρ2c2
∂
∂t
θ(x, t) = ∇(k2∇θ(x, t)) S2 (2.46)

θ(x, t) = f(x) ∂S (2.47)

θ(x, 0) = g(x) S (2.48)

where S = S1 ∪ S2 and subscripts identify the two different substances (i.e. solid and liquid)

and the common boundary ∂S1,2 corresponds to the subspace where θ(x, t) is equal to the phase

change temperature. The existence of a unique solution to the Stefan Problem is established

for example in [92].

When the substance is non-pure, one has to face the problem of dealing with thermal pa-

rameters which vary with the temperature. This problem is accentuated when the temperature

is around the phase change threshold: in fact, although when the phase of the substance is well

defined one can often approximate to constants all the thermal parameters, when a non-pure

substance is close to change phase, the dependence of the thermal parameters on the value

of the temperature is higher, due to the different phase change temperatures of the different

components belonging to the substance. In these cases it is common to consider a range of

temperature in which the phase change occurs. Sometimes, in the case of more accurate mod-

els, the phase change is modeled through several different steps where each one describes a

precise physical passage of the substance.

The freezing of a biological tissue can not be treated in the way of (2.45)-(2.48) since a

biological tissue is not a pure substance. Moreover, heat propagation in a tissue has to take

into account several other heat contributes: in fact, the traditional heat equation is substituted

by the Pennes bio-heat equation [80]

ρ c
∂θ

∂t
= ∇ · (k∇θ) + ωb ρb cb (θb − θ) + qm (2.49)

where the subscript b stands for blood and qm is the metabolic heat generation rate. Hence,

the temperature distribution, solution of equation (2.49), is influenced not only by the heat

exchange due to contact but also from the blood perfusion and from the metabolism that locally

warm S. Phase change is generally identified in a single range of temperatures [107, 108, 33]

but it is generally difficult to properly model the freezing of a tissue particularly when big

gradient of temperatures occur in a small region. For this reason, more sophisticated models

as [89, 101] are in general preferred when one does not have to mind computational costs and

cpu-time limitations.
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2.2.3. An enthalpy-based approach to the Stefan problem in biological

(cancerous) tissues

The setup of a cryosurgical operation begins by decreasing the temperature of the cryoprobes

according to a prescribed law down to a minimum value. The cryoprobes act as heat sinks

removing sensible and latent heat from the tumor. The related direct Stefan problem for

biological tissues is solved under the following assumptions.

(a) During freezing, heat is moved from the cancerous tissue towards the cryoprobes by

conduction. Inside the volume where phase-change occurs, we take into account the trans-

formation between sensible heat and latent heat. Local heat supply by blood perfusion and

metabolism is also considered until the tissue is frozen. There is no heat supply by radiation.

(b) The biological tissue is not regarded as a pure substance. Thus phase change takes place

over a temperature range, where the upper limit θM and the lower limit θm are differently chosen

in the literature, (for example, θm = −10, θM = 0 in [107] and θm = −8, θM = −1 in [85]). This

means that the formation of ice crystals during freezing begins at θM and ends at θm; within

this temperature interval, both latent heat and sensible heat are removed from the tissue. The

temperature interval (θm, θM) identifies the intermediate region V2 of the phase change, which

is placed between solid and liquid phases. The temperature interval θ > θM determines the

region V3, filled by tissue-liquid phase, while the condition θ < θm determines the region V1,

filled by the frozen-solid tissue (see Figure 2.4).

(c) The material parameters in V1 and V3, such as mass density, specific heat capacity,

and thermal conductivity are taken as constant. However they are supposed to assume differ-

ent values inside the frozen and the unfrozen region. Volume changes and the related stress

depending on temperature changes are neglected.

(d) The latent heat in the intermediate region V2 is constant. The latent heat effect is

modeled by assuming a suitable heat capacity over the corresponding temperature range [14].

The thermal conductivity of the intermediate region is regarded as a function of temperature.

(e) The initial temperature value in the Stefan problem is 37 oC for the whole tissue. The

(boundary) value of the temperature varies according to a prescribed law at the boundary of

the cryoprobes while it is fixed at 37 oC in the surrounding healthy tissue and at the boundary

of the cryoheaters.

The heat transfer process is described in terms of the corresponding temperature field

θ(x, t), where x is the position vector and t the time. The partial differential equations for the

temperature field in the regions V1, V2 and V3 follow from the previous assumptions, as well as

the related boundary and initial conditions.

In the unfrozen region, V3, the temperature θ satisfies the classical heat balance equation
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for biological tissues [80],

ρ3 c3
∂θ

∂t
= ∇ · (k3 ∇θ) + ωb ρb cb (θb − θ) + qm. (2.50)

In the frozen region, V1, equation (2.50) simplifies to

ρ1 c1
∂θ

∂t
= ∇ · (k1∇θ). (2.51)

Subscripts 1, 2, 3 refer to the corresponding region or phase; b refers to the arterial blood;

ρ is the mass density, kg/m3; c is the specific heat, J /(kg oC); t is the time, s; k is the

thermal conductivity, W/(m oC); wb is the capillary blood perfusion rate, 1/s; θb is the blood

temperature, oC; qm is the metabolic heat generation rate, W/m3.

Eq. (2.50) expresses conservation of (thermal) energy in mechanical equilibrium. The three

terms at the right hand side of (2.50) are related to a) heat transfer by conduction; b) heat

supply to the tissue by blood flow, under the assumption that blood enters the capillaries at

temperature θb; c) heat supply as a consequence of chemical reactions inside the cells. Eq.

(2.51) is the classical heat equation in the simplest form, showing that heat transfer inside the

frozen region is only due to conduction.

The heat transfer process in the intermediate region V2 is modeled by approximating latent

heat exchange in the interval (θm, θM) with a predefined heat capacity [14]. This is essentially

correspondent to an enthalpy formulation, although enthalpy is not explicitly introduced [14],

[108]. The thermal conductivity k is represented by a linear function of θ which is continu-

ous at the boundary of the intermediate region and leads to convenient boundary conditions.

Specifically, we let

ρ2 c2 :=
L

θM − θm
+

ρ1 c1 + ρ3 c3
2

, (2.52)

k2(θ) := k1 +
k3 − k1
θM − θm

(θ − θm), (2.53)

where L denotes the latent heat per unit volume. In particular we have k2(θm) = k1 and

k2(θM) = k3. The resulting equation for θ in V2 takes the form

ρ2 c2
∂θ

∂t
= ∇ · (k2(θ)∇θ) + ωb ρb cb (θb − θ) + qm. (2.54)

As usual, it is required that the temperature and the normal component of the heat flux

vector are continuous at the common boundaries of the three regions. Finally, the temperature

is given at the boundary of the cryoprobes and at the external boundary of V3, where θ = 37
oC. The initial datum is θ = 37 oC everywhere.

Our numerical approach to the direct Stefan problem is based on the following compact

formulation. We define

a(θ) :=


ρ1 c1 in V1

ρ2 c2 in V2

ρ3 c3 in V3

(2.55)
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Figure 2.4: Scheme of a generic cryosurgery experiment: four cryoprobes (circles) and two cryoheaters (circles

with crosses).

k(θ) :=


k1 in V1

k2 in V2

k3 in V3

(2.56)

b(θ) :=


0 in V1

ωb ρb cb (θb − θ) + qm in V2

ωb ρb cb (θb − θ) + qm in V3.

(2.57)

Therefore equations (2.50), (2.51) and (2.54) may be reformulated in the equivalent compact

form

a(θ)
∂θ

∂t
= ∇ · (k(θ)∇θ) + b(θ) (2.58)

in the fixed open volume V = V1 ∪ V2 ∪ V3.

Denote by ∂C, ∂H and ∂E the union of the boundaries of all cryoprobes, all cryoheaters, and

the external boundary between V and healthy tissues (see Figure 2.4), respectively. Boundary

and initial conditions of (2.58) are set as
θ(x, t) = α(t) x ∈ ∂C, t > 0

θ(x, t) = 37oC x ∈ ∂H ∪ ∂E, t > 0

θ(x, 0) = 37o C x ∈ V.

(2.59)

Here α is a given function of time expressing the decay law of the temperature of the cryoprobes:

to simplify we have considered the same decay law for all cryoprobes, although the algorithm

works as well if the decay law changes with the cryoprobe.
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2.2.4. The planning of a cryosurgery operation

Before a cryosurgery operation, some parameters have to be set in order to maximize the

effectiveness of the operation and to minimize its invasivity. Most of the times, the optimal

configuration of those parameter is case dependent and related more to the physics of heat

propagation in a biological tissue than to physiological reasons. Hence, the definition of these

parameters, can not be completely left to the decision of a medical doctor but planning tools

have to assist him during a cryosurgery session. It is clear that any cryosurgery planning

device has to include a computational method providing the temperature distribution given

some initial experimental parameters, a criterium able to order the possible configurations of

the free parameters in terms of their functionality and an optimization algorithm identifying

an optimal final configuration for the operation.

Figure 2.5: The cryosurgery planning problem.

The literature concerning the design of a cryosurgery operation is not wide and it is at

most concentrated around the optimal disposition of the cryoprobes with respect to the area

which has to be freezed. One of the first example of application of optimization methods to

cryosurgery planning is [64] where the simplex method [60] was applied to the problem of

optimizing the fitting of the freezing front with the shape of the prostate when the position

of the cryoprobes were initially established through geometric considerations. Although the

simplex method resulted suitable for the examples considered in [64], the intrinsic non-linearity

of the problem invalidates the effectiveness of the simplex method when one faces directly the

problem of finding the best position of the probes.

If, on the one hand, the approach of [64] utilizes a too simplistic optimization approach with

respect to the complexity of the whole problem, on the other hand neither too mathematically

sophisticated approaches are suitable for the problem. In fact, if, for example, one wants to
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apply traditional optimization techniques, the first big difficulty will be to build a suitable cost

function to minimize. In fact, in general, we do not have at disposal an explicit formula for

the distribution of the temperature field given boundary and initial conditions and moreover

these conditions change case by case (e.g. depending on where one places the cryoprobes).

This is the case of the approaches [14] and [11] where gradient descent technique are applied to

minimize objective functionals whose definition is inspired by the behavior of the temperature

field around the cryoprobes.

A good compromise between the previous two techniques is represented by the force field

analogy method [73]. This method works, in some sense, independently from the cost func-

tion that one utilizes and requires just that, at each iteration, after the computation of the

distribution of the temperature in the tissue, a visualization of the defective areas is provided.

In fact, for each one of the pixels which did not reach a proper temperature (i.e. defective

pixel), the method computes a displacement vector for the cryoprobe and the resultant will

determine the displacement of that particular cryoprobe at the given iteration. Differently

from gradient descent techniques and simplex techniques, force field analogy has been tested

in many realistic simulations showing its real applicability to cryosurgery planning [84, 100],

although the computational time required to converge to a solution is, at present, far from

real-time applications.

A way to increase the speed of optimization method in cryosurgery could be to try to avoid

the computation of the temperature distribution at each iteration. For example, in the case of

a planning of the location of the cryoprobes, one can concentrate on geometrical considerations

and define methods able to converge to a configuration where cryoprobes are homogeneously

distributed inside the shape of the tissue, that is far enough from each other and from the

boundary of the tumor. The bubble-packing method [99] is born in this perspective, first as

an initialization tool to the force field analogy method [100] and then as planning algorithm

itself [90] able to optimize even the insertion depth [91].

Recently, in [54], the applicability of a particular genetic algorithm (called ant colony op-

timization [96]) to cryosurgery planning has been investigated. Such an approach has the

advantage to be completely general and of allowing the setting of different types of experi-

mental parameters without changing optimization technique. Unfortunately, similarly to the

force field analogy method, it has the drawback of not being able to provide real-time results

although it can be notably speeded up by integrating it with geometrically-based optimiza-

tion tools. A complete investigation of ant colony optimization method (ACO) applied to

cryosurgery will be provided in Chapter 5 of this thesis.
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CHAPTER 3

The linear sampling method as a

qualitative approach

in microwave tomography

The following chapter is dedicated to the linear sampling method (LSM) [28], probably the

most important qualitative method in inverse scattering. The aim of the chapter is to analyze

the operation of the method from two different points of views: first, with an introductive

part dedicated to the definition of the method and to the analysis of its applicability to breast

cancer detection; then, with a second more theoretical section, where some open issues related

to the LSM will be investigated.

Section 3.1 is dedicated to the description of the method in the framework of a scattering

situation of a penetrable object embedded in an homogeneous or inhomogeneous background;

then the method - in one of its variation aimed to maximize the speed of the reconstruction

- is tested in the setting of mammographic microwave tomography where highly realistic sim-

ulations are performed through the use of breast phantoms derived from magnetic resonance

images.

Section 3.2 describes a physical interpretation of the method by presenting the results

published in [7]. The aim of the section is to cover some issues which are still open although

not concerning any practical aspects of the operation of the LSM. In fact, although the linear

sampling method has been showed to be effective in many different physical situations, its

theoretical background is still not fully developed and the operation of the method is not

wholly explained. The section will first present the issue and the state of the art in the field

and then our physical approach will be introduced.
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3.1. The linear sampling method and microwave mammog-

raphy

This section is concerned with an application of the linear sampling method to microwave

mammography. The setting is the two dimensional scattering by a TM-electromagnetic field:

this means that we suppose to image the breast by slices. In the Section 3.1.1 the direct

scattering problem is recalled and the linear sampling method (LSM) introduced by first de-

scribing its theoretical basis, then focusing on its implementation in the case of homogeneous

and inhomogeneous background (Sections 3.1.1, 3.1.2, ,3.1.3). Finally, in Section 3.1.4, a faster

version of the LSM will be introduced and and its efficacy will be assessed through realistic

mammographic simulations (Section 3.1.5).

3.1.1. Principles of the linear sampling method

Let consider the (well-posed [41]) differential problem

∆u+ k2nu = 0 R2 (3.1)

u = ui + us R2 (3.2)

lim
r→∞

(
∂us

∂r
− ikus) = 0 (3.3)

describing the behavior of the total electromagnetic field u when ui = expikx·d, incident plane

wave of direction d, is sent against a two dimensional scatterer D of index of refraction n

embedded in an homogeneous background (i.e. n = nb with nb constant). If u
s is the scattered

field, then it admits the following asymptotic representation holding uniformly on x̂ := x
|x| ∈

Ω := {x ∈ R2 : |x| = 1}

us(x) =
expikr

r
u∞(x̂) +O(r−2) r → ∞ (3.4)

with r = |x| and where u∞ is the far field pattern of the scattered field us.

Given Φ∞(x̂, z) = expiπ/4
√
8πk

exp−ikx̂·z far field pattern of the fundamental solution to the

Helmholtz equation Φ(x, z) = i
4
H

(1)
0 (k|x − z|), where H

(1)
0 is the Hankel function of the first

kind, let define the far field operator F : L2(Ω) → L2(Ω)

[Fg](·) =
∫
Ω

u∞(·, d)g(d)ds(d) (3.5)

and the far field equation∫
Ω

u∞(x̂, d)gz(d)ds(d) = Φ∞(x̂, z) x̂ ∈ Ω. (3.6)
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Fg is the far field associated to a particular incident field

vg(x) :=

∫
Ω

expikx·d g(d)ds(d) (3.7)

called Herglotz wave function of density g.

We further define as transmission eigenvalues those wave numbers k for which the following

homogeneous interior transmission problem has a non-trivial solution

∆w + k2nw = 0 D (3.8)

∆vg + k2v = 0 D (3.9)

w = v ∂D (3.10)

∂w
∂ν

= ∂v
∂ν

∂D. (3.11)

When v is the incident field, the scattered field has to be zero on ∂D and then in R2 \ D.

In other words, transmission eigenvalues identify waves which can not be scattered by the

scatterer since, if w = v on ∂D, then w can be uniquely (well-posedness of the direct problem)

extended outside D as the solution to the Helmholtz equation. The set of real transmission

eigenvalues has been proved to be infinite and discrete [31] when Imn = 0; if Imn ̸= 0 real

transmission eigenvalues do not occur.

Except for the values of k which coincide with transmission eigenvalues, it holds [28]

Theorem 3.1.1. If z ∈ D, for every ε > 0 there exists an approximate solution gεz ∈ L2(Ω) to

the far field equation (i.e. gεz satisfies ∥Fgεz − Φ∞(·, z)∥ ≤ ε) such that

• limε→0 ∥vgεz∥L2(D) < ∞ and

• limz→∂D ∥gεz∥L2(Ω) = ∞, limz→∂D ∥vgεz∥L2(D) = ∞.

If z /∈ D, for every ε > 0 and gεz ∈ L2(Ω) satisfying ∥Fgεz − Φ∞(·, z)∥ ≤ ε we have that

• limε→0 ∥gεz∥L2(Ω) = ∞ and limε→0 ∥vgεz∥L2(D) = ∞

Theorem 3.1.1 inspires the following algorithm: taken a grid of points Z enough big to

contain the scatterer, solve the far field equation (3.6) for each z ∈ Z; then plot ∥gz∥L2(Ω)

(or its composition with a monotone function). This algorithm provides a visualization of the

support of the scatterer, whose boundary will approximatively correspond with those points

where ∥gz∥L2(Ω) explodes.

3.1.2. The method and its implementation

A central role in the linear sampling method is played by the far field equation (3.6). In

fact, its resolution for z belonging to a grid containing the inclusion, provides a z-dependent
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family of functions whose L2-norm opportunely plotted allows the visualization of the scatterer.

Unfortunately, the resolution of equation (3.6) is not straightforward because very rarely the

right hand side of (3.6) belongs to the range of the far field operator F [22, 23, 3] and F is

compact [23], hence (3.6) is ill-posed. Moreover one has to think that in real applications the

data on the far field are perturbed by a noise whose magnitude depends on the precision of

the devices utilized. In addition, this noise does not affect the right hand side of (3.6) as it

happens for more traditional inverse problems, but directly the definition of the operator F .

For these reasons, the resolution of (3.6) requires regularization [23]. Although, at least in

theory, there are no restrictions on the type of regularization scheme that can be applied to

(3.6), (in [98] different regularization schemes are compared), the linear sampling method is

now commonly identified as utilizing the Tikhonov regularization scheme [103] provided with

the generalized discrepancy principle [103] as a criteria to choose the optimal regularization

parameter.

If Fh is the noisy far field operator where h is an estimate on the magnitude of the noise

(e.g. h = ∥Fh − F∥), Tikhonov regularization applied to equation (3.6) corresponds to solve

the problem of finding the minimum gαz
z to the functional

∥Fhg
αz
z − Φ∞,z∥L2(Ω) + αz∥gαz

z ∥L2(Ω) (3.12)

where αz is the regularization parameter. Minimizing functional (3.12) is equivalent to solve

the associated Euler’s equation

(F ∗
hFh + αI)gαz

z = F ∗
hΦ∞,z (3.13)

where I is the identic function.

When to the noisy far field operator Fh is associated a singular value decomposition

{σk
h, u

k
h, v

k
h}∞k=1 [50], the expression of the Tikhonov regularized solution to the far field equation

becomes

gαz
z =

∞∑
k=1

σk
h

αz + (σk
h)

2
(Φ∞(·, z), vkh)L2(Ω)u

k
h (3.14)

whose series is cut off to a finite value when we deal with the discretized version of Fh and

where (·, ·)L2(Ω) denotes the scalar product in L2(Ω).

A proper choice of the regularization parameter αz is provided by the generalized discrep-

ancy principle [103] which identifies the optimal choice of αz in the zero of the functional

ρh(α) = ∥Fhg
α
z − Φ∞,z∥2L2(Ω) − h2∥gαz ∥2L2(Ω) (3.15)

which, through (3.14), becomes

ρh(α) =
∞∑
k=1

α2 − h2(σk
h)

2

(α+ (σk
h)

2)2
|(Φ∞(·, z), vkh)L2(Ω)|2. (3.16)

Summarizing, the linear sampling method can be schematized as follows:
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• Let Z be a grid containing the inclusion, then for each z ∈ Z do

– compute αz by (3.16);

– compute gαz
z by (3.14);

– store the value of ∥gαz
z ∥L2(Ω).

• The plot of gαz
z for each z ∈ Z provides a reconstruction of the shape of the object.

We conclude the section with a remark: if one compares the method with its inspiring

theorem (Th. 3.1.1) he will notice that the method is not completely justified by the theorem.

In fact, nothing ensures that the (Tikhonov) regularized solution to the far field equation co-

incides with that particular solution whose behavior is described by the theorem. Nevertheless

a twenty-years validation of the linear sampling method shows the effectiveness of the method,

even for different types of regularization techniques, and suggests that results of Theorem 3.1.1

can be improved. Section 3.2 analyzes this issue by first presenting an overview on the state

of the art and then proposing a physical interpretation of the method able to extend (under

some assumptions) the result of Theorem 3.1.1 to all the approximate solutions to the far field

equation.

3.1.3. The LSM in inhomogeneous backgrounds

In Sections 3.1.1 and 3.1.2 we have described the principles and the implementation of the linear

sampling method when dealing with a scatterer surrounded by an homogeneous background

and with far field measurements. This section is dedicated to its extension to the case of the

detection of an inclusion embedded in an inhomogeneous background and to the case of near

field measurements.

When one has to take into account an inhomogeneous background, the algorithm can be

stated as well, providing, as output, the reconstruction of the curve of discontinuity of the

scatterer with respect to the background. In other words it provides the shape of the inclusion.

Moreover, when one is interested in reconstructing the shape of a buried object, often the

measurements curve is placed close to the region under investigation and not in the far field

region. The reason can be related to the practice of the applications or to the possible presence

of a dissipative component in the refractive index of the background. In fact, in this last case,

the farer are placed the antennas, the less energetic will be the measured wave and the more

powerful will be the noise. The linear sampling method is not influenced by the occurrence of

near field measurements (or emissions) and its structure and operation remains the same of

the far field case [35, 20].

Results stated in Theorem 3.1.1 are achieved in [42, 35] for the case of a penetrable object

embedded in an inhomogeneous background provided that some of the mathematical tools
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introduced in Section 3.1.1 are modified as follows.

If us
b is the field scattered by the inhomogeneous background of (non-constant) index nb,

i.e. us
b is the scattered field for which the corresponding total field u satisfies

∆u+ nb(x)u = 0 in R2 (3.17)

u = ui + us in R2 (3.18)

lim
r→∞

(
∂us

∂r
− ikus) = 0 (3.19)

and u∞,b is its far field pattern, then the far field operator F̃ is now defined as

[F̃ g](·) =
∫
Ω

[u∞(·, d)− u∞,b(·, d)]g(d)ds(d). (3.20)

The far field equation takes now the form of

[F̃ gz](·) = G∞(·, z) (3.21)

where G∞ is the Green’s function of the background which could not be anymore considered

analytically known but will have to be numerically computed.

Theorem 3.1.1 can be proved to remain valid when F and Φ are substituted by F̃ and G

(see [42, 35, 37]) and the structure of the algorithm described in Section 3.1.2 is left unaltered.

A last remark concerning the choice of the optimal regularization parameter α is however

required. As previously seen, in order to approximate the shape of the inclusion by the LSM,

one is supposed to know the index of refraction nb of the background; if, for example, one

thinks to practical applications, it is not possible to assume that, in general, such an a priori

information is at disposal without taking into account any kind of mistake in this knowledge.

Due to this possible lack of precision in the knowledge of the background, an other type of

noise has to be considered when one has to solve the far field equation. If we call δ the

estimate on the magnitude of the error present in the right hand side of (3.21), (e.g δ =

∥Gδ
∞(·, z)−G∞(·, z)∥L2(Ω)), equation (3.21) is more realistically rewritten as

[F̃ hgz](·) = Gδ
∞(·, z). (3.22)

Following the generalized discrepancy principle, an optimal value of the Tikhonov regu-

larization parameter for the regularization of (3.22) can be chosen as that particular αz for

which

∥F̃hg
α
z −Gδ

∞∥L2(Ω) = h∥gαz ∥L2(Ω) + δ. (3.23)

Such a criterium is equivalent of choosing the αz such that ρh,δ(αz) = 0 with

ρh,δ(α) = ∥F̃hg
α
z −Gδ

∞∥2L2(Ω) − (h∥gαz ∥L2(Ω) − δ)2. (3.24)
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3.1.4. The no-sampling formulation of the LSM

In order to visualize the presence and the shape of an inclusion, the linear sampling method

requires the resolution of the regularized far field equation for each z in a grid containing the

scatterer. This means that the step of choosing the optimal regularization parameter as well

as the step of solving the far field equation occur a number of times equal to the number of

points of the grid Z. In particular when we deal with a three dimensional scattering problem,

such a procedure, although much lighter than quantitative techniques, can require time, due

to this series of operations. [6] and [18] present an algorithm based on the LSM where only

one regularization (and inversion) process is required. In the following we will briefly introduce

the no-sampling linear sampling method (nSLSM) referring to [6, 17] for a more technical

discussion. Then, next section will show some numerical simulations based on the application

of the no-sampling linear sampling to breast cancer detection by microwaves.

Let consider the discretized far field operator F consisting in an N by M matrix, where N

and M are respectively the number of emissions and measurements and let introduce a new

far field operator F̂ : L2(Z)N → L2(Z)M such that

ĝ := {ĝj(·)}Nj=1 7→ {
N∑
j=1

Fij ĝj(·)}Mi=1. (3.25)

Hence, ĝ is, now, an element of L2(Z)N := L2(Z)
⊕

...
⊕

L2(Z), Hilbert space of scalar product

(f, g)2,M :=
M−1∑
i=0

(f, g)2 (3.26)

and induced norm

∥f∥2,M =

√√√√∫
Z

∥f(z)∥2CMdz (3.27)

where ∥ · ∥CM is the norm in CM

The z-dependent family of far field equations is replaced by the single functional equation

[F̂ ĝ(·)](·) = N

2π
Ĝ∞(·) (3.28)

where Ĝ∞ ∈ L2(Z)M is trivially obtained by considering G∞ - far field pattern of the Green’s

function of the background - as a function of z.

As a consequence, the reconstruction of the inclusion is provided by the inversion of the

single equation (3.28). Then, the regularization parameter is chosen only once in the whole

process and in particular its optimal value will be the zero of

ρ̂h,δ(α) = ∥F̂hĝ
α − Ĝδ

∞∥22,M − (h∥ĝαz ∥2,N − δ)2 (3.29)
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where h and δ are the magnitudes of the noise affecting respectively F̂ and Ĝ∞ and where they

refer to the noisy version of F̂ or Ĝ∞ when they appear as subscripts. When such an optimal

value α∗ has been chosen, the regularized solution to (3.28) takes the form of

ĝα
∗

z =
N

2π

rh∑
k=1

σ̂k
h

α∗ + (σ̂k
h)

2
(Ĝ∞(·), v̂kh)CN ûk

h (3.30)

and the scatterer is visualized by plotting a monotone function of ∥ĝα∗
(z)∥2CN .

3.1.5. Application to breast cancer detection by microwave

In this section we will test the no-sampling linear sampling method in the setting of the

detection of breast tumors using microwaves. The numerical simulations we are going to show

are based on highly realistic numerical breast phantoms (free to download1) derived by the

segmentation of MRI (Magnetic Resonance Imaging) images of female breasts.

The fulcrum of the nSLSM is the resolution of equation (3.28) where, for these simulations,

the field data required by the definition of F̂ and Ĝ are computed through the refractive index

map of scatterer and background provided by the MRI images. In particular, the refractive

index of the breast affected by tumor will provide the value of u∞, while u∞,b and G∞,b will be

computed through the use of the map of the healthy breast.

If we think to the practical application of this technique, we will have that, although at the

moment of a real mammography the value of u∞ is measured, the values of u∞,b and of G∞,b

have to be computed utilizing a map provided by some other imaging modality. Hence, what

we show here is an example of application which could be set in the pattern of a screening in-

volving highly risk women whose clinical situation is frequently monitored through a microwave

mammography (non invasive and low cost) and where background information are provided by

the una tantum employment of other medical imaging techniques.

The system configuration is schematized as in Figure 3.1 (a) and (b) where the blue stars

represent the positions of the antennas. The color scale utilized in (a) and (b) visualizes how

heterogeneous is the structure of the index of refraction of the breast (i.e. it changes point by

point). Figures (c) and (d) provide a quantitative visualization of the value of n in its real and

imaginary component.

In the following numerical examples we assume to dispone of data for 20 incidences and 20

measurements and to pose the antennas on a circle of ray 6 cm surrounding the breast. All

the data are perturbed by a 3% of Gaussian noise. In the first numerical example (Figure 3.2)

a tumor (in black) of diameter 0.5 cm is artificially added to the healthy slice (the value of

the refractive index of the tumoral tissue is computed following [72]). Figure 3.2 (a) and (b)

respectively show the vertical and the horizontal breast slice where the tumor is inserted while

1at http://uwcem.ece.wisc.edu/home.htm
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Figure 3.1: Set up of the microwave mammography: (a) represents a vertical breast slice where the black

tumor is artificially added and the color scale is defined in a way such that the pixel wise variation of the index

of refraction is emphasized; in black the artificially added tumor of diameter 0.5 cm. (b) is the horizontal slice

of the breast. In (a) and (b) stars represent the presence of the antennas. In (c) and (d), the value of the real

and the imaginary part of the index of refraction (at 2 GHz) is respectively shown.
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(c) is the horizontal healthy breast slice. In other words, the data u∞ of the tomography is

simulated through the index of refraction shown in (b) and quantities u∞,b and Gb are computed

through (c) which constitutes the background information. (d) represents the behavior of

∥ĝα∗
(z)∥2CN for z ∈ Z.

In summary, these examples show the applicability of the method to breast cancer detection

when a proper knowledge of the background is at disposal.

With Figure 3.3 we want to test the robustness of the method with respect to a non-

complete knowledge of the background. The index of refraction of the ill breast is perturbed

by a 5% of Gaussian noise point by point (see (a) and (b)) and the a priori knowledge of the

background is left unaltered (see (c)). Figure 3.3 (d) shows the correspondent reconstruction.

The structure Figure 3.4 is the same of Figure 3.3. The difference is that a smaller tumor

(diameter 0.3 cm) is artificially added. The nSLSM reconstruction (d) shows some artifacts,

nevertheless the presence of the tumor can be easily detected.

3.1.6. Conclusions

The simulations showed in the previous section numerically assess the effective applicability of

the linear sampling method to the problem of detecting breast tumors by microwaves.

The LSM has been proved to be able to detect inclusions of very small size which is the

principal requirement in order to apply this technique in the setting of a large scale screening.

Unfortunately, to operate, the LSM requires a large amount of a priori information which

has to constitute the background of our scattering experiment. Hence, for what concerns the

application of this technique to real mammographic situations, the LSM has to be supported

by the use of other medical imaging modality as the MRI.
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Figure 3.2: First numerical simulation: 2GHz of frequency, 20 emitting and measuring antennas, 3% of noise

on the measured field. (a) represents a vertical breast slice where the black tumor is artificially added and the

color scale is defined in a way such that pixelwise variation of the index of refraction is emphasized (the real

values of the refractive index can be found in Figure 3.1 (c) and (d)); in black the artificially added tumor of

diameter 0.5 cm. (b) is the horizontal slice of the breast. (c) shows the considered background (i.e. healthy

breast). (d) is the reconstruction provided by the nSLSM .
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Figure 3.3: Second numerical simulation: 2GHz of frequency, 20 emitting and measuring antennas, 3% of

noise on the measured field, 5% of pixel wise noise on the value of the refractive index of the background. (a)

represents a vertical breast slice where the black tumor is artificially added and the color scale is defined in

a way such that pixelwise variation of the index of refraction is emphasized (the real values of the refractive

index can be found in Figure 3.1 (c) and (d)); in black the artificially added tumor of diameter 0.5 cm. (b)

is the horizontal slice of the breast. (c) shows the considered background (i.e. healthy breast). (d) is the

reconstruction provided by the nSLSM .
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Figure 3.4: Third numerical simulation: 3GHz of frequency, 20 emitting and measuring antennas, 3% of

noise on the measured field, 5% of pixel wise noise on the value of the refractive index of the background. (a)

represents a vertical breast slice where the black tumor is artificially added and the color scale is defined in

a way such that pixelwise variation of the index of refraction is emphasized (the real values of the refractive

index can be found in Figure 3.1 (c) and (d)); in black the artificially added tumor of diameter 0.3 cm. (b)

is the horizontal slice of the breast. (c) shows the considered background (i.e. healthy breast). (d) is the

reconstruction provided by the nSLSM .
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3.2. On the theoretical basis of the linear sampling method:

a physical interpretation

Among qualitative methods in inverse scattering [23], the linear sampling method (LSM) [21,

37, 38, 46] is the earliest and probably the most popular. However, its theoretical foundation is

not so sound as one might desire, since there is no clear link between its actual implementation

and the general theorem inspiring the algorithm [22, 23]: in other terms, the theory available

suggests, but does not justify the LSM. This gap is explained in Section 3.2.1, soon after a

short review of the LSM.

In order to address this issue, some efforts have been made by the scientific community

since the appearance of the first papers concerning the LSM. In this context, a prominent

role is certainly played by the factorization method (FM) [66, 68]: it can be considered, in

some sense, a modified version of the LSM, whereby the foundational problems affecting the

latter are completely removed. Moreover, as a notable by-product, the FM can also inspire a

revisitation and a consequent mathematical justification of the LSM [9, 10, 58]. However, the

price to be paid for applying the FM is a non-negligible restriction of the class of scattering

conditions and of the measurement set-up: hence, so far, the FM is somewhat less general

[22, 23] than the LSM, and the same limitations clearly affect the FM-based justifications of

the LSM. These points are briefly recalled and discussed in Section 3.2.2 of our paper.

To overcome this drawback, a physics-based approach has been recently proposed in [8] and

[4], whereby the far-field equation at the basis of the LSM (which does not follow from physical

laws) is regarded as a constraint on the power fluxes carried by the scattered field considered

in the implementation of the LSM. According to this approach, the LSM is explained from a

physical viewpoint by numerically observing the behavior of the flow lines of the scattered field

and then by proving that such behavior forces the LSM to work as expected. In principle, this

physical interpretation is feasible without restrictions on the scattering conditions: however, in

[8] and [4], it is discussed in detail only for a two-dimensional, penetrable and electromagnetic

scattering set-up. Then, we want to address here also the three-dimensional, impenetrable and

acoustic case, in order to show the flexibility of this approach: the generalization is not trivial,

as shown e.g. by the technical result in Section 3.2.9. Moreover, differently from [8], also the

FM is taken into account and briefly discussed within this framework. Finally, in the present

paper we numerically investigate also the case where the emitting and receiving antennas are

placed according to an aspect-limited configuration.

To work out our physical interpretation of the LSM, in Section 3.2.3 we analyze the mech-

anism of power flux transport throughout the background medium for acoustic waves, both

from a global and local viewpoint: in the latter case, the importance of the flow tubes of the

scattered field is highlighted. Then, the far-field equation is regarded as a constraint on the
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power fluxes in the far-field region, whereby the flux at infinity of the scattered field can be

made arbitrarily close to the flux of the field radiated by a point source placed in the back-

ground. In Section 3.2.4, a technical result concerning the power fluxes across the boundary of

the scatterer is proved, by taking inspiration from an analogous property of the FM: this result

ensures the expected performance of the LSM close to the edge of the obstacle and involves

neither the far-field equation nor the flow lines of the scattered field. In Section 3.2.5 the

behavior of the flow lines is numerically investigated, while in Section 3.2.6 we prove that such

behavior, together with the constraint expressed by the far-field equation, suffices to satisfy the

hypotheses implying the technical result presented in Section 3.2.4, thus explaining how the

LSM can correctly visualize the boundary of the scatterer. Section 3.2.7 extends the previous

investigation, both from a numerical and theoretical viewpoint, to the visualization provided

by the LSM outside the scatterer. Our conclusions and hints for future work are presented

in Section 3.2.8, while in Section 3.2.9 we prove a minimum property for cones inscribed in

a half-sphere: this result is an important tool for investigating the power fluxes across the

boundary of the scatterer2.

3.2.1. The scattering problem and the LSM

In this section we recall some basic notations and properties of direct and qualitative inverse

scattering problems in the time-harmonic regime, by focusing, in particular, on the 3D acoustic

case for an impenetrable, sound-soft obstacle put inside a homogeneous and non-absorbing host-

medium; we refer to [23, 41] for details. If ω denotes the angular frequency of the wave and c0

the speed of sound in the background, the corresponding wavenumber is k = ω/c0 > 0. The

obstacle takes up a bounded and open C2-domain D ⊂ R3, such that R3 \ D̄ is connected (but

D does not need to be connected). Factoring out the time dependence e−iωt, we denote by

ui = ui(x) the incident wave (assumed to be an entire solution of the Helmholtz equation with

wavenumber k), by us the corresponding scattered field, and by u = ui + us the resulting total

field. Then, the direct scattering problem can be formulated as the following exterior Dirichlet

problem.

Problem 3.2.1. Given ui as above, find us ∈ C2(R3 \ D̄) ∩ C1,α(R3 \D) such that
∆us(x) + k2 us(x) = 0 for x ∈ R3 \ D̄, (a)

us(x) = −ui(x) for x ∈ ∂D, (b)

lim
r→∞

[
r

(
∂us

∂r
− ikus

)]
= 0, (c)

(3.31)

where r = |x| and the limit (3.31)(c), which represents the Sommerfeld radiation condition,

holds uniformly in all directions x̂ = x
|x| ∈ Ω := {x ∈ R3 : |x| = 1}.

2The results showed in Section 3.2 are contained in [7]
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Problem 3.2.1 is well-posed: in particular, the operator mapping the boundary data −ui

into the solution us is continuous from C1,α(∂D) into C1,α(R3 \ D). Moreover, the scattered

field us admits the following asymptotic representation, uniformly in x̂:

us(x) =
eikr

r
u∞(x̂) +O

(
r−2
)

as r → ∞, (3.32)

where the function u∞ ∈ L2(Ω) is called the far-field pattern of the scattered field us.

A particular case of importance in our framework occurs when the incident field is a plane

wave propagating along the direction identified by the unit vector d̂ ∈ Ω, i.e., ui(x, d̂) = eikx·d̂;

the far-field pattern of the corresponding scattered field us(x, d̂) will be denoted with u∞(x̂, d̂).

Then, the inverse problem we are interested in can be formulated as follows.

Problem 3.2.2. Given the far-field pattern u∞(x̂, d̂) for all incidence and observation direc-

tions d̂, x̂ ∈ Ω, determine the boundary ∂D of the obstacle.

A qualitative approach to solving Problem 3.2.2 is provided by the LSM. The formulation

of this method relies on the following mathematical tools:

a) the far-field operator F : L2(Ω) → L2(Ω), with Fg(x̂) :=
∫
Ω
u∞(x̂, d̂)g(d̂)dσ(d̂). In

particular, one can easily realize that Fg(x̂) is the far-field pattern of the field

us
g(x) :=

∫
Ω

us(x, d̂)g(d̂)dσ(d̂) for x ∈ R3 \D, (3.33)

which is scattered by the obstacle when the incident wave ui is the Herglotz wave function vg

of kernel g, i.e., ui(x) = vg(x) :=
∫
Ω
eikx·d̂g(d̂)dσ(d̂) for x ∈ R3;

b) the far-field pattern Φ∞(x̂, z) = 1
4π
e−ikx̂·z of the fundamental solution Φ(x, z) = 1

4π
eik|x−z|

|x−z|
of the Helmholtz equation;

c) the far-field equation, written (for each sampling point z ∈ R3) in the unknown gz ∈
L2(Ω) as

Fgz(x̂) = Φ∞(x̂, z), x̂ ∈ Ω. (3.34)

It is worth noting that, in general, this equation is not solvable for almost all (f.a.a.) sampling

point z ∈ R3, i.e., Φ∞(·, z) does not belong to the range of F f.a.a. z ∈ R3. However, this

range is dense in L2(Ω), as explained in the following point d);

d) the general theorem, as we call it, which can be stated as follows.

Theorem 3.2.1. (General theorem) Let D ⊂ R3 be a nonempty, open, bounded and C2-

domain, such that R3 \ D̄ is connected; let us assume that k2 is not a Dirichlet eigenvalue for

the negative Laplacian in D. Then:

(i) if z ∈ D, for every ε > 0 there exists a solution gεz ∈ L2(Ω) of the inequality

∥Fgεz − Φ∞(·, z)∥L2(Ω) ≤ ε such that, for every z∗ ∈ ∂D,

lim
z→z∗

∥gεz∥L2(Ω) = ∞ (a) and lim
z→z∗

∥∥vgεz∥∥H1(D)
= ∞, (b) (3.35)
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where vgεz is the Herglotz wave function with kernel gεz;

(ii) if z /∈ D, for every ε > 0 and δ > 0 there exists a solution gε,δz ∈ L2(Ω) of the inequality∥∥Fgε,δz − Φ∞(·, z)
∥∥
L2(Ω)

≤ ε+ δ such that

lim
δ→0

∥∥gε,δz

∥∥
L2(Ω)

= ∞ (a) and lim
δ→0

∥∥∥vgε,δz

∥∥∥
H1(D)

= ∞, (b) (3.36)

where vgε,δz
is the Herglotz wave function with kernel gε,δz .

Theorem 3.2.1 establishes, in particular, the denseness of the range of F , as well as the

existence of ε-approximate solutions of the far-field equation such that their L2-norm can be

used as an indicator function for the support of the scatterer, i.e., a function that is bounded

inside the obstacle, blows up on its boundary and remains arbitrarily large outside, as indicated

by limits (3.35)(a) and (3.36)(a).

Then, inspired by Theorem 3.2.1, the algorithm of the LSM can be summarized by the

following steps: 1) choose a grid of sampling points z in a bounded region Z containing D̄;

2) for each z ∈ Z, compute the Tikhonov regularized solution [50, 103] gαz of the far-field

equation (3.34), written in an angle-discretized and noisy version; 3) fix the value α∗(z) of the

regularization parameter α by means of the generalized discrepancy principle [103]; 4) visualize

the boundary ∂D of the scatterer as the set of grid points where the (discretized) L2-norm of

gα∗(z) := g
α∗(z)
z grows up.

Evidently, there is a gap between Theorem 3.2.1 and the previous algorithm, which is not

only due to the discretization and the noise affecting the far-field pattern, but is much deeper:

indeed, a priori there is no reason why the L2-norm of the Tikhonov regularized solution

of the far-field equation for each z should behave (when regarded as a function of z) as an

indicator function, i.e., in agreement with limits (3.35)(a) and (3.36)(a). In particular, no

useful convergence result can be obtained as α → 0+: indeed, since the range R(F ) of the

far-field operator F is dense in L2(Ω) and Φ∞(·, z) does not belong, in general, to R(F ), we

have that limα→0+ ∥gαz ∥L2(Ω) = ∞ f.a.a. z ∈ R3 [50, 103].

This is also the reason why an alternative version of part (b) of Theorem 3.2.1, as proposed

e.g. at p. 166 of [68], does not fill in this gap: indeed, according to [68], for z /∈ D one can in

particular identify the regularization parameter α with the tolerance ε and then find

lim
α→0+

∥Fgαz − Φ∞(·, z)∥L2(Ω) = 0, lim
α→0+

∥gαz ∥L2(Ω) = ∞. (3.37)

Nevertheless, these two limits hold f.a.a. z ∈ R3 and not only for z /∈ D, since they follow

from the denseness of R(F ) and from the fact that Φ∞(·, z) /∈ R(F ) f.a.a. z ∈ R3 (cf. [50], p.

54 and [103], p. 19). Hence, the typical behavior of z 7→ ∥gα∗(z)∥L2(Ω) as an indicator function

cannot be explained by simply considering that α∗(z) → 0+: at least, one should prove a

complementary property, whereby a vanishing regularization parameter is only enforced when
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z ∈ D approaches the boundary ∂D, or when z /∈ D. (In fact, our approach will provide such

enforcement, as we shall explain in Remarks 3.2.2 and 3.2.4.)

For future purpose, we briefly recall that analogous results and problems hold for an aspect-

limited configuration of antennas [23, 68]. Let Ωi and Ωo be the two (measurable) subsets of

Ω identifying the incidence and observation angles, respectively. Then, we can define the

modified far-field operator Fal : L
2(Ωi) → L2(Ωo) and introduce the modified far-field equation

Fal gz(x̂) = Φ∞(x̂, z) in the unknown gz ∈ L2(Ωi), for x̂ ∈ Ωo. By definition, an ε-approximate

solution gεz of this equation verifies the inequality ∥Fal g
ε
z − Φ∞(·, z)∥L2(Ωo) ≤ ε. We shall come

back to the aspect-limited case later on.

Among the efforts to overcome this theoretical drawback, the FM certainly plays a major

role: then, the next section is devoted to briefly describing this qualitative method and the

insight it can give into the LSM.

Throughout the paper, we shall adopt the following notations for spheres and balls: if

x0 ∈ R3 and R > 0, then

B(x0, R) :=
{
x ∈ R3 : |x− x0| < R

}
, BR :=

{
x ∈ R3 : |x| < R

}
, B := B1; (3.38)

Ω(x0, R) :=
{
x ∈ R3 : |x− x0| = R

}
, ΩR :=

{
x ∈ R3 : |x| = R

}
, Ω := Ω1. (3.39)

However, the symbols denoting centers and radii may vary, depending on the context.

3.2.2. The LSM justified by the FM

The classical Problem 3.2.1 can be regarded as a particular case of the following weak boundary-

value problem, which involves the space

H1
loc(R3 \ D̄) :=

{
u : u ∈ H1

(
(R3 \ D̄) ∩BR

)
∀R > 0 : (R3 \ D̄) ∩BR ̸= ∅

}
.

Problem 3.2.3. Given φ ∈ H1/2(∂D), determine us ∈ H1
loc(R3 \ D̄) such that

∆us + k2 us = 0 in R3 \ D̄, (a)

us = φ on ∂D, (b)

lim
r→∞

[
r

(
∂us

∂r
− ikus

)]
= 0. (c)

(3.40)

Problem 3.2.3 is well-posed [23]: as a trivial consequence, the next problem is too.

Problem 3.2.4. Given φ ∈ H1/2(∂D), determine the far-field pattern u∞ ∈ L2(Ω) of the field

us ∈ H1
loc(R3 \ D̄) solving Problem 3.2.3.

As proved in [66], the far-field operator F having as integral kernel the far-field pattern

determined by Problem 3.2.4 is normal (but only for a full-view configuration of antennas
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[23, 68]); moreover, if k2 is not a Dirichlet eigenvalue of −∆ in D (as we shall always assume

throughout the paper), F is injective with dense range. The solution operator of Problem

3.2.4 is denoted by G : H1/2(∂D) → L2(Ω), with G(φ) := u∞. In particular, remembering

that Fg is the far-field pattern of the field us
g(x) given by (3.33), we have G(−vg|∂D) = Fg.

This amounts to establishing the factorization F = −GH, where H : L2(Ω) → H1/2(∂D) is the

Herglotz operator defined as Hg(x) :=
∫
Ω
eikx·d̂g(d̂)dσ(d̂), for x ∈ ∂D. Moreover, two important

properties can be established:

1. G provides an exact characterization of D, i.e., Φ∞(·, z) ∈ R(G) ⇐⇒ z ∈ D;

2. R(G) = R (F ∗F )1/4, where F ∗ denotes the adjoint of F .

The two previous points suggest to replace the far-field equation (3.34), involved in the

LSM, with the following one:

(F ∗F )1/4 g̃z(x̂) = Φ∞(x̂, z), (3.41)

which forms the core of the FM and provides an exact characterization of the domain D,

since it is (uniquely) solvable in L2(Ω) if and only if z ∈ D. Moreover, since R (F ∗F )1/4 is

dense in L2(Ω), using Tikhonov regularization to approximately solve (3.41) is justified by two

convergence/divergence results: a) for z ∈ D, limα→0+ ∥g̃αz ∥L2(Ω) = ∥g̃z∥L2(Ω) ∈ R+, where g̃z is

the unique solution of equation (3.41); b) for z /∈ D, limα→0+ ∥g̃αz ∥L2(Ω) = ∞.

For future purpose, we also observe that, even in absence of noise, the FM (as well as the

LSM) has only a limited resolution power, i.e., the indicator function ∥g̃z∥L2(Ω) cannot exhibit a

step-like behavior in the transition from the interior to the exterior of the scatterer, but rather

becomes larger and larger as the sampling point z approaches ∂D from inside (and remains

arbitrarily large outside). This property, which is analogous to the limit (3.35)(a) for the LSM,

is formalized by the following theorem (for a proof, see e.g. [10]).

Theorem 3.2.2. For each z ∈ D, let g̃z ∈ L2(Ω) be the unique solution of equation (3.41).

Then, for any z∗ ∈ ∂D, the limit limz→z∗ ∥g̃z∥L2(Ω) = ∞ holds.

The FM can also be extended to some situations where the far-field operator is not normal,

but it remains, so far, considerably less general than the LSM [23]. However, the theoretical

foundation of the latter is notably improved by the FM, when applicable. Then, let us briefly

recall how this improvement can be achieved.

The first step, made in [9], is to identify an appropriate family of regularization methods

R̃α for the far-field operator F , i.e., R̃αh :=
∑∞

n=1
q(α,µn)

µn
(h, hn)gn, where {µn, gn, hn}∞n=1 is a

singular system of F such that hn = sngn with sn ∈ C, |sn| = 1, and q : (0,+∞)×(0, ∥F∥] → R
verifies three conditions detailed in [9]. For our purposes, it suffices to observe that Tikhonov

regularization is obtained from the particular choice q(α, µ) = µ2

α+µ2 . Then, the following

theorem can be proved [9].
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Theorem 3.2.3. If R̃α : L2(Ω) → L2(Ω) is a regularization method for F as above, then

Rα := −HR̃α : L2(Ω) → H1/2(∂D) is a regularization method for G.

In our framework, this theorem is important and can be paraphrased as follows. It is well

known [41] that having a control over the norm of far-field patterns does not allow, in general,

a control over the corresponding fields outside the scatterer. In other terms, small (in the

L2(Ω)-norm) far-field patterns do not need to correspond to small (in any reasonable norm)

fields in a finite region surrounding the obstacle. In particular, when the Tikhonov regularized

solution gαz of the far-field equation (3.34) is considered (for z ∈ D), the fact that the far-field

pattern Fgαz −Φ∞(·, z) can be made arbitrarily small in L2(Ω) for α → 0+ does not imply that

the field characterized by this far-field pattern is small in H1(BR \ D̄), with BR ⊃ D̄. However,

Theorem 3.2.3, by exploiting the normality of F , states just this implication: indeed, by this

theorem, we have that, for z ∈ D, −Hgαz → Φ(·, z) in H1/2(∂D) as α → 0+ and then the

well-posedness of Problem 3.2.3, together with definition (3.33), implies that us
gαz

→ Φ(·, z) in
H1(BR \ D̄) as α → 0+. In other terms, establishing that the regularization of F is inherited

by G, in the sense of Theorem 3.2.3, amounts to stating that this regularization, together with

the operator −H, is responsible for the stable back-propagation (up to the scatterer boundary)

of the information expressed in the far-field region by the far-field equation. We shall revisit

this point in the next section.

Another important consequence of Theorem 3.2.3, developed in [10, 68] (for Tikhonov

regularization only), consists in the possibility of replacing the usual indicator function of the

LSM, i.e., z 7→ ∥gαz ∥L2(Ω), with the absolute value of the Herglotz wave function with kernel

gαz , i.e., with z 7→
∣∣vgαz (z)∣∣: indeed, if the FM can be applied, it is possible to show that the

new indicator function satisfies good convergence/divergence properties, i.e.,

lim
α→0+

∣∣vgαz (z)∣∣ < ∞ for z ∈ D (a) and lim
n→∞

∣∣vgαn
z
(z)
∣∣ = ∞ for z /∈ D̄ (b) (3.42)

for an appropriate vanishing sequence {αn}∞n=0. The two limits in (3.42) give rise to a new

and mathematically justified version of the LSM: it is understood that the gap with respect to

the algorithm actually implemented in numerical applications can be filled by assuming that

discretization effects are not important and that the presence of noise affecting the far-field

operator entails, in any case, ‘small’ values of the regularization parameter α.

Summing up, the FM can give a satisfactory justification of the LSM, provided that 1) the

class of scattering conditions is conveniently restricted; 2) the traditional indicator function

z 7→ ∥gαz ∥L2(Ω) is replaced by z 7→
∣∣vgαz (z)∣∣; 3) the regularization parameter is assumed to tend

to zero.

In the following, we shall face the problem of understanding the LSM in a completely

different perspective, by relying on a physical interpretation of the far-field equation in terms of

power fluxes and by investigating how these fluxes are propagated throughout the background.

In this framework, 1) the class of scattering conditions does not need to be restricted (anyway,
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only the impenetrable case will be explicitly discussed here; for two-dimensional penetrable

scatterers, see [8, 4]); 2) the usual indicator function z 7→ ∥gαz ∥L2(Ω) is maintained; 3) the

regularization parameter is not assumed to tend to zero.

However, we point out that, unlike the previous a priori, FM-based justification, our ap-

proach is an a posteriori one, since we need to make some assumptions on the geometry of the

power fluxes in the background: although not based on theoretical predictions, these assump-

tions are supported by numerical simulations (also when F is not normal) and generalize in

a rather natural way the main features of the field radiated by a point-like source placed in

the host medium. In spite of this theoretical limitation, we shall be able to provide sufficient

conditions ensuring that the L2-norm of any ε-approximate (and, in particular, Tikhonov reg-

ularized) solution of the far-field equation behaves as a good indicator function for the support

of the scatterer as z varies in R3.

3.2.3. Flow tubes of the scattered field

Numerical simulations show that the LSM can work even when the FM is not applicable: this

suggests that the back-propagation of the constraint expressed by the far-field equation from

the far-field to the near-field region is not necessarily related to the normality of F and to the

regularization of the far-field equation, as discussed in the previous section. Rather, it seems

to be related to the physics of wave propagation or, more precisely, to how power is carried

throughout the background.

To pursue this approach, we recall that time-harmonic sound waves of small intensity,

propagating in a homogeneous, isotropic and inviscid fluid surrounding the obstacle D, can be

described [41] by a velocity potential U(x, t) = Re
{
u(x)e−iωt

}
such that

v(x) =
1

ρ0
∇u(x) and p(x) = iωu(x) ⇒ v(x) =

1

iωρ0
∇p(x), (3.43)

where p = p(x) and v = v(x) are the (complex-valued) velocity and excess pressure of the fluid,

respectively, while ρ0 is its constant equilibrium density. In particular, the second equality in

(3.43) shows that p and u differ by a multiplicative constant only; then, Problems 3.2.1 and

3.2.2, although written in terms of u, us, ui, can also be regarded as a problem for p, ps, pi, as

we shall do in the following. Of course, the physical pressure and velocity fields are given by:

vph(x, t) = Re
{
v(x)e−iωt

}
and pph(x, t) = Re

{
p(x)e−iωt

}
. (3.44)

Let us now consider a surface Σ ⊂ R3 \ D̄ admitting a piecewise smooth parametric rep-

resentation Σ̃ : A → R3, with A ⊂ R2 and Σ̃(A) = Σ (throughout the paper, the piecewise

smoothness of the parametric representations of surfaces or curves will be always understood);

moreover, let ν = ν(x) be the unit normal to Σ at x, chosen as outward when Σ is closed.
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The traction forces induced in the background fluid by the scattered pressure field ps develop

a power per unit surface P (x, t) = psph(x, t) v
s
ph(x, t) · ν(x), outgoing from Σ; by using relations

(3.43) and (3.44), this power can be computed as

P (x, t) =
1

2
Re

{
e−2iωt

iωρ0
ps(x)∇ps(x) +

1

iωρ0
p̄s(x)∇ps(x)

}
· ν(x), (3.45)

where the dot and the bar denote the canonical scalar product in C3 and the complex conju-

gation respectively. Expression (3.45) suggests computing the average Pav(x) of P (x, t) over

one period T = 2π/ω, i.e.,

Pav(x) =
1

T

T∫
0

P (x, t)dt =
1

2
Re

{
1

iωρ0
p̄s(x)∇ps(x)

}
· ν(x). (3.46)

Then, the average power flux across the surface Σ is given by

FΣ(p
s) =

1

2

∫
Σ

Re

{
1

iωρ0
p̄s(x)∇ps(x)

}
· ν(x)dσ(x), (3.47)

where dσ(x) is the standard measure on Σ. The right-hand side of (3.47) is the flux across Σ

of the vector field S associated with ps via the following definition:

S(x) := 1

2
Re

{
1

iωρ0
p̄s(x)∇ps(x)

}
=

1

4iωρ0
{p̄s(x)∇ps(x)− ps(x)∇p̄s(x)} , (3.48)

which is analogous to the Poynting vector in the electromagnetic case [8]. For brevity, we shall

speak of the ‘flux of the scattered field’, or the ‘flux of ps’.

Since ps satisfies the Helmholtz equation (3.31)(a) in the background fluid, it is easy to

show that the vector field S(x) is divergence free in R3 \ D̄. As a consequence, if E ⊂ R3 is

a compact integration domain such that its boundary Σ := ∂E is a simple and closed surface

enclosing no subset of D, by Gauss’ divergence theorem we have FΣ(p
s) = 0. For the same

reason, if E1, E2 ⊂ R3 are two compact domains such that E1 ⊂ E2 and their boundaries Σ1

and Σ2 are non-intersecting, simple and closed surfaces surrounding the whole scatterer D, by

applying Gauss’ theorem in E2 \ E1 we have

FΣ1(p
s) = FΣ2(p

s). (3.49)

This is consistent with the fact that the scatterer can be regarded [13] as an unknown equivalent

source radiating the scattered field ps in the background: if there are no sources inside Σ, the

flux of ps across Σ is zero; if Σ encloses the whole source, the flux across Σ is completely

determined by the source itself. In the latter case, one can choose Σ = ΩR in (3.47), with R

large enough. Then, remembering (3.48), any of the fluxes in (3.49) can be computed as the
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flux at infinity of ps, i.e.,

F∞(ps) := lim
R→∞

∫
ΩR

S(x) · ν(x)dσ(x) =

=
1

4iωρ0
lim
R→∞

∫
Ω

[
p̄s
∂ps

∂r
− ps

∂p̄s

∂r

]
(R, x̂)R2dσ(x̂), (3.50)

where (R, x̂) are modulus and direction of x ∈ ΩR, while dσ(x̂) = sin θ dθ dφ is the surface

element on the unit sphere Ω. In order to compute the limit (3.50), we observe that the

Sommerfeld radiation condition (3.31)(c) and the asymptotic behavior (3.32) together imply

∂ps

∂r
= ik

eikr

r
p∞(x̂) + o(r−1) as r → ∞. (3.51)

Hence, by using (3.32) and (3.51), we obtain

p̄s
∂ps

∂r
(R, x̂) =

ik

R2
|p∞(x̂)|2 + o(R−2) as R → ∞, (3.52)

uniformly in x̂. Then, by substituting (3.52) into (3.50), we find

F∞(ps) =
k

2ωρ0
∥p∞∥2L2(Ω) . (3.53)

We now point out that equality (3.49) is a way to express, at a global level, the conservation

of energy inside a lossless background. However, for our purposes, it is also interesting to study

how power is locally transported (and conserved) from the near-field to the far-field region. In

this framework, a key-role is played by the flow lines of the vector field S(x) associated with

ps (also called, for brevity, ‘flow lines of ps’). For any point x0 ∈ R3 \ D̄, the flow line ζ̃x0(τ) of

S(x) starting from x0 is the unique solution (considered only for τ ≥ 0) of the Cauchy problem

dx

dτ
(τ) = S(x(τ)), with x(0) = x0. (3.54)

The local existence and uniqueness of the solution to problem (3.54) are ensured by the fact

that ps ∈ C2(R3 \D̄), as stated in Problem 3.2.1, and then S ∈ C1(R3 \D̄) by definition (3.48).

The case x0 ∈ ∂D is more delicate: while existence of solutions still holds [87], uniqueness

does not, since ps ∈ C1,α(R3 \ D), then S ∈ C0,α(R3 \ D) and, in particular, S may not be

Lipschitz on domains containing subsets of ∂D. Thus x0 ∈ ∂D may be a ramification point for

the solutions of (3.54): we shall discuss this issue in Section 3.2.7. Finally, if x0 is such that

S(x0) = 0, the flow line starting from x0 collapses into x0 itself, which is then called a critical

point of S [1]. In our framework, we shall focus on non-critical initial points x0 and assume

that the flow lines are defined for all τ ≥ 0.

We now focus on flow tubes as bundles of flow lines. Let [a, b] be a non-empty and closed

interval in R and γ̃ : [a, b] → R3 the parametric representation of a simple and closed curve,
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i.e., γ̃ is an injective map on (a, b), but γ̃(a) = γ̃(b). We assume that the image γ := γ̃([a, b]) is

transverse with respect to the flow lines, i.e., we require that, for any point x0 ∈ γ, the image

ζx0 := ζ̃x0 ([0,+∞)) of the flow line ζ̃x0(τ) starting from x0 intersects γ only in x0 itself. Then,

for each x0 ∈ γ, consider ζ̃x0(τ) and define the bundle of (images of) flow lines Tγ := ∪{x0∈γ}ζx0 :

if Tγ is homotopic to a cylinder, it will be called a flow tube of ps (starting from γ). Any curve

like γ (i.e., simple, closed and transverse) will be named a transverse section of the flow tube

Tγ. We observe that Tγ ⊂ R3 \D, since the field ps is only defined on R3 \D.

Flow tubes are responsible for the transport of power (i.e., of information) in the back-

ground. In particular, they are the key-tool for understanding how the constraint expressed in

the far-field region by the far-field equation can contain information on the shape and location

of the scatterer, which is placed in the near-field region. To this end, we need to assume that

flow tubes verify some regularity conditions. First, a flow tube starting from a curve γ should

reach the far-field region: in particular, it should not refold on the scatterer. Second, in the

far-field region this tube should identify a definite set of directions W∞(γ) ⊂ Ω, so that a local

counterpart of (3.53), with L2(Ω) replaced by L2[W∞(γ)], could be considered (cf. (3.56) in

the following).

The latter requirement is made rather natural by the fact that the vector field S tends to

become radial in the far-field region. This can be shown by analyzing the behavior of the three

spherical components of ∇ps(r, θ, φ) = ∂ps

∂r
êr +

1
r
∂ps

∂θ
êθ +

1
r sin θ

∂ps

∂φ
êφ, where (êr, êθ, êφ) are the

intrinsic coordinate vectors associated to a point of spherical coordinates (r, θ, φ). From (3.51),

we have that the radial component of ∇ps decays as 1/r when r → ∞; instead, the transverse

components of ∇ps are O(r−2) as r → ∞, as shown by using the series representation (see [39],

pp. 72-75) ps(x) = eikr

r

∑∞
n=0

Fn(θ,φ)
rn

, which holds for all r > R such that ΩR ⊂ R3 \ D̄, and can

be differentiated term by term with respect to r, θ, φ any number of times. Then, remembering

relations (3.48) and (3.52), we can conclude that the radial component of S is increasingly

dominant over the transverse ones in the far-field region.

Let us now formalize the previous discussion in the following definition.

Definition 3.2.1. Given a flow tube Tγ ⊂ R3 \D as above, it is called ‘regular’ if there exist

R0 > 0 and a, b ∈ R, with a < b, such that the set TR0 := Tγ \ BR0 admits a parametrization

defined on A := [R0,+∞)× [a, b] ⊂ R2, i.e.,

T̃R0 : A → R3, (R, s) 7→ T̃R0(R, s), (3.55)

with the following properties:

(i) ∀R ≥ R0, the map T̃R0(R, ·) : [a, b] → R3 is the parametric representation of a transverse

section γR of Tγ, with γR = Tγ ∩ ΩR;

(ii) ∀s0 ∈ [a, b], the point T̃R0(R, s0) ∈ R3 tends to a definite direction as R → ∞, i.e.,

∃ limR→∞
T̃R0

(R,s0)

R
=: γ̃∞(s0) ∈ Ω, where γ̃∞(·) : [a, b] → Ω is the parametric representation of

a simple and closed curve γ∞ ⊂ Ω.
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Finally, the open and connected domain enclosed by γ∞ on Ω is denoted with W∞(γ), and

its area |W∞(γ)| is called the ‘asymptotic angular width’ of Tγ.

Apart from technicalities, Definition 3.2.1 simply describes a generalization of some relevant

features of the field radiated by a point-like source in a homogeneous background, whereby the

flow lines spread out from the source itself and can be continued up to infinity according to an

asymptotically definite direction, with no narrowing of the corresponding flow tubes.

Under the previous regularity assumption, it is easy to describe how power is locally pre-

served and carried throughout the background. Given a regular flow tube Tγ, consider a finite

portion T 12
γ of it, delimited by two non-intersecting transverse sections γ1 and γ2. Moreover, let

Σ1 and Σ2 be two open and bounded surfaces with boundaries γ1 and γ2 respectively, such that

Σ := T 12
γ ∪ Σ1 ∪ Σ2 is a simple and closed surface enclosing no subsets of D. Then, the power

flux of ps across Σ vanishes, as stated soon before equality (3.49). Since the lateral boundary

T 12
γ of Σ is entirely formed by flow lines of ps, i.e., lines that are tangent in each point to the

vector field S, the flux of ps across T 12
γ is zero too, as shown by relations (3.47) and (3.48).

Hence, by possibly interchanging the names of Σ1 and Σ2, we can choose the orientations of

the normals to Σ1 and Σ2 in such a way that the flux of ps through Σ1 entering into the flow

tube is equal to the flux through Σ2 outgoing from it, and also equal to the flux at infinity

outgoing from W∞(γ), i.e.,

FΣ1(p
s) = FΣ2(p

s) = FW∞(γ)(p
s) =

k

2ωρ0
∥ps∥2L2[W∞(γ)] , (3.56)

where the last inequality holds as a local version of (3.53). Property (3.56) expresses the

transmission (and conservation) of power inside each regular flow tube.

Also for future purpose, it is interesting to focus on the fundamental solution Φ(x, z) =
1
4π

eik|x−z|

|x−z| of the Helmholtz equation. In absence of scatterers, Φz := Φ(·, z) is the radiating field

generated in the background by an isotropic point source placed at z. It is easy to realize that

the flow lines of Φz are half-lines outgoing from z (but not defined at the singularity point z).

Since the far-field pattern of Φz is given by Φ∞(x̂, z) = 1
4π
e−ikx̂·z, we can use (3.53) to compute

the flux at infinity of Φz as

F∞ (Φz) =
k

8πω ρ0
. (3.57)

More generally, since
∣∣ 1
4π
e−ikx̂·z

∣∣ = 1
4π
, the flux of Φz conveyed by any one of its flow tubes

(which are portions of cones with vertex at z) is expressed according to (3.56) as

FΣ1 (Φz) = FΣ2 (Φz) = FW∞(γ) (Φz) =
k

2ωρ0
∥Φz∥2L2[W∞(γ)] =

k

8πω ρ0
· β [W∞(γ)]

4π
, (3.58)

where β [W∞(γ)] is the amplitude (in steradians) of the solid angle identified by W∞(γ) ⊂ Ω

and by the origin O of Ω as its vertex.



54
3 The linear sampling method as a qualitative approach

in microwave tomography

The previous considerations naturally lead us to reformulate the constraint expressed by

the far-field equation (3.34) as follows. Let gεz ∈ L2(Ω) be an ε-approximate solution of

(3.34), i.e., such that ∥Fgεz − Φ∞(·, z)∥L2(Ω) ≤ ε. The last inequality immediately implies that

∥Fgεz − Φ∞(·, z)∥2L2(Ωs) ≤ ε2 for any (measurable) subset Ωs ⊂ Ω. Then, a simple computation

shows that ∣∣∣∥Fgεz∥
2
L2(Ωs) − ∥Φ∞(·, z)∥2L2(Ωs)

∣∣∣ ≤ ε′(Ωs), (3.59)

having defined ε′(Ωs) := ε
(
2 ∥Φ∞(·, z)∥L2(Ωs) + ε

)
. Note that ∥Φ∞(·, z)∥L2(Ωs) and conse-

quently ε′(Ωs) are independent of z. Moreover, we recall that Fgεz is the far-field pattern of

the scattered field given by (3.33), i.e., with a slight change of notations,

ps,εz (x) :=

∫
Ω

ps(x, d̂)gεz(d̂)dσ(d̂) for x ∈ R3 \D, (3.60)

and that the flux at infinity of any radiating field is proportional to the squared L2-norm of its

far-field pattern, as shown by (3.53) or by its local version (3.56). Then, relation (3.59) means

that, for any observation solid angle Ωs in the far-field region, the flux of the scattered field

ps,εz and the flux of the elementary source Φ(·, z) can be made arbitrarily close to each other,

by choosing ε small enough.

Analogous considerations can be made for an aspect-limited configuration of antennas, as

briefly described at the end of Section 3.2.1: in relation (3.59), it suffices to replace F with the

modified far-field operator Fal : L
2(Ωi) → L2(Ωo) and to require that Ωs is any (measurable)

subset of the region Ωo where the receivers are placed; in definition (3.60), the integration

domain Ω should be replaced by the set Ωi of incidence directions, but the field ps,εz is anyway

defined in all R3 \D.

The next sections are devoted to understanding how the far-field constraint (3.59), back-

propagated to the near-field region by regular flow tubes, can induce a behavior of the indicator

function that is in agreement with limits (3.35)(a) and (3.36)(a).

3.2.4. Boundary power fluxes

In Section 3.2.2 we saw that the FM can provide a good indicator function ∥g̃z∥L2(Ω) for the

support of the scatterer: in particular, let us now focus on the statement of Theorem 3.2.2.

Apart from technicalities, this result can be explained as follows. Since R(G) = R (F ∗F )1/4,

for each g̃ ∈ L2(Ω) the function (F ∗F )1/4 g̃ ∈ L2(Ω) is the far-field pattern of a radiating

solution pr[g̃] of the Helmholtz equation in R3 \ D̄. (Note that pr[g̃] is different from psg̃, as it

would be given by (3.33), and that, in general, it is not even attainable as a scattered field.)

In particular, consider the solution g̃z of equation (3.41) for z ∈ D: the equality of the two far-

field patterns (F ∗F )1/4 g̃z(x̂) and Φ∞(x̂, z) implies, by Rellich’s lemma, that the corresponding
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Figure 3.5: Geometric construction for z∗ ∈ ∂D and z ∈ Uz∗ ∩D.

fields pr[g̃z] and Φ(·, z) are equal in R3 \ D̄. But Φ(·, z) is singular in z: then, as z → z∗ ∈ ∂D,

the field pr[g̃z] should become singular too, and this is possible only if g̃z fails to be in L2(Ω).

Now, the fact that, for z ∈ D, pr[g̃z] and Φ(·, z) coincide in R3 \ D̄ implies that the fluxes

of pr[g̃z] and Φ(·, z) across any surface in the background are equal: this simple observation

suggests an interesting result and generalization in the framework of the LSM, as we are going

to show.

To this end, we first need to consider the following geometrical construction (see Figure

3.5). Given z∗ ∈ ∂D, let Uz∗ ⊂ R3 be a neighborhood of z∗; for each z ∈ Uz∗ ∩ D, define

rz := |z− z∗|, Ω(z∗, rz) := {x ∈ R3 : |x− z∗| = rz}, and Ω̃(z∗, rz) := Ω(z∗, rz)∩ (R3 \D). Since

D is a C2-domain, for each z∗ ∈ ∂D the tangent plane τ(z∗) is well-defined: then, for rz small

enough (say rz < r0), Ω̃(z
∗, rz) is a connected and simply connected subset of Ω(z∗, rz) that

well approximates a half-sphere. Now, for rz < r0, consider the solid angle ẑ(z∗, rz) having

its vertex in a point z ∈ D ∩ Ω(z∗, rz) and identifying the subset Ω̃(z∗, rz) on Ω(z∗, rz): as

rz decreases, ẑ(z∗, rz) better and better approximates the vertex angle of a cone inscribed

in a half-sphere. Then, if we denote by βz := |ẑ(z∗, rz)| the amplitude (in steradians) of

ẑ(z∗, rz), it follows from Theorem 3.2.8 in the Section 3.2.9 that βz is bounded from below, i.e.,

lim infz→z∗ βz = 2π
(
1−

√
2
2

)
> 0.

On the other hand, the flux across Ω̃(z∗, rz) due to the elementary and isotropic source

placed at z is directly proportional to βz, as highlighted by (3.58). Then, remembering the

previous limit, we find

lim inf
z→z∗

FΩ̃(z∗,rz)
(Φz) =

k

8πω ρ0
·
2π
(
1−

√
2
2

)
4π

=
k
(
2−

√
2
)

32πω ρ0
> 0, (3.61)

which states that, although the area of Ω̃(z∗, rz) vanishes as z → z∗, the flux of Φz across it

has a positive lower bound. This is not surprising, since Φz is singular in z; however, it is
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interesting to observe that the very same property, in the FM, holds for the radiating field

pr[g̃z], since pr[g̃z] = Φz in R3 \ D̄ (for z ∈ D).

Notably, if we now assume an analogous property for the scattered field considered in the

LSM (cf. (3.60)), we can prove that the indicator function blows up as z → z∗, in analogy with

Theorem 3.2.2. This is shown by the following theorem, which makes no use of the far-field

equation.

Theorem 3.2.4. Let z∗, Uz∗, Ω(z∗, rz) and Ω̃(z∗, rz) be as above. Suppose that a function

gz ∈ L2(Ω) is associated to each z ∈ Uz∗ ∩D. Consider the scattered field psz defined in analogy

with (3.60), and assume that the corresponding flux across Ω̃(z∗, rz) is bounded from below as

z → z∗, i.e., there exists c > 0 such that

lim inf
z→z∗

FΩ̃(z∗,rz)
(psz) = c. (3.62)

Then, limz→z∗ ∥gz∥L2(Ω) = ∞.

Proof. Assume, by contradiction, that the limit does not hold. Then, there exist a sequence

{zn}∞n=0 ⊂ U(z∗) ∩ D and a positive constant K > 0 such that, for all n ∈ N, we have

∥gzn∥L2(Ω) ≤ K. Setting rn := rzn , we are going to obtain a contradiction with hypothesis

(3.62) by proving that FΩ̃(z∗,rn)

(
pszn
)
vanishes as n → ∞.

Let d̂(θ, φ) be the unit vector of the direction identified by the spherical angles (θ, φ) ∈
[0, π] × [0, 2π] (the ambiguities arising for θ = π or φ = 2π are irrelevant in this context).

Thus, if we regard the incident plane wave pi(x, θ, φ) = eikx·d̂(θ,φ) as a function of x, θ, φ, it

is easy to realize that pi, as well as its first and second partial derivatives with respect to

the Cartesian coordinates xj (for j = 1, 2, 3), are continuous functions on the compact set

A := ∂D × [0, π] × [0, 2π], and then uniformly continuous on A itself. The latter property

implies that

lim
(θ,φ)→(θ0,φ0)

∥∥pi(·, θ, φ)− pi(·, θ0, φ0)
∥∥
1,α,∂D

= 0 ∀(θ0, φ0) ∈ [0, π]× [0, 2π], (3.63)

where, following the notations of [41], ∥·∥1,α,∂D is the norm in the space C1,α(∂D). Then, by

the well-posedness of Problem 3.2.1, we have

lim
(θ,φ)→(θ0,φ0)

∥ps(·, θ, φ)− ps(·, θ0, φ0)∥1,α,R3\D = 0 ∀(θ0, φ0) ∈ [0, π]× [0, 2π]. (3.64)

In particular, the functions ps(x, ·, ·) and ∂ps

∂xj
(x, ·, ·) are continuous in [0, π]× [0, 2π] uniformly

with respect to x ∈ R3 \ D. On the other hand, the continuity in R3 \ D of ps(·, θ, φ) and
∂ps

∂xj
(·, θ, φ) for each (θ, φ) ∈ [0, π] × [0, 2π] is a trivial consequence of the well-posedness of

Problem 3.2.1. As a result, both ps and ∂ps

∂xj
are continuous in (R3 \D)× [0, π]× [0, 2π].

Consider now the open ball BR, with R > 0 so large that D̄ ⊂ BR, and define G := BR \ D̄.

The continuity of ps and ∂ps

∂xj
on the compact set A′ := Ḡ × [0, π] × [0, 2π] implies that there
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exist constants M1,M2 > 0 such that

|ps(x, θ, φ)| ≤ M1,

∣∣∣∣∂ps∂xj

(x, θ, φ)

∣∣∣∣ ≤ M2 ∀(x, θ, φ) ∈ A′. (3.65)

Then, by using the Cauchy-Schwarz inequality, from relations (3.60), (3.65) and the assumption

∥gzn∥L2(Ω) ≤ K, we obtain

∣∣pszn(x)∣∣ ≤ ∫
Ω

∣∣∣ps(x, d̂)gzn(d̂)∣∣∣ dσ(d̂) = π∫
0

 2π∫
0

|ps(x, θ, φ)| · |gzn(θ, φ)| dφ

 sin θ dθ ≤

≤ M1

√
4π ∥gzn∥L2(Ω) ≤ 2

√
πM1K =: Q1 ∀x ∈ Ḡ, ∀n ∈ N, (3.66)

and analogously, by Lebesgue’s dominated convergence theorem,∣∣∣∣∂pszn∂xi
(x)

∣∣∣∣ ≤ M2

√
4π ∥gzn∥L2(Ω) ≤ 2

√
πM2K =: Q2 ∀x ∈ Ḡ, ∀n ∈ N. (3.67)

Let us now recall the expression of FΩ̃(z∗,rn)

(
pszn
)
as given by (3.47) and (3.48), i.e.,

FΩ̃(z∗,rn)

(
pszn
)
=

1

4iωρ0

∫
Ω̃(z∗,rn)

[
p̄szn

∂pszn
∂ν

− pszn
∂p̄szn
∂ν

]
(x) dσ(x). (3.68)

It is clear that Ω̃(z∗, rn) ⊂ Ḡ for n large enough: then, we can use inequalities (3.66) and (3.67)

to bound (3.68) as

∣∣∣FΩ̃(z∗,rn)

(
pszn
)∣∣∣ ≤ 1

2ωρ0

∫
Ω̃(z∗,rn)

∣∣∣∣p̄szn(x)∂pszn∂ν
(x)

∣∣∣∣ dσ(x) ≤
√
3
∣∣Ω̃(z∗, rn)∣∣
2ωρ0

Q1 Q2, (3.69)

where
∣∣Ω̃(z∗, rn)∣∣ denotes the area of the surface Ω̃(z∗, rn). As n → ∞, this area vanishes:

then, from the last inequality in (3.69), we have limn→∞

∣∣∣FΩ̃(z∗,rn)

(
pszn
)∣∣∣ = 0, in contradiction

with (3.62).

It is clear that Theorem 3.2.4 can be immediately adapted to the aspect-limited case: it

suffices to properly restrict the set of incidence directions, i.e., to require that d̂(θ, φ) ∈ Ω̄i.

The next step is now to formulate sufficient conditions for the fulfilment of the hypotheses of

Theorem 3.2.4. According to the framework outlined in Section 3.2.3, these conditions should

be related to the far-field equation and to the regular behavior of the flow tubes starting from

the boundary of the scatterer and reaching the far-field region. Then, in the following section

we numerically investigate this behavior, while in Section 3.2.6 the numerical results will be

used to identify and formalize the sufficient conditions we are looking for.
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3.2.5. Numerical simulations: the case of a sampling point inside the

scatterer

We are going to consider two scattering experiments. For both of them, the scatterer is a

sound-soft sphere placed in air and centred at the origin of an orthogonal Cartesian coordinate

system (x1, x2, x3); moreover, the wavelength of the incident pressure field is λ = 1m and

the radius of the sphere is a = 0.3λ. In both cases, the LSM is implemented as described

e.g. in [37, 46]. However, the former experiment deals with a full-view configuration of the

emitting and receiving antennas, which entails the normality of the far-field operator F [9];

instead, the latter considers an aspect-limited configuration, whereby all antennas are placed

in the far-field half-sphere Ωx2≥0 contained in the half-space x2 ≥ 0. This means that the

set of incidence directions is Ωi = −Ωx2≥0 = Ωx2≤0, while the set of observation directions is

Ωo = Ωx2≥0: accordingly, the modified far-field operator Fal : L
2 (Ωi) → L2 (Ωo) is not normal

[23, 68].

For each experiment, we use 11× 22 incident plane waves and 10× 20 measurement points.

Both the incidence and observation angles are chosen according to a uniform discretization step

for the spherical angles: θ ∈ [0, π] and φ ∈ [0, 2π] for the full-view case; θ ∈ [0, π] and φ ∈ [0, π]

for the aspect-limited case. For each incident wave, the far-field pattern of the corresponding

scattered field is computed by exploiting the analytical results in [63] and then blurred by 3%

Gaussian noise. The visualizations provided by the LSM for the two experiments are shown in

Figure 3.6. In general, for each figure, the panels on the left and on the right will refer to the

full-view and to the aspect-limited case, respectively. Then, in panels (a) and (c) of Figure 3.6

we show the reconstructed sphere together with a schematic representation of the positions of

all antennas in the far-field region, while in panels (b) and (d) we plot a zoomed visualization

of the scatterer. In particular, panel (d) highlights that, in the aspect-limited case, the quality

of the reconstruction is lower, due to a lengthening along the x2-axis.

We now investigate the behavior of the flow lines of the scattered field: more precisely,

given a sampling point z ∈ D = Ba, we compute a discretized version of the field (3.60), where

gεz is given by the LSM. Then, for each point of a uniform and cubic grid with discretization

step equal to λ/10 in a cubic domain with side at least 10λ long, we plot a discretized and

normalized version of the vector S (see (3.48)) associated with the field (3.60). For the clarity

of visualization, only zoomed plane sections, parallel to the coordinate axes, will be shown.

We first consider a sampling point placed at the center of the sphere: the resulting behavior

of the vector field S is shown in Figure 3.7. The three panels (a), (b) and (c) on the left are

obtained, for the full-view configuration, by orthogonally projecting onto the planes x1 = 0,

x2 = 0, x3 = 0 respectively the vectors S applied into the grid points of such planes. The same

holds true for the panels (d), (e) and (f) on the right, except that they refer to the aspect-limited
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(a) (c)

(b) (d)

Figure 3.6: Visualization of the spherical and sound-soft scatterer provided by the LSM. Panels (a) and (b)

correspond to the full-view configuration of antennas, panels (c) and (d) to the aspect-limited configuration.

In panels (a) and (c), the points and the asterisks surrounding the reconstructed sphere represent the emitting

and receiving antennas, respectively. In panels (b) and (d), a zoomed visualization of the scatterer is shown.
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case: accordingly, we added a half-circle or a circle to indicate the position of the antennas in

each plane section. In spite of normalization, the arrows representing S may be, in general, of

different lengths: shorter arrows indicate that the corresponding S is not parallel to the plane

section under exam. From Figure 3.7, the radial behavior of S with respect to z is evident

in the full-view case (panels (a)-(c)), while it undergoes a slight deterioration for the aspect-

limited case, as highlighted by panels (d) and (f); notably, such deterioration is negligible for

the plane section x2 = 0 (panel (e)), which corresponds to a planar full-view configuration.

The observed behaviors turn out to be fully preserved also when larger investigation domains

are visualized.

This (approximately) radial behavior of S with respect to the sampling point is not related

to the symmetric position chosen for the previous sampling point: on the contrary, it is verified

for any z inside the scatterer, or even on its boundary. For example, in the three pairs of

panels (a)-(d), (b)-(e) and (c)-(f) of Figure 3.8 we can respectively see the three plane sections

x1 = 0, x2 = 0.2 and x3 = 0 for the sampling point z = (0, 0.2, 0). Figure 3.9 is organized in

an analogous way, but is concerned with the case of a sampling point on the boundary, i.e.,

z = (0, 0.3, 0), and the corresponding plane sections x1 = 0, x2 = 0.3 and x3 = 0. In any case,

an approximate radiality of the flow lines of S, and a consequent regularity of the flow tubes

starting from the boundary of the scatterer, is suggested by these (and others, not shown here)

numerical simulations.

3.2.6. Back-propagation of information from the far-field to the near-

field region

We can now understand how the constraint expressed by the far-field equation is back-propagated

to the near-field region. More precisely, taking inspiration from the numerical results of Section

3.2.5, we can identify sufficient conditions ensuring that the lower bound (3.62), concerning the

flux outgoing from a small sphere centered at a point of ∂D, follows from the energy conser-

vation inside a regular flow tube linking that portion of ∂D to the far-field region, where the

far-field equation forces the tube itself to convey a positive flux. The next theorem formalizes

these considerations (for the case of a full-view configuration of antennas).

Theorem 3.2.5. Let z∗, Uz∗, Ω(z
∗, rz) and Ω̃(z∗, rz) be as in Theorem 3.2.4. Given ε > 0, for

each z ∈ Uz∗ ∩D consider an ε-approximate solution of the far-field equation, i.e., a function

gεz ∈ L2(Ω) such that ∥Fgεz − Φ∞(·, z)∥L2(Ω) ≤ ε. Moreover, assume that, for each z ∈ Uz∗ ∩D,

the curve γz := ∂Ω̃(z∗, rz) = Ω(z∗, rz) ∩ ∂D is a transverse section of a regular flow tube

Tγz of the scattered field ps,εz , with asymptotic angular width |W∞(γz)|. Finally, assume that

there exists an open and connected domain W ∗
∞ ⊂ Ω such that its area |W ∗

∞| is positive and

limz→z∗ |W ∗
∞∆W∞(γz)| = 0, where ‘∆’ denotes the symmetric difference between two sets.
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Figure 3.7: Qualitative behavior of the vector field S for a sampling point z (red bullet) at the center of the

sphere (black contour). Full-view configuration of antennas: (a) plane section x1 = 0; (b) plane section x2 = 0;

(c) plane section x3 = 0. Aspect-limited configuration of antennas: (d) plane section x1 = 0; (e) plane section

x2 = 0; (f) plane section x3 = 0.
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Figure 3.8: Qualitative behavior of the vector field S for a sampling point z = (0, 0.2, 0) (red bullet) inside

the sphere (black contour). Full-view configuration of antennas: (a) plane section x1 = 0; (b) plane section

x2 = 0.2; (c) plane section x3 = 0. Aspect-limited configuration of antennas: (d) plane section x1 = 0; (e)

plane section x2 = 0.2; (f) plane section x3 = 0.
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Figure 3.9: Qualitative behavior of the vector field S for a sampling point z = (0, 0.3, 0) (red bullet) on the

boundary of the sphere (black contour). Full-view configuration of antennas: (a) plane section x1 = 0; (b)

plane section x2 = 0.3; (c) plane section x3 = 0. Aspect-limited configuration of antennas: (d) plane section

x1 = 0; (e) plane section x2 = 0.3; (f) plane section x3 = 0.



64
3 The linear sampling method as a qualitative approach

in microwave tomography

Then, for any such gεz ∈ L2(Ω), the limit limz→z∗ ∥gεz∥L2(Ω) = ∞ holds, provided that ε is small

enough.

Proof. The power flux of the scattered field ps,εz across Ω̃(z∗, rz) is preserved, by energy conser-

vation, along the regular flow tube Tγz , as highlighted in (3.56). In particular, with reference

to property (i) of Definition 3.2.1, the flux outgoing from Ω̃(z∗, rz) is equal to the flux across

the domain WR(γz) enclosed on ΩR by the section (γz)R = Tγz ∩ ΩR, for all R ≥ R0. Then,

remembering also (3.59), we have for each z ∈ U(z∗) ∩D:

FΩ̃(z∗,rz)
(ps,εz ) =

1

4iω ρ0

∫
Ω̃(z∗,rz)

[
p̄s,εz

∂ps,εz

∂ν
− ps,εz

∂p̄s,εz

∂ν

]
(x) dσ(x) =

=
1

4iω ρ0
lim
R→∞

∫
WR(γz)

[
p̄s,εz

∂ps,εz

∂ν
− ps,εz

∂p̄s,εz

∂ν

]
(R, x̂)R2dσ(x̂) =

=
k

2ω ρ0
∥Fgεz∥

2
L2[W∞(γz)]

≥

≥ k

2ω ρ0

{
∥Φ∞(·, z)∥2L2[W∞(γz)]

− ε′[W∞(γz)]
}
. (3.70)

Now, the assumption limz→z∗ |W ∗
∞∆W∞(γz)| = 0 clearly implies the two following limits:

limz→z∗ ∥Φ∞(·, z)∥2L2[W∞(γz)]
= ∥Φ∞(·, z∗)∥2L2(W ∗

∞) and limz→z∗ ε
′[W∞(γz)] = ε′(W ∗

∞). Then,

from the last inequality in (3.70), we obtain:

lim inf
z→z∗

FΩ̃(z∗,rz)
(ps,εz ) ≥ k

2ω ρ0

[
∥Φ∞(·, z∗)∥2L2(W ∗

∞) − ε′(W ∗
∞)
]
. (3.71)

Now, by hypothesis, the area of W ∗
∞ is positive and then we have ∥Φ∞(·, z∗)∥2L2(W ∗

∞) > 0.

Accordingly, we can take ε > 0 so small that the right-hand side of (3.71) is positive. More

precisely, remembering the explicit expressions of Φ∞(x̂, z∗) = 1
4π
e−ikx̂·z∗ and of ε′(W ∗

∞), as

given soon below (3.59), it suffices to choose ε such that

0 < ε < (
√
2− 1) ∥Φ∞(·, z∗)∥L2(W ∗

∞) = (
√
2− 1)

√
|W ∗

∞|
4π

. (3.72)

With this choice of ε, the flux FΩ̃(z∗,rz)
(ps,εz ) is bounded from below as z → z∗: then, we

can apply Theorem 3.2.4 to conclude that limz→z∗ ∥gεz∥L2(Ω) = ∞, in agreement with limit

(3.35)(a).

Remark 3.2.1. By relying on the numerical experiments performed in Section 3.2.5, we can

give a lower bound for the asymptotic angular width |W ∗
∞| determining the upper bound (3.72).

Indeed, for z ∈ D (and even on ∂D) the flow lines of ps,εz resemble those of Φ(·, z) in that they

are essentially radial with respect to z. Hence, |W ∗
∞| will not be less than the lower limit

amplitude βz of the angle ẑ(z∗, rz) as z → z∗, i.e., as shown soon before (3.61), 2π
(
1−

√
2
2

)
.
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Remark 3.2.2. Theorem 3.2.5 deals with generic ε-approximate solutions of the far-field equa-

tion. However, in the implementation of the LSM, Tikhonov regularized solutions gαz play a

major role: then, it is interesting to specify the previous analysis to them. To this end, The-

orem 3.2.5 can be paraphrased as follows. For each z ∈ D, consider the discrepancy dα∗(z) :=∥∥Fgα∗(z) − Φ∞(·, z)
∥∥
L2(Ω)

, where α∗(z) is chosen by means of some optimality criterion. Assume

that the condition dα∗(z) ≤ ε holds, where ε > 0 fulfils bound (3.72): then, if the flow tubes

of ps,εz satisfy the specified regularity requirements, we have limz→z∗
∥∥gα∗(z)

∥∥
L2(Ω)

= ∞, which

can only happen if limz→z∗ α
∗(z) = 0. The latter limit shows that, although we do not assume

α → 0+ in our framework, we find such a result, but only for z approaching z∗ ∈ ∂D: this is

in qualitative agreement with numerical simulations, which highlight [46] a strong decrease of

α∗(z) as z → z∗.

Remark 3.2.3. The aspect-limited case can be dealt with in an analogous way, by restricting

the set of incidence directions to Ωi. However, an additional hypothesis is required in the

statement of Theorem 3.2.5: the flow tubes under exam should reach the portion of the far-

field region where the receiving antennas are placed, i.e., it should hold that W ∗
∞ ⊂ Ωo. Indeed,

outside Ωo the modified far-field equation imposes no constraint whatsoever (cf. also the end

of Section 6 in [8]).

We conclude this section by observing that, although redundant, a similar physical approach

could be pursued also for the FM, with a notable simplification: since, for z ∈ D, the radiating

field pr[g̃z] is equal to Φz in R3 \ D̄, the flow lines of interest are portions of half-lines outgoing

from z, and the flow tubes are portions of cones with vertex at z. Notably, should a flow

tube impinge on a portion of ∂D, this would not affect the value of the power flux carried by

it beyond this obstruction, since the flux of pr[g̃z] is always and exactly equal to that of Φz.

Hence, in the FM, the requirements stated in Definition 3.2.1 would become partly useless,

partly trivial, and no regularity issue would arise.

3.2.7. The case of a sampling point outside the scatterer

Soon after the formulation of the Cauchy problem (3.54), we noticed that an initial point

x0 ∈ ∂D may be a ramification point, i.e., such that several flow lines may start from it. In

particular, it is even possible that a flow tube originates from x0: in other terms, x0 might

become a degenerate transverse section of a flow tube. Actually, the numerical simulations

presented in Section 3.2.5 confirm this possibility. Indeed, the (approximately) radial behavior

of the flow lines of the scattered field with respect to the sampling point is observed not only

for z ∈ D, but also for z ∈ ∂D, as shown in Figure 3.9: then, in the latter case, z seems to be

just a ramification point.
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This introduces us to the analysis of what happens when the sampling point is chosen

outside the scatterer. Interestingly, the numerical simulations performed in this case highlight

that at least one ramification point shows up on ∂D. For example, with reference to the same

two scattering experiments considered in Section 3.2.5, we now choose the exterior sampling

point z = (0, 1, 1). In the full-view case, a ramification point can be apparently detected at

z0 = (−0.3, 0, 0), as shown by the three plane sections x1 = −0.3, x2 = 0 and x3 = 0 represented

in panels (a), (b) and (c) of Figure 3.10. In the aspect-limited case, a good candidate to be a

ramification point is z0 = (0, 0.212,−0.212), as suggested by the three plane sections x1 = 0,

x2 = 0.212 and x3 = −0.212 plotted in panels (d), (e) and (f) of Figure 3.10. Note that,

although the exterior sampling point is the same in the full-view and in the aspect-limited

configurations, there is a priori no reason why the ramification point (or points) should be the

same for both cases.

In our framework, the role played by ramification points can be formalized as follows.

Definition 3.2.2. Let u ∈ C1,α(R3 \ D) be a radiating solution of the Helmholtz equation in

R3 \ D̄, and z0 ∈ ∂D a ramification point for the flow lines of u. Let I ⊂ R be a set of indices,

and denote a flow line of u starting from z0 as ζ̃ iz0(τ), for i ∈ I (and τ ≥ 0). Consider the

set (of images) of all flow lines
{
ζ iz0
}
i∈I and the ball B(z0, r) := {x ∈ R3 : |x− z0| < r}, with

r > 0. Assume that there exists I ′ ⊂ I such that Tz0(I
′) :=

{
ζ iz0
}
i∈I′ is a regular flow tube

with degeneracy in z0, i.e., Tz0(I
′) \ [Tz0(I

′) ∩B(z0, r)] is regular (in the sense of Definition

3.2.1) for each r < r0, being r0 > 0 small enough. Then, the field u is called ‘partially pseudo-

radial’ with respect to z0. Moreover, let |W∞(z0, I
′)| > 0 be the asymptotic angular width of

each possible Tz0(I
′): then, the quantity |W∞(z0)| := supI′ |W∞(z0, I

′)| is called the ‘asymptotic

angular width’ of the beam of flow lines starting from z0.

We now have all the elements to pursue our physical approach to the LSM in the case of

z /∈ D. The first step consists in a preliminary result, analogous to Theorem 3.2.4, but much

simpler to be proved.

Theorem 3.2.6. Given z∗ ∈ ∂D, define Ω(z∗, r) := {x ∈ R3 : |x− z∗| = r} and Ω̃(z∗, r) :=

Ω(z∗, r) ∩ (R3 \D); moreover, let Ω̃′(z∗, r) be an open and connected subset of Ω̃(z∗, r). Then,

there cannot exist g ∈ L2(Ω) such that the flux across Ω̃′(z∗, r) of the corresponding scat-

tered field psg, defined analogously to (3.33), is bounded from below as r → 0, i.e., such that

lim infr→0 FΩ̃′(z∗,r)

(
psg
)
= c > 0.

Proof. Assume, by contradiction, that such a g ∈ L2(Ω) exists. Similarly to the proof of

Theorem 3.2.4 (cf. relation (3.69)) and by applying the mean-value theorem for integration,

we can bound the flux under exam as follows:∣∣∣FΩ̃′(z∗,r)(p
s
g)
∣∣∣ ≤ 1

2ωρ0

∫
Ω̃′(z∗,r)

∣∣∣∣p̄sg(x)∂psg∂ν
(x)

∣∣∣∣ dσ(x) =
∣∣Ω̃′(z∗, r)

∣∣
2ωρ0

|p̄sg(x̃r)| ·
∣∣∣∣∂psg∂ν

(x̃r)

∣∣∣∣ ,
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Figure 3.10: Qualitative behavior of the vector field S for a sampling point z = (0, 1, 1) (red bullet) outside

the sphere (black contour): a ramification point (red square box) is detectable on the boundary of the scatterer.

Full-view configuration of antennas: (a) plane section x1 = −0.3; (b) plane section x2 = 0; (c) plane section

x3 = 0. Aspect-limited configuration of antennas: (d) plane section x1 = 0; (e) plane section x2 = 0.212; (f)

plane section x3 = −0.212.
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where x̃r is an appropriate point of Ω̃′(z∗, r). It is clear that
∣∣Ω̃′(z∗, r)

∣∣→ 0 and |x̃r − z∗| → 0

as r → 0: then, the continuity of psg and
∂psg
∂ν

in R3 \ D implies that the flux vanishes, i.e.,

limr→0 FΩ̃′(z∗,r)

(
psg
)
= 0, in contradiction with the positive lower boundedness condition for

FΩ̃′(z∗,r)

(
psg
)
.

Like Theorem 3.2.4, also Theorem 3.2.6 holds for the aspect-limited case, provided that a

function g ∈ L2(Ωi) is considered and the integration domain Ω in (3.33) is replaced by Ωi.

In analogy with Theorem 3.2.5, the second step consists in showing how the far-field equa-

tion and the pseudo-radiality of the scattered field allow applying Theorem 3.2.6.

Theorem 3.2.7. Let z ∈ R3 \D: if ε > 0 is small enough, there cannot exist gεz ∈ L2(Ω) such

that ∥Fgεz − Φ∞(·, z)∥L2(Ω) ≤ ε and the scattered field ps,εz is partially pseudo-radial with respect

to some point z0 ∈ ∂D.

Proof. Assume, by contradiction, that such a gεz ∈ L2(Ω) exists, and define Ω(z0, r) :=

{x ∈ R3 : |x− z0| = r}, Ω̃(z0, r) := Ω(z0, r)∩ (R3 \D) and Ω̃′(z0, r) := Ω̃(z0, r)∩Tz0(I
′), where

I ′ and Tz0(I
′) are as in Definition 3.2.2. By the same argument justifying relations (3.70), we

have

FΩ̃′(z0,r)
(ps,εz ) =

1

4iω ρ0

∫
Ω̃′(z0,r)

[
p̄s,εz

∂ps,εz

∂ν
− ps,εz

∂p̄s,εz

∂ν

]
(x) dσ(x) ≥

≥ k

2ω ρ0

{
∥Φ∞(·, z)∥2L2[W∞(z0,I′)]

− ε′[W∞(z0, I
′)]
}
, (3.73)

whence

lim inf
r→0

FΩ̃′(z0,r)
(ps,εz ) ≥ k

2ω ρ0

{
∥Φ∞(·, z)∥2L2[W∞(z0,I′)]

− ε′[W∞(z0, I
′)]
}
. (3.74)

Since |W∞(z0, I
′)| > 0, we can proceed as from (3.71) to (3.72), and make the right-hand side

of (3.74) positive by choosing ε > 0 such that

0 < ε < (
√
2− 1) ∥Φ∞(·, z∗)∥L2[W∞(z0,I′)]

= (
√
2− 1)

√
|W∞(z0, I ′)|

4π
. (3.75)

Incidentally, we note that, according to Definition 3.2.2, an upper bound for |W∞(z0, I
′)| is given

by the asymptotic angular width |W∞(z0)|. We can now apply Theorem 3.2.6 to conclude the

proof with the desired contradiction.

Remark 3.2.4. As in Remark 3.2.2, let us now focus on Tikhonov regularized solutions. In

this case, Theorem 3.2.6 states that, for z /∈ D, the pseudo-radiality of the scattered field is

incompatible with a discrepancy dα∗(z) ≤ ε, if ε verifies bound (3.75). This incompatibility

means that gα∗(z) cannot belong to L2(Ω), i.e.,
∥∥gα∗(z)

∥∥
L2(Ω)

→ ∞, which can only happen

if α∗(z) → 0+, in agreement with limit (3.36)(a). Again, this is consistent with numerical

simulations [46], which show that the values of α∗(z) are much smaller for z /∈ D than for

z ∈ D.
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Remark 3.2.5. As in Remark 3.2.3, we point out that Theorem 3.2.7 can be easily adapted

to the aspect-limited case, by requiring, in particular, that W∞(z0, I
′) ⊂ Ωo.

3.2.8. Conclusions and further developments

We have presented an approach to the LSM based on the conservation of energy inside the

flow tubes of the scattered field. In this framework, a) the far-field equation expresses a

constraint on the power flux of the scattered field in the far-field region; b) under appropriate

assumptions (suggested by numerical simulations) on the flow tubes carrying this flux, the

information contained in the far-field constraint is propagated throughout the background up

to the boundary of the scatterer; c) the approximate fulfilment of this constraint forces the

L2-norm of any ε-approximate solution of the far-field equation to behave as a good indicator

function for visualizing the shape and location of the scatterer.

Possible future developments of our approach are concerned with both theoretical and nu-

merical issues. From the former viewpoint, we can mention the case of lossy and inhomogeneous

backgrounds with near-field measurements, but the key-problem is clearly to predict the be-

havior of flow lines starting from the knowledge of the geometrical and material properties

of the scatterer: achieving such a goal is the only way for making our physical approach a

mathematical justification of the LSM, and seems to require tools and results in topological

dynamics [1]. As far as numerics is concerned, it would be interesting to observe the behavior

of flow lines for more complex scattering situations than those considered here: a starting point

is, of course, a 3D direct code for penetrable and impenetrable scatterers.

3.2.9. Appendix: A minimum property for cones inscribed in a half-

sphere

As usual, we denote by (x1, x2, x3) and (r, θ, φ) the Cartesian and spherical coordinates in R3,

respectively.

Theorem 3.2.8. Let B̄ := {x ∈ R3 : |x| ≤ 1}, τ := {x ∈ R3 : x3 = 0} and C := B̄ ∩ τ . Let P

be a point on Ω = ∂B̄ and let us consider the solid angle P̂ identified by the cone of vertex P

and basis C. Then, the amplitude |P̂ | of the solid angle P̂ is minimum when the cone is right,

i.e., when x3(P ) = 1.

Proof. In general, the amplitude |P̂Σ| of the solid angle P̂Σ subtended by a surface Σ when

observed by a point P /∈ Σ is given by the formula (see e.g. [79]):

|P̂Σ| =
∫
Σ

s⃗ · n̂
s3

dσ, (3.76)
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where, if Q denotes a generic point of Σ, s⃗ :=
−→
PQ, s = |s⃗|, n̂ = n̂(Q) is the unit normal in Q

to Σ and dσ = dσ(Q) is the surface element on Σ. In our case, the most natural choice for Σ

would be C; however, analytical computations are simpler by choosing the lower half sphere,

i.e., Σ = Ω− := {x ∈ R3 : |x| = 1 ∧ x3 ≤ 0}.
Of course, we have r(P ) = 1, while, by symmetry, it is not restrictive to assume that

θ(P ) ∈ [0, π/2) and φ(P ) = 0 (the case θ(P ) = π/2 will be discussed separately). In the

following, we shall set θP := θ(P ) and denote with (r, θ, φ) the spherical coordinates of the

generic point Q ∈ Ω−. Then, the vectors s⃗ and n̂ can be expressed in Cartesian components

as s⃗ = (sin θ cosφ − sin θP , sin θ sinφ, cos θ − cos θP ) and n̂ = (sin θ cosφ, sin θ sinφ, cos θ).

Inserting these representations into (3.76), with the identifications Σ = Ω− and P̂ = P̂Ω− , we

find

f(θP ) := |P̂ |(θP ) =
1

2
√
2

π∫
π
2

sin θ

 2π∫
0

dφ√
1− sin θ cosφ sin θP − cos θ cos θP

 dθ. (3.77)

It is easy to verify that f(0) = 2π
(
1−

√
2
2

)
, a well-known result concerning right cones. We

now want to show that f(0) is the minimum amplitude of the solid angle P̂ . To this end, we

shall compute f ′ and show that f ′(θP ) ≥ 0 ∀θP ∈ [0, π/2). Since it is possible to prove that

the derivation operator d
dθP

can be brought inside the integrals (as a consequence of Lebesgue’s

dominated convergence theorem and Lagrange’s mean value theorem), we have

f ′(θP ) =
1

4
√
2

π∫
π
2

sin θ

 2π∫
0

sin θ cosφ cos θP − cos θ sin θP√
(1− sin θ cosφ sin θP − cos θ cos θP )

3
dφ

 dθ. (3.78)

Then, it suffices to prove that the internal integral in dφ is non-negative for each θP ∈ [0, π/2)

and θ ∈ [π/2, π]. To this end, we put a := sin θ cos θP ≥ 0, b := − cos θ sin θP ≥ 0, c :=

1− cos θ cos θP ≥ 1 and d := sin θ sin θP ≥ 0, where the inequalities follows from the ranges of

θP and θ. With these notations, the integrand function can be written as

g(φ) :=
a cosφ+ b√
(c− d cosφ)3

, (3.79)

and we want to prove that
∫ 2π

0
g(φ)dφ ≥ 0.

If a > 0, we put φ1 := arccos(b/a), φ2 := arccos(−b/a), φ3 := φ1 + π and φ4 := φ2 + π.

Then, easy computations show that if a = 0, then g(φ) ≥ 0 ∀φ ∈ [0, 2π]; instead, if a > 0, we

have g(φ) ≥ 0 ∀φ ∈ [0, φ2] ∪ [φ3, 2π]. Moreover, for a > 0, the following relations hold:

1) g(φ) ≥ |g(φ+ π)| ∀φ ∈ [0, φ1] =⇒
∫ φ1

0
g(φ)dφ−

∫ φ3

π
|g(φ)|dφ ≥ 0;

2) g(φ) ≥ |g(φ− π)| ∀φ ∈ [φ4, 2π] =⇒
∫ 2π

φ4
g(φ)dφ−

∫ π

φ2
|g(φ)|dφ ≥ 0.
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By summing the two last inequalities and remembering that g(φ) ≤ 0 ∀φ ∈ [φ2, φ3], we find

that
φ1∫
0

g(φ)dφ+

φ3∫
φ2

g(φ)dφ+

2π∫
φ4

g(φ)dφ ≥ 0. (3.80)

On the other hand, we already know that g(φ) ≥ 0 ∀φ ∈ [φ1, φ2] ∪ [φ3, φ4], and then

φ2∫
φ1

g(φ)dφ+

φ4∫
φ3

g(φ)dφ ≥ 0. (3.81)

Inequalities (3.80) and (3.81) together allows concluding that
∫ 2π

0
g(φ)dφ ≥ 0, as claimed.

Summing up, we have proved that f ′(θP ) ≥ 0 ∀θP ∈ [0, π/2): in particular, by putting θP = 0

in (3.78), we get f ′(0) = 0, as it needs to be by symmetry.

In the case θP = π/2, the cone of basis C and vertex P is clearly degenerate. We shall not

discuss how the solid angle P̂ can be defined in this case: for our purposes, it suffices to observe

that any meaningful (i.e., not merely conventional) definition should be obtained by continuity

as a limit case for θP → π/2: in particular, it must hold f(π/2) = lim infθP→(π/2)+ f(θP ). Since

f is non-decreasing in [0, π/2), we can conclude that f(0) ≤ f(θP ) ∀θP ∈ [0, π/2].

Although unnecessary for our purposes, we finally observe that the previous proof can be

easily refined in order to prove that f ′(θP ) > 0 for θP ∈ (0, π/2): hence θP = 0 is a proper

minimum point for f .
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CHAPTER 4

On the use of the linear sampling method

for quantitative inverse scattering

Acoustical or electromagnetic scattering is a physical phenomenon where an incident wave is

scattered by an inhomogeneity and the total field at any point is represented by the sum of

the incident and the scattered field. From a mathematical viewpoint, in the direct problem

the physical parameters and the geometry of the inhomogeneity are given and the unknown is

represented by the scattered field. In the inverse scattering problem, one aims at recovering the

shape and physical properties of the object of interest from measurements of the scattered field.

The direct scattering problem is in general well-posed in the sense of Hadamard and therefore

its approximate solution can be determined by means of stable numerical methods. On the

contrary, the inverse scattering problem is ill-posed in the sense of Hadamard (specifically, the

operator mapping the unknown physical parameters characterizing the inhomogeneity onto

the measured scattered field is compact) and its solution must be addressed by means of some

regularizing approach [41].

Most inverse scattering methods belong to two different sets of algorithms: the family of

qualitative approaches and the family of quantitative approaches. Qualitative methods [23]

require the regularized solution of one-parameter family of linear integral equations of the first

kind. More specifically, in these approaches the support of the scatterer is characterized by the

set of parameter values for which the linear integral equation can be (exactly or approximately)

solved. The advantages of qualitative methods are that they are rather fast and need very few

a priori information to work. On the other hand, the output information is rather poor since

they are essentially visualization techniques and do not provide quantitative reconstructions of

the inhomogeneity. Quantitative inverse scattering methods [41, 12] are iterative schemes that

start from some initialization map of the refractive index of the scatterer and reconstruct its

point values after an optimized number of iterations. In principle they can provide all required

information on the problem although by means of a notable computational effort. Further, they
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can suffer local minima problems, since the number of unknowns is impressively larger than the

data amount typically at disposal in scattering experiments or because often the initialization

of the method is not sufficiently precise for a proper convergence to the solution.

The effectiveness of a quantitative method can be consistently increased by incorporating

into the minimization process the a priori information on the scatterer that one has at disposal.

Although the most traditional way is to use this information to initialize the method, an

improvement in its performances can be achieved when such an information is integrated inside

the minimization process, for example, by decreasing the complexity of the target [52], or

by guiding the iterative process through a plug in of the information into the choice of the

minimization technique.

Recent trends in inverse scattering are interested in the formulation of hybrid methods,

where a priori information on the inhomogeneous background surrounding the inhomogeneity

of interest and qualitative techniques are utilized in order to decrease the number of unknowns

to be determined by means of some quantitative method [69, 19]. In fact, since the main goal

of qualitative methods is to highlight the presence and the shape of an inhomogeneity inside a

background, it is possible to perform the quantitative process only on the pixels individuated by

the qualitative technique. Moreover, recent developments in qualitative inverse scattering proof

that qualitative methods are even able to provide constant estimates [56, 57] on the refractive

index by exploiting their capability in retrieving the so called transmission eigenvalues of the

scatterer. And these estimates can be, for example, utilized as an initialization estimate of the

refractive index for quantitative methods.

This chapter is dedicated to an analysis of the use of qualitative methods as a tool for

reducing the complexity of a problem that has to be solved through quantitative techniques.

More precisely, the first section is dedicated to the description of a hybrid method based on the

implementation of a quantitative technique inspired by the so-called inhomogeneous Lippmann-

Schwinger equation; then, in the second section, a method able to provide constant estimates on

the refractive index of the scatterer from the knowledge of the smallest transmission eigenvalue

will be proposed. In both sections, theoretical and computational tools will be analyzed and

qualitative and quantitative techniques will be as well resumed.
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4.1. A hybrid method for the focused reconstruction of

buried objects

This section basically presents the arguments of [55]. More precisely, the aim of the section

is to describe a rather general strategy for the formulation of hybrid techniques, based on the

following three steps:

1. the information on the physical characteristics of the background are coded in the corre-

sponding Green’s function;

2. a segmentation between the background and the unknown is realized by applying a qual-

itative method, thus decreasing the number of degrees of freedom of the problem;

3. a quantitative method is applied only in the region highlighted by the qualitative method

(i.e. previous step), in order to reconstruct the point values of the refractive index in the

unknown region.

Although this scheme is of fully general applicability, in this section we present a specific

application of the scheme: more precisely, the information on the background is obtained

from other imaging modalities and the Green’s function is numerically computed by means

of a method of moments [59, 88] that solves the forward scattering problem. Then the linear

sampling method [28] is applied in its near-field formulation for inhomogeneous backgrounds,

in order to visualize the scatterer of interest and an active contour based procedure [32] is used

for extracting the shape of its support. Finally, the inverse scattering problem is solved by

applying the contrast source inversion method [104] to the Lippmann-Schwinger equation with

inhomogeneous background.

The plan of the section is as follows: in Section 4.1.1, with the arguments of [41], we

resume the proof of equivalence between differential and integral formulation for the scattering

problem of a scatterer embedded in a homogeneous background. In Section 4.1.2 we set up the

scattering problem of a scatterer buried in an inhomogeneous background and provide a rather

general deduction of an integral formulation associated to the differential scattering problem.

In Section 4.1.3 we recall the formulation of the linear sampling method in the near-field case

and provide the formulation of the contrast source inversion method in the general case of

the inhomogeneous Lippmann-Schwinger equation. Finally, in Section 4.1.4 some numerical

examples are described, also including an application to medical imaging.
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4.1.1. The homogeneous Lippmann-Schwinger equation

Let consider the scattering problem associated to a scatterer of refractive index n embedded

in the vacuum

∆u+ nu = 0 R2 (4.1)

u = ui + us R2 (4.2)

lim
r→∞

(
∂us

∂r
− ikus) = 0 (4.3)

where we suppose that n ∈ C1(R2), that m := 1 − n has compact support D and that

Re(n(x)) > 1 and Im(n(x)) ≥ 0 for each x ∈ R2.

Definition 4.1.1. For each φ ∈ C0
0(R2), we define as volume potential

w(x) :=

∫
R2

φ(y)Φ(x, y)dy x ∈ R2 (4.4)

and as fundamental solution to the Helmholtz equation

Φ(x, y) :=
1

4π

eik|x−y|

|x− y|
x ̸= y. (4.5)

Following the arguments of [41], it is possible to state the following theorem.

Theorem 4.1.1. The volume potential w exists as an improper integral for all x ∈ R2 and has

the following properties:

• if φ ∈ C0
0(R2), then w ∈ C1,α(R2) and the orders of differentiation and integration can

be interchanged;

• if φ ∈ C0
0(R2) ∩ C0,α(R2), then w ∈ C2,α(R2) and ∆w + k2w = −φ in R2;

• for some positive constant C depending on the support of φ we have ∥w∥2,α,R2 ≤ C∥φ∥0,α,R2

with ∥ · ∥p,α,R2 norm of Cp,α(R2);

• if φ ∈ C0
0(R2) ∩ C1,α(R2), then w ∈ C3,α(R2).

Moreover, given two bounded domains D and G, the volume potential

(V φ)(x) :=

∫
D

φ(y)Φ(x, y)dy x ∈ R2 (4.6)

defines a bounded operator V : L2(D) → H2(G).
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Before providing an integral formulation equivalent to (4.1)-(4.3) we recall some classic

tools: if D is a bounded domain of class C1 and ν denotes the unit normal vector to the

boundary ∂D directed into the exterior of D, then we have the Green’s formulas∫
D

[u∆v +∇u · ∇v]dx =

∫
∂D

u
∂v

∂ν
ds for u ∈ C1(D̄), v ∈ C2(D̄) (4.7)

∫
D

[u∆v − v∆u]dx =

∫
∂D

[u
∂v

∂ν
− v

∂u

∂ν
]ds for u, v ∈ C2(D̄). (4.8)

Theorem 4.1.2. If u ∈ C2(R2) is a solution of (4.1)-(4.3), then u is a solution of the homo-

geneous Lippmann-Schwinger equation

u(x) = ui(x)− k2

∫
D

Φ(x, y)m(y)u(y)dy (4.9)

for each x ∈ R2. Conversely, if u ∈ C0(R2) is a solution of (4.9), then u ∈ C2(R2) and u is a

solution of (4.1)-(4.3).

Proof. Let u ∈ C2(R2) solution to (4.1)-(4.3). Let x ∈ R2 be an arbitrary point and B an

open ball with exterior unit normal ν containing the support of m and such that x ∈ B. Since

∆u+ k2u = mk2u we have that, from Green’s formulas,

u(x) =

∫
∂B

[Φ(x, y)
∂u

∂ν
(y)− u(y)

∂Φ(x, y)

∂ν
]ds(y)−

∫
B

Φ(x, y)m(y)u(y)dy. (4.10)

Applying Green’s formulas to ui we have that

ui(x) =

∫
∂B

[Φ(x, y)
∂ui

∂ν
(y)− ui(y)

∂Φ(x, y)

∂ν
]ds(y). (4.11)

Using again Green’s formulas and exploiting the Sommerfeld radiation condition (4.3), we have

that [41] ∫
∂B

[Φ(x, y)
∂us

∂ν
(y)− us(y)

∂Φ(x, y)

∂ν
]ds(y) = 0 (4.12)

and then, by (4.2), that (4.9) is satisfied.

Let now suppose that u ∈ C1(R2) is a solution to (4.9) and let define us as

us(x) := −k2

∫
D

Φ(x, y)m(y)u(y)dy x ∈ R2. (4.13)

Since Φ satisfies (4.3) uniformly with respect to y on compact sets and m is compactly sup-

ported, it is possible to verify that us satisfies (4.3). Sincem ∈ C1
0(R2), from (4.9) and Theorem

4.1.1 we have that us ∈ C2(R2) and ∆us + k2us = k2mu. From ∆ui + k2ui = 0 we have that

∆u+ k2u = ∆ui + k2ui +∆us + k2us = k2mu (4.14)

which implies ∆u(x) + k2n(x)u(x) = 0 for each x ∈ R2.
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4.1.2. The inhomogeneous Lippmann-Schwinger equation

We consider a rather general two-dimensional and time-harmonic scattering problem whereby

the background medium is inhomogeneous and described by a piecewise continuously differen-

tiable refractive index [41, 42]

nb(x) =
1

ε0

[
ε(x) + i

σ(x)

ω

]
. (4.15)

In (4.15), ε0 > 0 is the electric permittivity of vacuum, ε(x) ≥ 1 and σ(x) ≥ 0 are the point

values of the electric permittivity and conductivity, ω is the angular frequency, and i =
√
−1.

More precisely (see e.g. fig. 4.1), we assume that there exists a finite number of open and

connected C2-domains Λi ⊂ R2, with i = 0, . . . , N , such that 1) Λi ∩ Λj = ∅ for i ̸= j; 2)

R2 = ∪N
i=0Λ̄i; 3) Λi is bounded for each i ̸= 0; 4) nb|Λi

∈ C1(Λ̄i) for all i = 0, . . . , N ; 5) nb(x) =

ñ0 ∈ IC for x ∈ Λ0, with Im{ñ0} ≥ 0; 6) there exists a subset J0 of the finite set {1, 2, . . . , N}
such that Λ̃0 := int {x ∈ R2 : nb(x) = ñ0} = Λ0 ∪ (∪j∈J0Λj) (in particular, J0 = ∅ if and only if

Λ̃0 = Λ0). Finally, we assume that the magnetic permeability is constant in all R2. Note that

the boundaries ∂Λi are curves where a discontinuity of nb might occur, but, in our framework,

some of the domains Λi are chosen a priori, even inside a homogeneous region, just to host a

scatterer that will be introduced later: this trick allows some notational simplifications. Finally,

we define the open and possibly non-connected subset Λ̃0 := int {x ∈ R2 : nb(x) = ñ0} ⊃ Λ0.

Λ
1

Λ
2

Λ
4

Λ
3

Λ
0

Figure 4.1: Scheme of the reference background for the scattering problem. In this case, Λ̃0 = Λ0 ∪ Λ4.

Next, we define the Green’s function G(x, y) of the background as the radiating solution of

the equation [42]

∆xG(x, y) + k2nb(x)G(x, y) = −δ(x− y) for x ∈ R2, (4.16)



4.1 A hybrid method for the focused reconstruction of buried objects 79

where k = ω/c is the wave number in vacuum, c being the speed of light in free space. The

existence and uniqueness of G(x, y) (at least for y ∈ Λ̃0) can be proved as in [42]: in fact, if we

denote the Green’s function of the outmost medium by Φ(x, y) = i
4
H

(1)
0 (k̃0 |x− y|), where H(1)

0

is the Hankel function of first kind of order zero, k̃0 := k
√
ñ0 and Im{

√
ñ0} ≥ 0, we can write

G(x, y) = Φ(x, y) + us
b(x, y), (4.17)

where us
b(x, y) is the perturbation to Φ(x, y) due to the inhomogeneous medium.

In our problem, the scatterer is assumed to take up the spatial region D = ∪M
i=1Λi, with

1 ≤ M ≤ N ; accordingly, the whole propagation medium is described by a refractive index

n(x) such that, in general, n(x) ̸= nb(x) for x ∈ Λi, with i = 1, . . . ,M . In any case, we

still require that n|Λi
∈ C1(Λ̄i) for all i = 0, . . . , N . Moreover, for a unit point source placed

at x0 ∈ Λ̃0 \ (Λ̃0 ∩D), we denote by u(x, x0) the non-zero component of the total electric

field, which vibrates perpendicularly to the scattering plane. Then, the differential form of the

scattering problem we are interested in is [42]
∆xu(x, x0) + k2n(x)u(x, x0) = −δ(x− x0) for x ∈ R2 (a)

u(x, x0) = ui(x, x0) + us(x, x0) (b)

lim
r→∞

[√
r

(
∂us

∂r
− i Re{k̃0}us

)]
= 0, (c)

(4.18)

where ui(x, x0) = G(x, x0) is the incident field, us(x, x0) is the scattered field and (4.18)(c)

is the Sommerfeld radiation condition, which holds uniformly in all directions x̂ = x/|x|. If

Im{ñ0} > 0, such a condition can be relaxed [42] by only requiring the boundedness of us(·, x0)

in R2.

It is worth pointing out that eq. (4.18)(a) is to be understood as a set of N + 1 equations,

one for each domain Λi, with i = 0, . . . , N , linked by proper transmission conditions at the

boundaries ∂Λi. These conditions are expressed by the continuity of the tangential components

of both the total electric field E and the magnetic field H: from the time-harmonic Maxwell

equations and the assumption that the magnetic permeability is constant in R2, it is easily

seen that this amounts to the continuity of u and ∂u
∂ν
, where ν is the normal at a point of ∂Λi.

Since the same conditions hold for the incident field (which is the total field in absence of the

scatterer), we can look for a solution us(·, x0) to problem (4.18) such that us(·, x0) ∈ C1 (R2)

and ∆us(·, x0) ∈ C0
(
Λ̄i

)
for all i = 0, . . . , N . Again, the existence and uniqueness of such a

solution can be proved by paralleling arguments contained in [41, 42].

The goal of the present section is to derive an integral equation for the scattered field us(·, x0)

from the differential formulation (4.18) of our scattering problem. The natural candidate for

an integral formulation is the ‘generalized’ Lippmann-Schwinger equation

us(x, x0) = −k̃2
0

∫
R2

G(x, y)m(y)u(y, x0) dy, (4.19)
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where m(x) := [nb(x)− n(x)]/ñ0 (note that suppm coincides with the support D̄ of the scat-

terer, and is therefore compact). In fact, an exact equivalence between differential and integral

formulation is proved in [41] for the three-dimensional acoustic and electromagnetic cases under

strong regularity assumptions on the refractive index: the background is assumed to be homo-

geneous (i.e., G(x, y) = Φ(x, y) and nb ≡ ñ0 ∈ IC), and n must be continuously differentiable

on the whole space. In particular, under such assumptions, this proof can provide a rigorous

justification of the following heuristic procedure: compute ∆xu
s(x, x0) by interchanging the

Laplacian operator with the integral in (4.19), then substitute

∆xΦ(x, y) = −k̃2
0Φ(x, y)− δ(x− y) (4.20)

into (4.19) to obtain

∆xu
s(x, x0) + k̃2

0u
s(x, x0) = −[−k̃2

0m(x)u(x, x0)]. (4.21)

Eq. (4.21) suggests regarding the term in square brackets at its right-hand side as an equivalent,

although unknown, source radiating the field us(x, x0) in the background, which is consistent

with the physical interpretation of (4.19). In any case, by means of eq.s (4.20) and (4.21), it is

easily verified that us, as given by (4.19), solves problem (4.18).

However, as correctly pointed out in [74], even a mere discontinuity of the physical pa-

rameters at the interface between the scatterer and the (homogeneous) background suffices to

invalidate the previous procedure: as a consequence, even with a homogeneous background,

the integral formulation becomes more complicated (owing to boundary terms on ∂Λi) and its

equivalence with the differential formulation is more difficult to prove.

To our knowledge, equivalence results for the two formulations are not available when the

background is inhomogeneous. In this section, we shall limit ourselves to deriving the integral

equation (4.19) (for x ∈ Λ̃0) from the differential problem (4.18): indeed, a thorough discussion

of the equivalence between (4.19) and (4.18) would be very technical and beyond the framework

of this work. However, it is likely that an exact equivalence actually holds, since, as recalled

above, the scattered field us is in C1(R2): then, the boundary contributions on each ∂Λi that

would appear in (4.19) from Green’s second theorem [41] applied in each domain Λi cancel out,

as detailed in the following Lemma 4.1.3 and Theorem 4.1.4.

Finally, it is worth noting that, even in two dimensions, the previous argument fails [74]

whenever the magnetic permeability is discontinuous across ∂Λi. This is analogous to what

happens in the two or three-dimensional acoustic case [74], where the pressure field is continuous

across the discontinuities of the fluid density, but not continuously differentiable.

Lemma 4.1.3. Let Λi (with i = 0, . . . , N), nb(x), G(x, y) be as above, let BR = {x ∈ R2 : |x| <
R} be such that BR ⊃ ∪N

i=1Λ̄i, and define ΛN+1 = BR \ ∪N
i=1Λ̄i. Moreover, let w ∈ C1(B̄R) be

such that ∆w ∈ C0(Λ̄i) for all i = 1, . . . , N + 1. Then, the following generalization of Green’s
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formula holds:

w(x) =
∫
∂BR

[
∂w
∂ν
(y)G(y, x)− w(y)∂G(y,x)

∂ν(y)

]
ds(y) + (4.22)

−
∫
BR

[∆w(y) + k2nb(y)w(y)]G(y, x) dy ∀x ∈ BR ∩ Λ̃0.

Proof. Consider an arbitrary point x ∈ ΛR := BR ∩ Λ̃0: since ΛR is open, there exist ρ > 0

and a ball B(x, ρ) = {y ∈ R2 : |y − x| < ρ} such that B̄(x, ρ) ⊂ ΛR. Moreover, G(·, x) solves
a particular case of the differential problem (4.18), with the identifications x0 = x, u(·, x0) =

G(·, x), ui(·, x0) = Φ(·, x) and n = nb: accordingly, we have that [42] G(·, x) ∈ C1
(
B̄R \ {x}

)
,

∆G(·; x) ∈ C0
(
Λ̄R \ {x}

)
and ∆G(·;x) ∈ C0(Λ̄i) for all i ∈ {1, . . . , N} \ J0, where the index

set J0 has been defined in assumption no. 6) soon below eq. (4.15). Then, given the regularity

properties assumed for w, we can apply the usual Green’s second theorem [41, 65] in the domain

ΛR \ B̄(x, ρ), i.e., ∫
ΛR\B̄(x,ρ)

[G(y, x)∆w(y)− w(y)∆yG(y, x)] dy = (4.23)

=

∫
∂ΛR∪∂B(x,ρ)

[
G(y, x)

∂w(y)

∂ν
− w(y)

∂G(y, x)

∂ν(y)

]
ds(y),

as well as in any other domain Λi, with i ∈ {1, . . . , N} \ J0, i.e.,∫
Λi

[G(y, x)∆w(y)− w(y)∆yG(y, x)] dy = (4.24)

=

∫
∂Λi

[
G(y, x)

∂w(y)

∂ν
− w(y)

∂G(y, x)

∂ν(y)

]
ds(y).

In (4.23) and (4.24) it is understood that the unit normal is chosen as outward with respect to

each domain. We now sum eq. (4.23) with all the eq.s (4.24) obtained for i ∈ {1, . . . , N} \ J0:
we note that, except for ∂BR and ∂B(x, ρ), all the boundary integrals are taken twice, with

opposite orientation of the unit normal. Since the integrand functions are continuous on the

boundaries, these integrals cancel out. Moreover, by eq. (4.16), we can substitute ∆yG(y, x) =

−k2nb(y)G(y, x) for y ̸= x into (4.23) and (4.24). As a result, we find∫
BR\B̄(x,ρ)

[
∆w(y) + k2nb(y)w(y)

]
G(y, x)dy = (4.25)

=

∫
∂BR∪∂B(x,ρ)

[
G(y, x)

∂w(y)

∂ν
− w(y)

∂G(y, x)

∂ν(y)

]
ds(y).

We now focus on the integral over ∂B(x, ρ), say I∂B(x,ρ), at the right-hand side of (4.25):
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remembering eq. (4.17), we have

I∂B(x,ρ) =
∫
∂B(x,ρ)

[
Φ(y, x)∂w(y)

∂ν
− w(y)∂Φ(y,x)

∂ν(y)

]
ds(y) + (4.26)

+
∫
∂B(x,ρ)

[
us
b(y, x)

∂w(y)
∂ν

− w(y)
∂us

b(y,x)

∂ν(y)

]
ds(y).

Now, the second integral in (4.26) vanishes as ρ → 0, since the integrand is bounded and the

measure of the integration domain tends to zero. As regards the first integral in (4.26), we

recall [23] the following asymptotic behaviors

Φ(y, x) = 1
2π

ln 1
|x−y| +O(1) as |x− y| → 0 (4.27)

∂Φ(y, x)

∂ν(y)
= 1

2π
1

|x−y| +O(|x− y| ln |x− y|) as |x− y| → 0. (4.28)

By using (4.27) and (4.28), the integral mean value theorem applied to the integral in (4.26)

easily show that the latter tends to −w(x) as ρ → 0. Then, thesis (4.22) is obtained by

taking ρ → 0 in eq. (4.25): indeed, remembering eq. (4.17) and the regularity of us
b(y, x), the

singularity of G(y, x) for y → x is only due to Φ(y, x), i.e., it is weak and then the integral on

BR converges.

Theorem 4.1.4. Let Λi (with i = 0, . . . , N + 1), D, nb(x), n(x), m(x), G(x, y) be as above

and let x0 ∈ Λ̃0 \ (Λ̃0 ∩D) be as above.. If us(·, x0) ∈ C1(R2), with ∆us(·, x0) ∈ C0
(
Λ̄i

)
for all

i = 0, . . . , N , is a solution of the differential problem (4.18), then us(·, x0) solves the integral

equation (4.19) for x ∈ Λ̃0.

Proof. Consider an arbitrary point x ∈ Λ̃0. Let BR := {x ∈ R2 : |x| < R} be an open disk with

exterior unit normal ν and radius R large enough, so that BR ⊃
[
∪N

i=1̄i ∪ {x}
]
. By hypothesis,

us(·, x0) is regular enough in the domain BR to be represented by means of the generalized

Green’s formula (4.22) in ΛR := BR ∩ Λ̃0, i.e.,

us(x, x0) =

∫
∂BR

{
∂us(y, x0)

∂ν(y)
G(y, x)− us(y, x0)

∂G(y, x)

∂ν(y)

}
ds(y) + (4.29)

−
∫
BR

{
∆yu

s(y, x0) + k2nb(y)u
s(y, x0)

}
G(y, x)dy, x ∈ ΛR.

First we prove that the integral on ∂BR in (4.29) is zero. To this end, consider Br := {x ∈
R2 : |x| < r} such that r > R, and apply Green’s second theorem [41] in the domain Br \ BR:

by choosing the unit normal ν as outgoing from both BR and Br, and observing that both

the fields us(·, x0) and G(·, x) verify the same Helmholtz equation in Br \ BR ⊂ Λ0 (where

nb(x) = n(x) = ñ0), we find∫
∂BR

{
∂us(y, x0)

∂ν(y)
G(y, x)− us(y, x0)

∂G(y, x)

∂ν(y)

}
ds(y) = (4.30)

=

∫
∂Br

{
∂us(y, x0)

∂ν(y)
G(y, x)− us(y, x0)

∂G(y, x)

∂ν(y)

}
ds(y)
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We now recall [41] that any radiating solution v of the Helmholtz equation (with generic wave

number k > 0) outside a disk in R2 has the following asymptotic behavior

v(x) =
eikr√
r

{
v∞(x̂) +O

(
1

r

)}
, r = |x| → ∞, (4.31)

where v∞ is the far-field pattern of v. If v1 and v2 are two such solutions, from (4.31) we find

[41]

v1(x)
∂v2(x)

∂r
= ik

e2ikr

r
v1∞(x̂) v2∞(x̂) +O

(
1

r2

)
, r → ∞, (4.32)

uniformly for all directions. By applying (4.32) to the radiating fields us(·, x0) and G(·, x), we
easily find that the integrand function at the right-hand side of (4.30) is O

(
1
r2

)
and then the

integral itself vanishes as r → ∞. This is even more true if the wave number k > 0 is replaced

by k
√
ñ0 with Im

{√
ñ0

}
> 0, since the attenuation of the fields and their derivatives is faster.

As regards the integral on BR in (4.29), we observe that a simple manipulation of eq.

(4.18)(a) yields

∆xu(x, x0) + k2nb(x)u(x, x0) = −δ(x− x0) + k2ñ0
nb(x)− n(x)

ñ0

u(x, x0). (4.33)

If we now remember eq.s (4.16) and (4.18)(b), as well as the identification ui(·, x0) = G(·, x0)

and the definitions k̃0 := k
√
ñ0, m(x) := [nb(x)− n(x)]/ñ0, from (4.33) we have

∆xu
s(x, x0) + k2nb(x)u

s(x, x0) = k̃2
0m(x)u(x, x0). (4.34)

Note that at the right-hand side of (4.34) the singularity of u(x, x0) for x = x0 is cancelled out

by m(x), since suppm = D̄ is compact and x0 /∈ suppm by hypothesis. Then, by substituting

(4.34) into (4.29), we can write

us(x, x0) = −k̃2
0

∫
R2

G(y, x)m(y)u(y, x0) dy ∀x ∈ Λ̃0, (4.35)

which is immediately written in the form (4.19) by using the reciprocity property [42, 70]

G(y, x) = G(y, x).

We call eq. (4.19) the ‘inhomogeneous Lippmann-Schwinger equation’, to emphasize that

the reference background is (or may be) inhomogeneous. In the next section, we shall apply

an inversion algorithm to this equation in order to compute the point values of m, i.e., of the

refractive index of the scatterer under investigation.

4.1.3. A hybrid scheme

In general, iterative methods for the quantitative solution of inverse scattering problems can

be applied to the homogeneous Lippmann-Schwinger equation. Such methods take as input
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the scattering data collected by antennas placed outside the investigated area and inside a

homogeneous zone, and provide, as output, the reconstruction of the refractive index every-

where in the inhomogeneous region. The main drawback of this computational approach is

that, particularly when the scattering experiment is performed with a single and fixed fre-

quency, the number of unknowns is typically much larger than the number of measured data,

and therefore the reconstruction accuracy is often rather low (the accuracy could be improved

by applying the procedure to multi-frequency data). However there are situations where just

a certain part of the inhomogeneous region is unknown and of interest for practical appli-

cations, while information is available about the refractive index of the rest of the domain.

In this case the quantitative inverse scattering method can be applied to the inhomogeneous

Lippmann-Schwinger equation, provided one is able to compute the Green’s function of the

inhomogeneous (and known) background and to qualitatively distinguish between the target

scatterer and the background. In the following of this section, we describe an implementation

of this approach essentially based on the contrast source inversion method. Therefore, in order

to realize the proposed hybrid approach, the ingredients we need are: a method for comput-

ing the Green’s function of the background, a qualitative method to highlight the scatterer

inside the background itself and a quantitative scheme for the inversion of the inhomogeneous

Lippmann-Schwinger equation.

The Green’s function computation

A handy way to compute the Green’s function is given by the method of moments (MOM)

[59, 88]. Since G(·, x0) solves a particular case of problem (4.18) with the identifications

u(·, x0) = G(·, x0), u
i(·, x0) = Φ(·, x0) and n(x) = nb(x), it also satisfies the homogeneous

Lippmann-Schwinger equation [41]

G(x, x0) = Φ(x, x0)− k2

∫
R2

Φ(x, y)mb(y)G(y, x0) dy for x ∈ R2, (4.36)

with mb(x) := n0 − nb(x) and x0 ∈ Λ̃0. Since suppmb is compact, the integration domain in

(4.36) is bounded: then, we can consider a finite partition of suppm by L cells, which can be

taken so small that mb and G(·, x0) can be assumed to be constant inside each cell. Then, eq.

(4.36) can be approximated as

G(x, x0) ≈ Φ(x, x0)− k2

L∑
j=1

mb(yj)G(yj, x0)

∫
cellj

Φ(x, y)dy, (4.37)

where yj ∈ R2 identifies the center of the j-th cell. Further, following [88], we approximate

each square cell as a circular cell of the same area, so that the integral in eq. (4.37) can be
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evaluated as ∫
cellj

Φ(x, y)dy =
i

4

∫
cellj

H
(1)
0 (k0|x− y|)dy ≈

≈


iπk0aj

2
J1(k0aj)H

(1)
0 (k0|x− yj|) x /∈ cellj

i

2

[
πk0ajH

(1)
1 (k0aj) + 2i

]
x ∈ cellj,

(4.38)

where aj =
√

∆j/π, ∆j is the area of the j-th cell, J1 is the Bessel function of first order

and H
(1)
1 is the Hankel function of first kind of order one. We point out that the method

can be notably speeded up by utilizing the fast Fourier transform algorithm as it is described

for example in [15, 109]: we shall adopt this version of the MOM method for our numerical

simulations.

The linear sampling method

The linear sampling method (LSM) [28] is the earliest and most used qualitative method

in inverse scattering: in the case of an object embedded in a homogeneous background, it

provides a reconstruction of its support by only knowing the field measured around it. When

the background is inhomogeneous and its Green’s function is known, the LSM can be extended

to the case of an inhomogeneity immersed in a medium with piecewise constant refractive

index. The basic idea is to write and to approximately solve the modified far-field equation

[30, 42] ∫
Ω

[us(x, x0)− us
b(x, x0)]gz(x0) dx0 = G(x, z) for x ∈ Ω, (4.39)

where Ω := {x ∈ R2 : |x| = RΩ} ⊂ Λ0 is the circle where emitting and receiving antennas

are placed and z ∈ R2 is a sampling point inside the investigation domain enclosed by Ω. In

(4.39), the Green’s function G(x, z) and the field us
b(x, x0) can be computed by exploiting the

knowledge of the background, while us(x, x0) represents the measurements, i.e., the data of the

inverse scattering problem.

In fact, it can be proved [30, 42] that there exists an approximate solution of (4.39) whose

L2(Ω)-norm is bounded inside the scatterer, grows up as z approaches its boundary from inside

and remains very large outside, thus behaving as an indicator function for the support D̄ of the

scatterer itself. This result inspires a simple algorithm that approximately solves the modified

far-field equation by means of a regularization procedure. More precisely, the LSM requires

the choice of a grid containing the scatterer; then, for each point z of the grid, a discretized

version of the modified far-field equation is solved by using the Tikhonov regularization method

[103] and the Euclidean norm of the regularized solution is plotted for each z. As a result, the

boundary of the scatterer is highlighted by the points of the grid corresponding to the largest
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increase of the Euclidean norm. We point out that this algorithm can be notably speeded up

by applying a no-sampling formulation [6], which is the one adopted in the present work.

Finally, we remark that, for the purposes of our implementation, a univocal identification of

the shape of the scatterer is performed by post-processing the LSM through an active contour

technique [5, 32]: for reasons that will be clear in the next subsection, we choose the parameters

of this edge detection algorithm in such a way that a slight overestimate of the scatterer is

favoured.

The contrast source inversion method

In our hybrid scheme, the contrast source inversion (CSI) method [104, 105] is the technique we

use for the quantitative inversion of the inhomogeneous Lippmann-Schwinger equation. More

precisely, the CSI method computes the point values of the refractive index n(x) inside an

investigation domain T containing the scatterer support D̄ = suppm. The idea at the basis

of the CSI method is to split an inverse scattering problem described by an integral equation

such as (4.19) into two different problems, one defined inside the scatterer and the other one

on the curve Ω where antennas are placed. More formally, remembering (4.18)(b), equation

(4.19) is equivalently recast in the form

u(x, x0) = ui(x, x0)− k2

∫
T

G(x, y)m(y)u(y, x0) dy (4.40)

and then replaced by the system{
w(x, x0) = m(x)ui(x, x0)−m(x)

[
GTw(·, x0)

]
(x) for x ∈ T (a)

us(x, x0) = −
[
GΩw(·, x0)

]
(x) for x ∈ Ω, (b)

(4.41)

where w(x, x0) := m(x)u(x, x0), the operator GT : L2(T ) → L2(T ) is defined as[
GTf

]
(x) = k2

∫
T

G(x, z)f(z) dz ∀x ∈ T, (4.42)

and GΩ : L2(T ) → L2(Ω) is defined as[
GΩf

]
(x) = k2

∫
T

G(x, z)f(z) dz ∀x ∈ Ω. (4.43)

Note that eq. (4.41)(a) is obtained from eq. (4.40) by multiplying both members for m, while

eq. (4.41)(b) is the restriction of eq. (4.19) for x ∈ Ω: in particular, us(x) for x ∈ Ω represents

the data of the inverse scattering problem.

The CSI method consists in minimizing the functional

F (w,m) =
∥us − GΩw∥2Ω

∥us∥2Ω
+

∥mui − w −mGTw∥2T
∥mui∥2T

, (4.44)
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where we dropped the dependence on x, x0, and ∥ · ∥Ω, ∥ · ∥T denote the L2-norms on the

spaces L2(Ω), L2(T ) respectively. The minimization of F is performed by applying gradient

algorithms [82] and the updates are alternately computed for m and w. The information on

the background is again encoded into the Green’s function, i.e., into the operators GT and GΩ.

In the standard case of a homogeneous background, the implementation of the approach

described above is well-established and does not require further discussion. Instead, in the

inhomogeneous case two issues need to be addressed. First, we observe that eq. (4.41)(a) is

written for x ∈ T ; on the other hand, the integral equation (4.19) whence eq. (4.41)(a) should

derive has been proved in Theorem 4.1.4 only for x ∈ Λ̃0 and, in general, T is not contained in

Λ̃0. To overcome this drawback, we observe that the purpose of the CSI algorithm is to compute

the values of n(x) for x ∈ T , and these values do not depend on the reference background inside

T . Then, we can think that the original background in T is replaced by a new one, which hosts

the same homogeneous medium occupying Λ̃0. In other words, this amounts to replacing the

refractive index nb with ñb, such that ñb(x) = n0 for all x ∈ T and ñb(x) = nb(x) for all x /∈ T .

Of course, the background Green’s function G(x, z) in eqs. (4.42) and (4.43) must be replaced

accordingly, i.e., by G̃(x, z). We point out that a good choice of the investigation domain T is

the region highlighted by the LSM, as explained in subsection 4.1.3: indeed, such region is an

overestimate of D, i.e., it contains D, but is also very small, thus minimizing the number of

points where n(x) is to be computed, i.e., the number of unknowns of the problem. As a result,

also the number of measurements necessary for a successful implementation of the method is

optimized.

This same trick, i.e., changing the background as above, is also useful to address the second

issue, which is concerned with the computation of the Green’s function G(x, z). Indeed, eq.s

(4.42) and (4.43) show that both x and z vary in T : then, in particular, also the singular case

x = z is of interest. Now, G(x, z) satisfies eq. (4.36) (with the identification z = x0), which

implies that if z ∈ suppmb and x = z, the integrand function at the right-hand side of (4.36) is

affected by a double singularity for y = z: one due to Φ(z, y), the other one due to G(y, z). This

prevents us from applying the usual approximation scheme outlined in eq.s (4.37) and (4.38):

accordingly, an ad hoc quadrature rule should be created to numerically compute the integral.

Such problem is avoided by the previous choice of the new background, i.e., of ñb: indeed, the

region T is now erased by the actual integration domain in (4.36), since m̃b := n0− ñb vanishes

inside T and z ∈ T .

4.1.4. Numerical examples

This section is dedicated to a numerical validation of the hybrid inversion technique presented

above. A first group of experiments is dedicated to assess the effectiveness of the inhomogeneous

Lippmann-Schwinger approach with respect to the traditional homogeneous-one: in this sense,
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a comparison between the operations of both (homogeneous and inhomogeneous-background)

CSI techniques, when applied to simple numerical phantoms, will be presented. Then, in a

second group of numerical experiments, the effectiveness of the whole hybrid method, as well

as its worthwhileness for real applications, will be shown through some realistic simulations

concerning breast cancer detection.

Homogeneous and inhomogeneous quantitative inversion: a numerical example

(a) (b)

Figure 4.2: Plot of the numerical phantoms utilized for the experiments. Value of the contrast functions

showed in Figure 4.3 (a) and (c).

The first group of numerical examples is concerned with the reconstruction of the two numerical

phantoms of Figure 4.2 (a) and (b). The aim is to show that, for those situations in which

a classic (i.e. homogeneous-background) quantitative method fails, the effectiveness of the

reconstruction can be recovered when some information is assumed as background. This is

the case of Figure 4.2 (b): if CSI is able to reconstruct the presence of the scatterer in Figure

4.2 (a), it fails when the same scatterer is embedded in a square barrier in the way of Figure

4.2 (b). Nevertheless, if the presence of the square barrier is assumed as background and

the inhomogeneous-background CSI is applied, then a proper reconstruction of the scatterer

is restored. A more precise description of these results is provided in Figure 4.3 and in the

remaining part of this subsection.

Figure 4.3 (a) and (c) represent the projection on the plane of the (non-absorbing) dielectric

phantoms of Figure 4.2 (a) and (b) where the wave length λ is equal to 1 and the field is

measured on 30 points on a circle of ray 3λ and for 30 incidences. Since the main aim of the

experiment is to compare the operation of the two approaches (classic CSI and inhomogeneous
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background CSI) in a significant situation, no noise has been added to the field data. Figure 4.3

(b) and (d) are, respectively, the homogeneous-background CSI1 reconstructions of phantoms

(a) and (c). Figure 4.3 (e) and (f) concerns with the inhomogeneous-background CSI: (f) is

the reconstruction of (c) when (e) is assumed as background; in particular, the reconstruction

is performed just on the pixels inside the green square in (e).

The hybrid approach validated against realistic numerical breast phantoms

With the following numerical examples we want to test the efficacy of the hybrid technique

when applied to realistic scattering situations. The set is a 2D mammographic session where

the index of refraction of the scatterer (i.e. breast) is provided by highly realistic numerical

phantoms2 obtained from the segmentation of MRI (Magnetic Resonance Imaging) images [71]

to whom a circular tumor of diameter 0.5 cm has been artificially added (we refer to [72] for the

computation of the value of index for tumoral tissues at fixed frequencies). All the experiments

are performed at frequency f = 3GHz, measuring the field on 30 antennas placed on a circle

of ray 6 cm surrounding the breast. The incidence directions are 30 and the field values are

perturbed with a 3% of noise.

Figure 4.4 shows the values of the relative permittivity εr(x) and of the conductivity σ(x)

of the tissues at frequency f = 3GHz. We remind that the index of refraction is given by

n(x) = 1
ε0
[ε(x)+iσ(x)

ω
], where ε0 is the electric permittivity of the hosting medium. Although, for

clarity, in all the figures presented in this subsection the refractive index is plotted considering

ε0 as the permittivity of the vacuum, the breast is surrounded by a matching layer [75] of

refractive index equal to 18 + i0.06 which embeds also the curve where antennas are placed.

A whole and precise reconstruction of a scatterer such heterogeneous as breast is extremely

difficult to be achieved: the main difficulty lies in the heterogeneity of the refractive index and

in the wideness of the range of values that it can assume from point to point and from tissue

to tissue. Moreover, in order to properly describe the variety of the tissues, a large number of

unknowns has to be taken into account: in practical applications, their number can be dispro-

portionate to the number of field data and the effective achievability of a truthful reconstruction

can be out of range. Figure 4.5 provides an idea of the quality of the reconstruction that can

be achieved by applying tout court a quantitative technique to the reconstruction of a scatterer

of the shape of the one plotted in Figure 4.4: since, with a homogeneous background approach,

one has to reconstruct everywhere in the investigated region, the reconstructed refractive index

can not be as precise as the exact one (other examples of quantitative reconstruction of breast

slices can be found for example in [52]). For these reasons, an inhomogeneous-background

approach to the problem can be helpful in the sense that, since a part of the scatterer can

be assumed as background (when a priori known), the reconstruction can be performed on a

1implemented in the error-reducing version of [105] initialized through backpropagation
2downloadable at uwcem.ece.wisc.edu/home.htm
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: (a) and (c) are the exact values of the refractive indexes of the phantoms. (b) and (d) are the

corresponding reconstructions achievable using the homogeneous CSI. (f) is the reconstruction of (c) obtained

through the inhomogeneous CSI when (e) is assumed as background. All the CSI reconstructions are obtained

after 500 iterations.
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fewer number of pixels, reducing the number of unknowns and increasing the quality of the

reconstruction.

In the first numerical example, whose results are collected in Figure 4.6, the idea is to

reconstruct both glandular and tumoral tissues using, as background, the a priori information

on skin layer, fat layer and matching fluid around the breast that can be provided, for example,

by the segmentation of the most recent MRI image of the patient’s breast. Figure 4.6 (a)

and (b) show the value of permittivity and conductivity of the background utilized for the

application of the nSLSM, the qualitative technique which allows the identification of the

unknown region. (c) is the reconstruction provided by the nSLSM (i.e. plot of one over the

squared norm of the solution to the far field equation); from (c), through the application of

active-contours techniques, the support of the unknown region is extracted. (d) represents

value of the permittivity of the background used for applying the inhomogeneous-background

CSI (the corresponding conductivity is analogous): we remind that, in order to avoid the

occurrence of the theoretical and computational problems described in Section 4.1.3, the value

of the hosting medium has to be substituted inside the unknown region so that the integral

of (4.36) vanishes inside the area under investigation. The inhomogeneous-background CSI

reconstruction is presented in (e) for the relative permittivity and (f) for the conductivity.

m
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(a) (b)

Figure 4.4: Exact profile of the scatterer. (a) permittivity and (b) conductivity at 3 GHz of frequency.

In the second numerical example we utilize the inhomogeneous-background CSI as a tool

able to verify the nature of an inhomogeneity detected by the nSLSM. In this case, the whole

healthy breast slice (provided by the segmentation of the most recent MRI image of the patient’s

breast) is wholly assumed as background and the reconstruction is performed on the only

pixels where the presence of the tumor has been highlighted. In Figure 4.7, (a), (b) and (c)

concerns with the nSLSM: (a) and (b) show the relative permittivity and the conductivity of

the considered background while (c) is the nSLSM output, useful for the reconstruction of the
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support of the inclusion. (d) plots the relative permittivity of the background utilized for the

inhomogeneous CSI and where the value of the matching fluid is artificially substituted in the

area detected by the nSLSM (the corresponding conductivity is analogous, i.e., obtained from

Figure 4.4 (b) where the value σ = 0.001 is substituted inside the unknown region). Finally,

(e) and (f) are the inhomogeneous-background CSI reconstructions.

(a) (b)

Figure 4.5: Example of reconstruction provided by the classic (i.e. homogeneous-background) CSI method

for 3 GHz of frequency, 30 measurements and 30 emissions, 500 iterations. Field data perturbed by 3% noise.

A third and a fourth example, (collected in Figure 4.8), describe the behavior of the method

when one has at disposal data subjected to a bigger noise perturbation than in the previous

examples. In Figure 4.8 (a), (c) and (d) one wants again to reconstruct the presence and the

value of the refractive index for glandular and tumoral tissue inside the breast and for data

perturbed by a 5% of noise: (a) is the output provided by the nSLSM which highlights the

region of inhomogeneity (we remind that matching fluid, skin and fat layer are here assumed as

known); (c) and (d) are the reconstructions of electric permittivity and conductivity provided

by the application of the inhomogeneous-background CSI method. Figure 4.8 (b), (e) and (f)

represent the results obtained when one want to detect and reconstruct the only tumor with

field data perturbed by a 3% noise and background nb perturbed by 5% of noise: in fact, the

aim of this experiment is to take into account also an unperfect knowledge of the background.

nSLSM output, permittivity and conductivity reconstructions are collected respectively in (b),

(e) and (f).
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Figure 4.6: Reconstruction of glandular and tumoral tissue. (a) and (b) are the utilized nSLSM background;

(c) is the nSLSM reconstruction; (d) shows the permittivity of the background utilized for the inhomogeneous-

background CSI (the corresponding conductivity is analogous); (e) and (f) are, respectively, the reconstructed

permittivity and conductivity after 500 iterations and where the green line delimits the region of reconstruction.

Field data perturbed by 3% noise.
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Figure 4.7: Reconstruction of the only tumoral tissue. (a) and (b) are the utilized nSLSM background; (c)

is the nSLSM reconstruction; (d) shows the permittivity of the background utilized for the inhomogeneous-

background CSI; (e) and (f) are, respectively, the reconstructed permittivity and conductivity after 500 itera-

tions and where the green line delimits the region of reconstruction. Field data perturbed by 3% noise.
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Figure 4.8: Results of two different experiments: (a), (c) and (d) are in the same perspective of Figure 4.6,

i.e., one wants to reconstruct presence and refractive index of both glandular and tumoral tissue; for (b), (e)

and (f), the aim is to retrieve information on the only tumoral tissue as done in Figure 4.7. (a), (c) and (d)

are respectively nSLSM output, reconstructed relative permittivity and reconstructed conductivity (after 500

iterations) for field data perturbed by 5% of noise. (b), (e) and (f) are respectively nSLSM output, reconstructed

relative permittivity and reconstructed conductivity (after 500 iterations) for data perturbed by 3% of noise

and assuming a partial knowledge of the background, i.e., pixelwise perturbing nb with a 5% of noise.
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4.2. Computing estimates on material properties

from transmission eigenvalues

This work is motivated by the inverse scattering problems, those problems where one is inter-

ested in reconstructing the shape and the material properties of an inclusion from electromag-

netic farfields measurements. More precisely we are interested in complementing the so called

sampling methods [23, 68], (those methods that enables one to reconstruct just the geometry of

the scatterer), by providing estimates on the material properties. We shall use for that purpose

the so-called transmission eigenvalues [41]. These special frequencies can be determined from

the knowledge of the farfields for a range of frequencies. They also correspond to values of

the wavenumbers for which the so called homogeneous interior transmission problem has a non

trivial solution. Our work is in the same spirit of [43] but we shall employ a different and (in

principle) a simpler method.

The proposed method is based on reformulating the interior transmission eigenvalue problem

into a (standard, generalized) eigenvalue problem for the material coefficients. In the case

of constant coefficients the value of the material parameter corresponds with the smallest

eigenvalue. The obtained eigenvalue problem corresponds to a fourth order operator that we

shall solve using an appropriate mixed second order formulation of the problem. To obtain the

desired approximation of the refractive index, one needs to determine the first transmission

eigenvalue from the farfield data. We shall review here the method proposed in [29, 25] based

on a frequency sampling of the farfield solution. We then extend this method to the case of

scatterers with multiply connected components so that one is able to detect the transmission

eigenvalues associated with each connected components.

In these first investigations we restrict ourselves to a two dimensional setting of the prob-

lem that models electromagnetic scattering from infinite cylinders and treat both transverse

electric (TE) and transverse magnetic (TM) polarizations. We present a number of numerical

experiments that validate our methodology for homogeneous and non homogeneous inclusions

and backgrounds. We also treat the case of a background with absorption and the case where

the geometry is also unknown (but reconstructed using the linear sampling algorithm).

The outline of this second part of the chapter of the chapter is the following. Section 4.2.1 is

dedicated to introducing the forward and the inverse scattering problem for TM polarizations.

We introduce our method for constructing constant approximation of the refractive index in

the Section 4.2.2. Section 4.2.3 corresponds with the extension of our results to the case of TE

polarizations. The last two sections (4.2.4 and 4.2.5) are dedicated to numerical experiments

that validate our approach and illustrate its effectiveness. We finally remark that the results

here presented are taken from [56] and [57].
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4.2.1. Forward and inverse scattering problem

We consider the scattering of a time harmonic electromagnetic plane wave by an inhomogeneous

infinite cylinder with cross sectionD such that the electric field E = (0, 0, u exp−iωt) is polarized

parallel to the axis of the cylinder (TM polarization). Supposing the index of refraction n

dependent only on the two coordinates orthogonal to the cylinder axis and factorizing out the

time harmonic component we obtain that the total field u satisfies [41]:

∆u(x) + k2n(x)u(x) = 0 in R2 (4.45)

u(x) = ui(x) + us(x), with ui(x) = expikx·d, (4.46)

lim
r→∞

√
r(
∂us(x)

∂r
− ikus(x)) = 0 uniformly with respect to x̂ :=

x

|x|
, (4.47)

where x ∈ R2, k > 0 is the wave number, r = |x| and d ∈ Ω = { x
|x| : x ∈ R2}.

The index of refraction n is assumed to be a piecewise continuously differentiable function

with discontinuities across non intersecting C2 curves. Moreover we suppose that Im(n) ≥ 0

and that, with m := 1− n and D̄ being the support of m, D̄ is compact with the complement

of D connected and boundary ∂D smooth.

Problem (4.45)-(4.47) has a unique solution u ∈ H2
loc(R2) and the corresponding scattered

field us has the asymptotic behavior [41]:

us(x) =
expikr

√
r

u∞(x̂, d) +O(r−3/2) (4.48)

as r → ∞ uniformly with respect to x̂ ∈ Ω.

The knowledge of the so-called farfield pattern u∞(x̂, d) for all observation directions x̂ ∈ Ω,

all incident directions d ∈ Ω and for a range of frequencies k (that will be specified later) forms

the data of the inverse problem of determining D and n. In fact, although the shape of D will

be determined at a fixed frequency k, for the reconstruction of n, the knowledge of u∞(x̂, d)

for a range of k will be required. As it will be better specified in the following, even in this last

case the method will operate without combining data of different frequencies; for this reason

we suppressed the mention to k in the notation.

Let Φ be the radiating fundamental solution of the Helmholtz equation

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|), (4.49)

where H
(1)
0 is the Hankel function of the first kind of order 0 and consider

Φ∞(x̂, z) :=
expiπ/4

√
8πk

exp−ikx̂·z (4.50)
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the farfield pattern of Φ(·, z). Central to the Linear Sampling Method is the farfield equation

(Fgz)(x̂) = Φ∞(x̂, z) (4.51)

where the farfield operator F : L2(Ω) → L2(Ω) is defined by:

(Fg)(x̂) =

∫
Ω

u∞(x̂, d)g(d)ds(d) (4.52)

We recall that Fg is the farfield associated to the incident wave

vg(x) :=

∫
Ω

expikx·d g(d)ds(d) (4.53)

called Herglotz wave function with density g. We recall hereafter the main theorem associated

with the LSM (see [28] for instance). We shall assume in the sequel that Re(n)−1 or 1−Re(n)

is positive definite on D.

Theorem 4.2.1. Except possibly for a discrete set of values of k when Im(n) = 0, it holds:

1. if z ∈ D, for every ε > 0 there is a solution gεz ∈ L2(Ω) of the inequality

∥Fgεz − Φ∞(·, z)∥L2(Ω) < ε (4.54)

such that

lim
ε→0

∥vgεz∥L2(D) < ∞ (4.55)

and that

lim
z→∂D

∥vgεz∥L2(D) = ∞. (4.56)

2. if z is not in D, then for every ε > 0 and gεz satisfying

∥Fgεz − Φ∞(·, z)∥L2(Ω) < ε (4.57)

we have that

lim
ε→0

∥vgεz∥L2(D) = ∞. (4.58)

The linear sampling method consists in solving the regularized (F is compact between

infinite dimensional spaces) farfield equation for each z in a grid containing D and visualizing

the indicator function z 7→ ∥gz∥L2(Ω). This method therefore solves the inverse scattering

problem of determining the shape of an unknown object D from the knowledge of its farfield

pattern u∞ for all observation directions and all incident directions at a given frequency.n.

However its fails to do so if this frequency coincides with so called transmission eigenvalues

that will be defined in the sequel.
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We recall that for z ∈ R2, the equation Fgz = Φ∞(·, z) has a solution gz ∈ L2(Ω) if and only

if there exists w ∈ H2(D) and a Herglotz wave function vgz such that w and vgz are solution of

∆w + k2nw = 0, ∆vgz + k2vgz = 0 in D, (4.59)

w − vgz = Φ(·, z), ∂w

∂ν
− ∂vgz

∂ν
=

∂Φ

∂ν
(·, z) on ∂D. (4.60)

Equations (4.59)-(4.60) form the so called interior transmission problem. As it will be bet-

ter clarified in the next section, transmission eigenvalues identify wave numbers for which the

farfield operator may not be complete in L2(Ω). In particular, when k is such that the homo-

geneous problem associated to equations (4.59)-(4.60) admits a non trivial solution (w, v) with

v a Herglotz wave function, then farfield operator F is not complete in L2(Ω) [41]. In [31] the

set of transmission eigenvalues has been proved to be infinite and countable.

The case of inhomogeneous background. We conclude this section by noting that an

adaptation of the linear sampling method to the problem of detecting an object embedded in

an inhomogeneous background has been well established for example in [37] (for TM polarized

plane waves and impenetrable objects) and in [42] (for near field measurements and penetrable

objects). In the inhomogeneous cases, the kernel of the farfield operator has to be modified

by subtracting its background analogous and the right hand side should be replaced by the

farfield of the background Green’s function. The index nb of the inhomogeneous background

is assumed to verify similar regularity assumptions as n and to be equal to 1 outside a ball.

Following [37] if us
b,∞ denotes the farfield pattern of the background medium (i.e. without

the inclusion D) and if G∞(·, z) is the farfield of the Green function corresponding to the

inhomogeneous background and to a point source at z, then Theorem 4.2.1 holds with

(Fg)(x̂) :=

∫
Ω

[u∞(x̂, d)− us
b,∞(x̂, d)]gz(d)ds(d) (4.61)

and Φ∞ replaced by G∞. If ub(·, d) denotes the total field associated with the background, i.e.

solution to (4.45)-(4.47) with n = nb, then the Herglotz wave is defined in the present case as

vg(x) :=

∫
Ω

ub(x, d)g(d)ds(d) (4.62)

and forms the incident wave that generates, for the inclusion D, a farfield equals to Fg.

4.2.2. Derivation of a constant approximation of the refractive index

We consider the case of a non-absorbing (i.e. Im(n) = 0) inhomogeneous medium embedded in

a (possibly inhomogeneous) background and we assume that LSM or other qualitative methods
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[23, 68] have already been used to determine the support D of the target. The aim of this

section is to determine an estimate of the index of refraction n(x) under the assumption that

the support D is known.

To achieve this goal we shall make use of the first transmission eigenvalue and consider the

interior transmission eigenvalue problem as an eigenvalue problem where the eigenvalue is the

index of refraction. This is why we first need to provide a clearer definition of transmission

eigenvalues and comment on their identification using farfield data.

Transmission eigenvalues and their identification using farfield data

We start analyzing the case of a TM polarized scattering problem of an inhomogeneous medium

in the vacuum. Using the notation and assumptions of the second section, we define the interior

transmission problem [41, 44] as the problem of finding w, v ∈ L2(D), with w − v ∈ H2(D),

such that

∆w + k2nw = 0 in D (4.63)

∆v + k2v = 0 in D (4.64)

w − v = f on ∂D (4.65)

∂w

∂ν
− ∂v

∂ν
= g on ∂D (4.66)

for some boundary data f ∈ H
3
2 (∂D) and g ∈ H

1
2 (∂D).

We have that the farfield operator F is injective with dense range provided that k is not a

transmission eigenvalue, i.e. a value of k for which the homogeneous (i.e. f = 0 and g = 0 in

(4.65) and (4.66)) interior transmission problem has a non trivial solution. We also recall that

for z ∈ D, the farfield equation has a nearby solution gεz ∈ L2(Ω) that satisfies (4.54)-(4.55) if

there exists a couple (wz, vz) solution of (4.63)-(4.66) with f = Φ(·, z) and g = ∂
∂ν
Φ(·, z).

Since the linear sampling method is expected to fail when k is a transmission eigenvalue

and, in particular, for almost all z ∈ D the norm of a regularized solution gz,α satisfying

lim
α→0

∥Fgz,α − Φ∞(·, z)∥L2(Ω) = 0 (4.67)

is expected to be large for such values of k [26, 29], a possible method for finding transmission

eigenvalues would be to solve (4.67) for few fixed z ∈ D and for values of k in an interval: the

transmission eigenvalues would correspond with large values of k 7→ ∥gz∥L2(Ω).

The following theorem formalizes previous considerations (the formulation is an adaptation

of the results in [26]).

Theorem 4.2.2. Let gz,α satisfy (4.67) and z be a point of R2; let vgz,α be the Herglotz wave

function associated to gz,α and let us assume that k is a transmission eigenvalue. Then for

almost every z ∈ D, ∥vgz,α∥L2(D) cannot be bounded as α → 0. Otherwise, if k is not a
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transmission eigenvalue, then there exists gz,α satisfying (4.67) such that ∥vgz,α∥L2(D) is bounded

as α → 0 for each z ∈ D.

Let us denote by P (D, k, n) the interior transmission problem (4.63)-(4.66) for a domain D

of refractive index n and with boundary data f = Φ(·, z) and g = ∂
∂ν
Φ(·, z).

We give in following a corollary of the previous theorem that indicates how, for multiply

connected inclusions D, one can identify the transmission eigenvalues associated with each

connected component. More precisely, assume that D =
∪

ĵ∈{j0,...,jm}Dĵ with m ∈ N and

Dĵ connected for each ĵ ∈ {j0, ..., jm} and refer to P (Dĵ, k, nĵ) as the interior transmission

problem associated to Dĵ, with nĵ restriction of n to Dĵ. We remark that, obviously, the

set of transmission eigenvalues for D is the union of transmission eigenvalues for Dĵ for ĵ ∈
{j0, ..., jm}.

Let us consider the farfield equation associated to the whole D and let gz,α satisfy (4.67).

Corollary 4.2.3. Let jp, jq ∈ {j0, ..., jm} and let k∗ be a transmission eigenvalue for P (Djp , k, njp)

and not for P (Djq , k, njq). Then

• ∥vgz,α∥L2(D) is unbounded for almost every z ∈ Djp.

• For each z ∈ Djq there exists a gz,α satisfying (4.67) such that ∥vgz,α∥L2(D) is bounded.

Proof. First, we point out that if (w, v) is a solution of P (D, k, n), then (wj̄, vj̄) (restriction of

(w, v) to Dj̄) would be a solution of P (Dj̄, k, nj̄) and that

∥v∥2L2(D) =
∑

j̄∈{j0,...,jm}

∥vj̄∥2L2(Dj̄)
. (4.68)

• Let k∗ be a transmission eigenvalue for P (Djp , k, njp). Then, from Theorem 4.2.2, it

follows that ∥vgz,α,jp∥L2(Djp )
has to be unbounded for almost every z ∈ Djp . Then, by

(4.68), ∥vgz,α∥L2(D) is unbounded for almost every z ∈ Djp .

• If z ∈ Djq , (0,−Φ(·, z)) is a (bounded) solution of P (Djp , k, njp). Hence, (w, v) such that

w = 0 on D, v = 0 on Dj̄ for each j̄ ̸= jp and v = −Φ(·, z) on Djp is a bounded solution

of P (D, k∗, n). Denseness of the set of Herglotz wave functions implies the existence of a

gz,α such that ∥vgz,α−v∥L2(D) → 0 for α → 0. This implies that ∥Fgz,α−Φ(·, z)∥L2(Ω) → 0

for α → 0.

Identification of the refractive index

As explained before, solving the homogeneous interior transmission eigenvalue problem means,

knowing the shape of D and the pointwise values of n, find k∗ such that there exists a non
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trivial solution u of the problem P (D, k, n) (from now we will refer to P (D, k, n) as to the

homogeneous interior transmission problem).

Let us change the point of view: since transmission eigenvalues are detectable without

knowing n(x), it is possible to consider directly the problem P (D, k∗, n) where D and k∗ are

known and n is unknown. Moreover, supposing n constant, P (D, k∗, n) could be treated as a

classical generalized eigenvalue problem.

Now, we are ready to explain the idea of the whole method. Given the inverse scattering

problem of detecting an inhomogeneous medium of index n, one can first reconstruct the shape

of the unknown object D using the LSM (or other similar qualitative methods). Then, fixing

a z in D and plotting the norm of g (solution of (4.67)) for every k in an interval, transmission

eigenvalues k∗ of P (D, k, n) can be detected. With their knowledge, it will be possible to solve

the problem of finding n∗ so that P (D, k∗, n∗) has a non trivial solution; i.e. finding n∗ for

which k∗ is a transmission eigenvalue of P (D, k, n∗).

Proposition 4.2.4. Assume that n is constant. Then, the homogeneous interior transmission

problem P (D, k, n) is equivalent to the problem of finding u ∈ H2
0 (D) satisfying

(∆ + k2)∆u = −k2n(∆ + k2)u in D. (4.69)

Further, the eigenvalue problem: find (u, n) ∈ H2
0 (D)×R satisfying (4.69), admits a countable

number of eigenvalues n ∈ R.

Proof. The equivalence between (4.64)-(4.66) (with n constant) and (4.69) can be easily proved

by setting u = w − v ([23, 78]).

Problem (4.69) is equivalent to (∆ + k2)2u = λ(∆ + k2)u with λ = k2(1 − n). The operator

(∆ + k2)2 : H2
0 (D) 7→ H2

0 (D) is bijective and self adjoint while operator (∆ + k2) : H2
0 (D) 7→

H2
0 (D) is compact, injective and self adjoint. Then, the existence of a countable number of

real eigenvalues λ can be proved applying classical spectral theory for compact self adjoint

operators.

Remark 4.2.1. The constant approximation n∗ of n is chosen as the smallest eigenvalue of

problem (4.69) associated to the smallest transmission eigenvalue k∗
0.

The main difficulty related to numerical solutions of the eigenvalue problem (4.69) comes

from the fourth order operator which requires the use of C1 finite elements. We shall in the

following provide mixed formulations of the problem that allows the use of C0 finite elements.

These formulations, inspired by classical mixed formulation for the biharmonic problem, are

those used in the numerical simulations (done with standard P1 Lagrange finite elements).

Proposition 4.2.5. Assume that n is constant. Then if u ∈ H2
0 (D)∩H3(D) is such that (4.69)

is valid, then u and u = (∆ + k2)u are solution of the variational problem: “Find u ∈ H1
0 (D)
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and u ∈ H1(D) such that∫
D

(uv+∇u∇v− k2uv−∇u∇v)dx = −k2n

∫
D

(k2uv −∇u∇v)dx (4.70)

for all v ∈ H1
0 (D), v ∈ H1(D)”.

Conversely, if u ∈ H1
0 (D) ∩ H3(D) and u ∈ H2(D) are solutions of (4.70), then u ∈ H2

0 (D)

and satisfies (4.69).

Proof. Substituting u = (∆ + k2)u, equation (4.69) becomes ∆u = −k2nu. Multiplying both

equations respectively against test functions v ∈ H1(D) and v ∈ H1
0 (D) and applying Green’s

identity we obtain ∫
D

(∇u∇v− k2uv)dx = −
∫
D

uvdx (4.71)

and

−
∫
D

∇u∇vdx = −k2n

∫
D

(k2uv −∇u∇v)dx. (4.72)

Summing the two equations we obtain (4.70).

Reciprocally, starting with (4.70) we can go back to equations (4.69) by assuming that

u ∈ H1
0 (D)∩H3(D) and u ∈ H2(D). Using Green’s identity we obtain that (4.71) is equivalent

to ∫
D

(u−∆u− k2nu)vdx =

∫
∂D

∂u

∂ν
v ds(x) (4.73)

for all v ∈ H1(D). Since C∞
c (D) ⊂ H1(D) we get

∫
D
(u−∆u−k2nu)vdx = 0 for all v ∈ C∞

c (D).

Hence, u−∆u−k2nu = 0 almost everywhere in D and consequently ∂u
∂ν

= 0 almost everywhere

on ∂D. The latter implies in particular that u ∈ H2
0 (D). Similar arguments applies to (4.72)

and prove that ∆u = −k2nu almost everywhere in D, which implies (4.69).

The case of an inhomogeneous background

The approach described in the previous subsection can be extended to the case in which the

medium is embedded in an inhomogeneous background. Let us consider the case where the

inclusion D is embedded in a background with index nb. Then the homogeneous interior

transmission problem is formulated as follows:

∆w + k2nDw = 0 in D, (4.74)

∆v + k2nbv = 0 in D, (4.75)

w = v on ∂D, (4.76)

∂w

∂ν
=

∂v

∂ν
on ∂D. (4.77)
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where nD denotes the index of D. Taking u = w− v in (4.74)-(4.77) and applying the operator

∆ + k2nD to the difference (4.74)-(4.75) we obtain

(∆ + k2nD)
1

k2(nb − nD)
(∆ + k2nb)u = 0 in D (4.78)

u = 0,
∂u

∂ν
= 0 on ∂D. (4.79)

Substituting

u :=
1

k2(nb − nD)
(∆ + k2nb)u (4.80)

we obtain

∆u = −k2nDu in D. (4.81)

Multiplying (4.81) by a test function v ∈ H1
0 (D) and (4.80) by k2(nb − nD)v with v ∈ H1(D),

applying the Green’s formula, taking into account the boundary conditions satisfied by u and

adding the two equations, one ends up with the following variational formulation∫
D

(k2nb(uv− uv)−∇u∇v−∇u∇v)dx = λ

∫
D

(uv + uv)dx, (4.82)

which is valid for all v ∈ H1
0 (D) and v ∈ H1(D) and with λ := −k2nD. Using this procedure

and similar arguments as in the proof of Proposition 4.2.5, one can prove the following.

Proposition 4.2.6. If nD is assumed to be constant and ∃w, v ∈ L2(D) and w − v =: u ∈
H2

0 (D) ∩ H3(D) such that (4.74)-(4.77) is valid, then u and u = 1
k2(nb−nD)

(∆ + k2nb)u are

solution of the variational problem: “Find u ∈ H1
0 (D) and u ∈ H1(D) such that∫

D

(k2nb(uv− uv)−∇u∇v−∇u∇v)dx = λ

∫
D

(uv + uv)dx (4.83)

for all v ∈ H1
0 (D), v ∈ H1(D)”.

Conversely, if u ∈ H1
0 (D) ∩ H3(D) and u ∈ H2(D) are solutions of (4.83), then u ∈ H2

0 (D)

and satisfies (4.78).

Remark 4.2.2. In the case of inhomogeneous background, (4.51) takes the form of

[Fgz](·) = G∞(·, z), (4.84)

where G∞ and F are defined as (4.61), taking into account the presence of the inhomogeneous

background. As in the homogeneous case, k 7→ ∥gz∥L2(Ω) is expected to have peaks for k being a

transmission eigenvalue for a.e. z ∈ D. This procedure allows us to compute the transmission

eigenvalues from farfield data.
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A remark on the case of absorbing background

It is well known that, when a non-absorbing object of support D is embedded in a back-

ground such that Im(nb) > 0, then there are no real transmission eigenvalues associated with

(4.74)-(4.77) [41]. Since complex transmission eigenvalues are not detectable by the procedure

previously indicated in (Remark 4.2.2), this means that our method providing estimates on the

index of refraction is not applicable.

However, in this preliminary remark something is not sufficiently precise: the definition

of the background index inside D has no physical meaning since the “physical index” of the

medium inside D is n. For backgrounds with constant indexes or for layered backgrounds, a

“natural extension” of the definition of the background index inside D can be defined. But

this is mainly only for a mathematical or numerical convenience.

This simple consideration suggests that there can be some degrees of freedom in the defini-

tion of nb inside D, which is the part used in the interior transmission problem (4.74)-(4.77).

As far as the inverse problem of determining n is concerned, this is feasible since at this stage

we assume that D is known. In particular if we choose nb to be a real constant (different from

nD) in D, then we are back again to the case where the interior transmission problem has real

eigenvalues and therefore one would be able to apply the procedure previously explained to

get estimates on nD. This procedure will be validated by some numerical experiment in the

numerical sections.

Of course there is an extra price to pay: it is hidden in the step of determining the trans-

mission eigenvalue from farfield data. Indeed when one complexifies the background index, this

makes the computation of us
b,∞ in (4.61) more costly.

We finally observe that this procedure can also be applied in the case without absorption

if one would like to use the (simpler) formulation of the interior transmission problem with

constant index.

4.2.3. The case of TE polarization

Our results for TM polarized waves can be extended to the case of transverse electric (TE)

polarization, i.e. the case for which the magnetic component of the field (originated by the

incidence of a time harmonic plane wave) vibrates parallel to the axis of the infinite cylinder

that is assumed to have cross section D. The main steps of the inversion algorithm are the

same as in the TM case and we shall hereafter only give a sketch of the main differences.

Let us first quickly introduce the direct scattering problem for a scatterer D of refractive

index n in the case of TE incident plane waves. The total field u ∈ H1
loc(R2) satisfies

∇ · ( 1

n(x)
∇u(x)) + k2u(x) = 0 in R2, (4.85)
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u(x) = ui(x) + us(x) with ui(x) = expikx·d, (4.86)

lim
r→∞

√
r(
∂us(x)

∂r
− ikus(x)) = 0. (4.87)

The associated farfield pattern as well as the farfield operator can be deduced as in the TM

case. Theorem 4.2.1 is also still valid in the present case under the same assumption on the

refractive index.

Transmission eigenvalues

In this case, the homogeneous interior transmission problem is defined as follows [25]: find

w̃, v ∈ L2(D) such that w̃ − v ∈ H1(D), ∇ · ( 1
n
∇w̃ −∇v) ∈ L2(D) and

∇ · ( 1
n
∇w̃) + k2w̃ = 0 in D, (4.88)

∆v + k2v = 0 in D, (4.89)

w̃ = v on ∂D, (4.90)

1

n

∂w̃

∂ν
=

∂v

∂ν
on ∂D. (4.91)

Since the linear sampling method works independently from wave polarization, results obtained

in the case of transverse magnetic waves as well as Theorem 4.2.2 and Corollary 4.2.3 could be

extended to the case of transverse electric polarization. Hence, again, transmission eigenvalues

are detectable from the knowledge of farfield patterns and the resolution of the eigenvalue

problem P (D, k∗
0, n) can provide us with a constant approximation n∗ of n.

Mixed formulations of the refractive index eigenvalues problems

We shall explain here how problem (4.88)-(4.91) can be formulated as an eigenvalue problem

for a constant n, assuming that k and D are known.

Proposition 4.2.7. Considering n constant, problem (4.88)-(4.91) is equivalent to the problem

of finding u := 1
n
w̃ − v ∈ H2(D) such that

(∆ + k2)∆u = −k2n(∆ + k2)u in D (4.92)

∆u = 0,
∂u

∂ν
= 0 on ∂D. (4.93)

Proof. Substituting w = 1
n
w̃ and using (4.88) and (4.89) it is easy to obtain

∆w + k2nw = 0 in D, (4.94)

∆v + k2v = 0 in D, (4.95)

∆w = −k2w̃ = −k2v = ∆v on ∂D (4.96)

∂w

∂ν
=

∂v

∂ν
on ∂D. (4.97)

The equivalence between (4.94)-(4.97) and (4.92)-(4.93) can be shown as is the TM case.
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Proposition 4.2.8. Assuming n constant then: if u ∈ H3(D) is such that (4.92)-(4.93) is

valid, then u and u := ∆u are solution of the problem: “Find u ∈ H1(D) and u ∈ H1
0 (D) such

that ∫
D

(uv +∇u∇v+ k2uv−∇u∇v)dx = −k2n

∫
D

(k2uv−∇u∇v)dx. (4.98)

for all v ∈ H1(D), v ∈ H1
0 (D)”.

Conversely, if u ∈ H3(D) and u ∈ H1
0 (D) ∩ H2(D) are solutions of (4.98), then (4.92)-

(4.93) is satisfied by u.

Proof. Substituting u = ∆u, equation (4.92) becomes (∆+k2)u = −k2n(∆+k2)u. Multiplying

both equations respectively against test functions v ∈ H1(D) and v ∈ H1
0 (D) and applying

Green’s identity we obtain ∫
D

uvdx = −
∫
D

∇u∇vdx (4.99)

and ∫
D

(−∇u∇v+ k2uv)dx = −k2n

∫
D

(k2uv−∇u∇v)dx. (4.100)

Summing the two equations we obtain (4.98). The reverse implication is a classical exercise

similar to the one done at the end of the proof of Proposition 4.2.5.

The case of an inhomogeneous background

The case of a scatterer embedded in an inhomogeneous background illuminated by TE polarized

plane waves is more complex. Nevertheless, following the approach of [25], it is possible to

write the homogeneous interior transmission problem as a generalized eigenvalue problem with

λ = −k2nD as eigenvalues.

Let us again consider an inclusion D with index nD embedded in a background with index

nb; the homogeneous interior transmission problem is formulated as follows:

∇ · ( 1

nD

∇w) + k2w = 0 in D, (4.101)

∇ · ( 1
nb

∇v) + k2v = 0 in D, (4.102)

w = v on ∂D, (4.103)

1

nD

∂

∂ν
w =

1

nb

∂

∂ν
v on ∂D. (4.104)

Taking the gradient of (4.101) and (4.102) and substituting w = 1
nD

∇w and v = 1
nb
∇v in
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(4.101)-(4.104) we obtain

∇(∇ ·w) + k2nDw = 0 in D, (4.105)

∇(∇ · v) + k2nbv = 0 in D, (4.106)

with boundary conditions

ν ·w = ν ·w and ∇ ·w = ∇ · v on ∂D. (4.107)

Setting u = w− v and taking the difference between (4.105) and (4.106) we obtain

1

k2(nb − nD)
(∇∇ ·+k2nb)u = w. (4.108)

Then, applying (∇∇ ·+k2nD) to both sides,

(∇∇ ·+k2nD)
1

k2(nb − nD)
(∇∇ ·+k2nb)u = 0 in D. (4.109)

Substituting U = 1
k2(nb−nD)

(∇∇ · +k2nb)u we obtain (∇∇ · +k2nD)U = 0 in D, which gives

rise to the system

(∇∇ ·+k2nb)u− k2nbU = −k2nDU in D, (4.110)

∇∇ ·U = −k2nDU in D, (4.111)

ν · u = 0 and ∇ · u = 0 on ∂D. (4.112)

The latter eigenvalue problem for eigenvalues λ = −k2nD can be formulated in a variational

form as in the inhomogeneous TM case by respectively replacing the variational spaces H1(D)

and H1
0 (D) with

Hdiv(D) := {V ∈ L2(D)2 ; ∇ ·V ∈ L2(D)} ∋ U,

and

{v ∈ Hdiv(D) ; ν · u = 0 on ∂D} ∋ u.

The numerical implementation of the resulting variational formulation requires the use of Hdiv

elements. We did not validate our procedure in the present case.

4.2.4. Numerical experiments: the case where the shape is known

Before presenting some numerical results concerning the reconstruction of the shape and the

constant approximation of the refractive index of unknown objects, let us show how - solving

P (D, k∗
0, n) as a generalized eigenvalue problem - we obtain a good approximation of n when

both D and its first transmission eigenvalue are known.



4.2 Computing estimates on material properties
from transmission eigenvalues 109

We focus on the case of a circular geometry and we shall investigate two configurations: in

the first one, the refractive index is constant (Figure 4.9 (a)) and in the second one the index

of refraction has two different values in two concentric circles (Figure 4.9 (b)).

(a) (b)

Figure 4.9: Configuration of the refractive index in a circular domain D: homogeneous case (a), piecewise

constant case (b).

In both cases the first transmission eigenvalue is analytically computable using the following

result (that can be obtained using separation of variables).

Proposition 4.2.9. For a circle of radius R and refractive index n, if k∗
0,TM and k∗

0,TE denote

the first transmission eigenvalues respectively in the case of transverse magnetic and transverse

electric polarized waves, then

k∗
0,TM = min{k|∃p ∈ N s.t. det(ATM

p,k ) = 0},
k∗
0,TE = min{k|∃p ∈ N s.t. det(ATE

p,k) = 0},

with

ATM
p,k :=

(
Jp(kR) Jp(k

√
nR)

kJp−1(kR)− p
R
Jp(kR) k

√
nJp−1(k

√
nR)− p

R
Jp(k

√
nR)

)
,

ATE
p,k :=

(
Jp(kR) Jp(k

√
nR)

kJp−1(kR)− p
R
Jp(kR) 1√

n
(k
√
nJp−1(k

√
nR)− p

R
Jp(k

√
nR))

)
.

Proposition 4.2.10. For a circle made of two concentric layers of external radius Re and

internal radius Ri, if ne and ni respectively denote the refractive index of the exterior and

interior layers and if k∗
0,TM and k∗

0,TE are the first transmission eigenvalues respectively in the

case of transverse magnetic and transverse electric polarized waves, then

k∗
0,TM = min{k|∃p ∈ N s.t. det(BTM

p,k ) = 0},
k∗
0,TE = min{k|∃p ∈ N s.t. det(BTE

p,k ) = 0},
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with

BTM
p,k :=


Jp(kRe) −Jp(k

√
neRe) −H

(1)
p (k

√
neRe) 0

J ′
p(kRe) −J ′

p(k
√
neRe) −H

(1)′
p (k

√
neRe) 0

0 Jp(k
√
neRi) H

(1)
p (k

√
neRi) −Jp(k

√
niRi)

0 J ′
p(k

√
neRi) H

(1)′
p (k

√
neRi) −J ′

p(k
√
niRi)

 ,

BTE
p,k :=


Jp(kRe) −Jp(k

√
neRe) −H

(1)
p (k

√
neRe) 0

J ′
p(kRe) − 1

ne
J ′
p(k

√
neRe) − 1

ne
H

(1)′
p (k

√
neRe) 0

0 Jp(k
√
neRi) H

(1)
p (k

√
neRi) −Jp(k

√
niRi)

0 1
ne
J ′
p(k

√
neRi)

1
ne
H

(1)′
p (k

√
neRi) − 1

ni
J ′
p(k

√
niRi)

 .

Remark 4.2.3. Studying or plotting the behavior of det(ATM
p,k ), det(A

TE
p,k), det(B

TM
p,k ), det(B

TE
p,k )

for k ∈ R, one can observe that few p ∈ N (the firsts) are enough for determining k∗
0.

Problem P (D, k∗
0, n) is solved with P1-finite elements based on the variational formulations

(4.70) and (4.98). The discretization step is ∼ 1
10

of the wavelength inside the medium. The

matrices are assembled using FreeFem++3 and the associate eigenvalue problem is solved in

Matlab with the preset function eigs, in modality ’sm’ (i.e. look for smaller magnitude eigen-

values). Since the eigenvalue problem formulation correspond with a generalized eigenvalue

problem for non self-adjoint matrices and with degenerate mass matrices, there is no guarantee

for convergence of the algorithm. Moreover, the mixed formulation is equivalent to the original

one only under regularity assumptions on the solution. This is why parasite values are ob-

served in the numerical computations of the eigenvalues. These parasite values correspond to

solutions u that do not satisfy the boundary condition ∂u/∂ν = 0 on ∂D. From the practical

point of view we observed that these bad values can simply be cut off by respecting the lower

bound n∗ = min{−λ/k∗2
0 > 1} [29, 25].

Figure 4.10 shows results achievable when D is a circle of radius 0.5 and has a constant

refractive index. The value of n is well recovered, with a better precision occurring for small n.

As it is clear from Figure 4.10, with the increasing of the value of n, k∗
0 decreases, clustering

around k = 1. Since the computation of transmission eigenvalues is precise up to two digits,

the previous consideration suggests that the difference in precision between reconstructions for

small and large values of n is due to a not enough precise approximation of k∗
0 for large n.

3downloadable at http://www.freefem.org/ff++/
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Figure 4.10: Reconstructed index for a homogeneous circle of radius 0.5. TM case (left) and TE case (right).

Figures 4.11 and 4.12 are associated with the two layered case where the areas of the two

layers are equal (Re = 0.5 and Ri =
1

2
√
2
). The values of ne and ni are varied by maintaining

the difference ne − ni equals to 6, (for example (ne, ni) = (8, 2), (9, 3), ...) for Figure 4.11. As

in previous figures, we plot the value of the reconstructed value n∗ of n (y-axis) against the

first transmission eigenvalue (x-axis); blue lines corresponding to the value of ni and ne. They

are over plotted in order to clarify wether or not n∗ fall in [ni, ne]. In Figure 4.12 the role of

ne and ni are reversed to emphasize how a different structure (and not only different values of

n or different layer areas) could affect the reconstruction.
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Figure 4.11: Reconstruction of the index in the case of a two layered circle (Re = 0.5 and Ri =
1

2
√
2
). The

exact refractive index is such that ne−ni = 6. The reconstructed value is shown by * and the solid line indicate

the exact values of ne and ni. TM case (left) and TE case (right).
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Figure 4.12: Same settings as in Figure 4.11 but with ni − ne = 6. TM case (left) and TE case (right).

In the previous examples one observes that it is not simple to relate the value of the

reconstructed constant index n∗ with non-constant refractive indexes. This is confirmed by

next examples where we have not been able to observe a relation more accurate than

min
x∈D

n(x) ≤ n∗ ≤ max
x∈D

n(x). (4.113)

Understanding how transmission eigenvalues distribute depending on shape and dimension of

the scatterer, on its index of refraction and on polarization of the wave, is, at present, still an

open problem. The next few experiments are an overview of this complex relation between n∗

and different configurations of the material inside D which is still a circle of radius 0.5.

With Figures 4.13 - 4.18, (respectively for TM and TE polarization), we want to investigate

how different structures of n would lead to different transmission eigenvalues (and consequently

to different n∗) even if minD n and maxD n are not modified. In both cases we consider a circular

scatterer of radius 0.5 containing a concentric circular layer of varying radius. For fixed values

of the refractive index (ni = 6, ne = 12), (ni = 3, ne = 15) and (ni = 20, ne = 26), we show

how k∗
0 and n∗ behave with respect to the radius of the internal circle Ri. Moreover, in each

figure, the value of the obtained constant estimate of the refractive index is compared with the

value of the weighted average of the refractive index (squared plotted).
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Figure 4.13: Results for TM polarized incident waves in the case of a two layered circle with Re = 0.5 and a

varying Ri. The exact index values are ni = 6 and ne = 12. The x-axis represents the values of Ae/Atot, ratio

of external layer area to the total circle area. Left: first transmission eigenvalue. Right: reconstructed n∗.
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Figure 4.14: Results for TM polarized incident waves in the case of a two layered circle with Re = 0.5 and a

varying Ri. The exact index values are ni = 3 and ne = 15. The x-axis represents the values of Ae/Atot, ratio

of external layer area to the total circle area. Left: first transmission eigenvalue. Right: reconstructed n∗.
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Figure 4.15: Results for TM polarized incident waves in the case of a two layered circle with Re = 0.5 and a

varying Ri. The exact index values are ni = 20 and ne = 26. The x-axis represents the values of Ae/Atot, ratio

of external layer area to the total circle area. Left: first transmission eigenvalue. Right: reconstructed n∗.

As expected, since the first transmission eigenvalue decreases with respect to the index

of refraction [31], it should be increasing with respect to Ri (since ne > ni) and therefore

decreasing with respect to the area of the external layer Ae. However, the dependence is

completely nonlinear. The values of n∗ have reversed monotonicity property with respect to

the first transmission eigenvalue and therefore increases with Ae. The behavior of n∗ is also

nonlinear as demonstrated by the comparison with the weighted average of the exact n.
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Figure 4.16: Results for TE polarized incident waves in the case of a two layered circle with Re = 0.5 and a

varying Ri. The exact index values are ni = 6 and ne = 12. The x-axis represents the values of Ae/Atot, ratio

of external layer area to the total circle area. Left: first transmission eigenvalue. Right: reconstructed n∗.
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Figure 4.17: Results for TE polarized incident waves in the case of a two layered circle with Re = 0.5 and a

varying Ri. The exact index values are ni = 3 and ne = 15. The x-axis represents the values of Ae/Atot, ratio

of external layer area to the total circle area. Left: first transmission eigenvalue. Right: reconstructed n∗.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

A
e
 / A

tot

k 0*

 

 

k
0
*  − First transmission eigenvalue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

A
e
 / A

tot

n 
an

d 
n*

 

 

n* − Reconstructed n
Weighted average of exact n
Boundary of exact n

Figure 4.18: Results for TE polarized incident waves in the case of a two layered circle with Re = 0.5 and a

varying Ri. The exact index values are ni = 20 and ne = 26. The x-axis represents the values of Ae/Atot, ratio

of external layer area to the total circle area. Left: first transmission eigenvalue. Right: reconstructed n∗.

Finally, Figure 4.19 shows how transmission eigenvalues and associated estimates on the

refractive index behave when the background is different from the vacuum. The scatterer

is here a homogeneous sphere of fixed refractive index n = 12 while the background index

nb varies. Figure 4.19 (a) and (b) respectively show smallest transmission eigenvalues and

computed estimates for values of nb between 2 and 81.
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Figure 4.19: Results in the case of a circle of ray 0.5 and constant index of refraction n = 12 embedded

in a background of constantly varying value nb. Left: plot of first transmission eigenvalues for TM polarized

incident waves. Right: plot of the reconstructed value n∗ of n for TM polarized incident waves.

4.2.5. Numerical results for cases where the geometry is not known a

priori

In this last section we present some numerical experiments and results that are related to a

more realistic inverse scattering experiment: i.e. a situation where both the geometry D of

the scatterer and its refractive index n are unknown and the only data at our disposal are the

farfields associated with many incident directions. Since in the previous section it has been

shown that the method performance for TM polarized waves and for TE polarized waves is

similar, we show only simulations for TM waves. The inversion algorithm is the following:

• Apply the LSM algorithm (as described in Section 2) to find an approximation D̃ of the

shape of D.

• Determine the smallest transmission eigenvalue k∗
0 (for each connected component of D)

using the method described in Section 3.

• Solve the eigenvalue problem P (D̃, k∗
0, n) to obtain a constant approximation n∗ of the

exact index n inside D.

Following this scheme, for each example, we shall present both the LSM reconstruction and

the graph of k 7→ ∥gz∥L2(Ω) for several z ∈ D̃. Simulations are done using 20 emitting antennas,

20 measuring antennas and by corrupting the data with 5% multiplicative random noise.

Figures are collected in panels (Figures 4.20 - 4.26) and the values of the corresponding

constant approximation of n are indicated in Tables 4.1 - 4.7.
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The case of circular geometries

In this case comparisons can be made with the exact calculations made in previous section for

transmission eigenvalues.

The first example corresponds with the two layered configuration of D (shown in Figure

4.9-right) with an external radius 0.5 and an internal radius 0.354, embedded in the vacuum

where we considered four configurations for the indexes of refraction n = ne for the exterior

layer and n = ni for the interior layer. Figure 4.20-(a1-a2) shows the LSM reconstruction for

ne = 22 and ni = 19; for four different configurations of the index of refraction (ne = 8, ni = 8),

(ne = 11, ni = 5), (ne = 22, ni = 19) and (ne = 67, ni = 61), we present k 7→ ∥gz∥L2(Ω) that

allows us to determine the first transmission eigenvalue. The corresponding values of n∗ are

collected in Table 4.1.

Figures 4.21, 4.22 and corresponding Tables 4.2, 4.3, describe the results achievable when

the two layered inclusion of previous experiment is now embedded in an inhomogeneous back-

ground. The inhomogeneous background consists into a circular domain of radius 0.75 and

with refractive index nb embedded in the vacuum.

Figure 4.21 and Table 4.2 show how the method perform for objects embedded in a non-

absorbing background. As expected, we observe that the transmission eigenvalues are different

from those corresponding to the homogeneous background but the estimates n∗ are roughly

the same.

Figure 4.22 and Table 4.3 correspond with the case of an absorbing background. We

develop here the idea explained in Section 4.2.2 and show that, when an artificial non-absorbing

background of index ñb is used inside the reconstructed domain, real transmission eigenvalues

can be computed, allowing to find roughly the same values of n∗ as in the non absorbing case.

We remark that in this configuration the accuracy of D̃ (approximation of the shape of D) has

a stronger influence on the accuracy of n∗ since it affects the computation of the incident field

for the background. The latter is used in computing ∥gz∥L2(Ω) and therefore affect the precision

of the first transmission eigenvalue.
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Figure 4.20: Two layered circular inclusion embedded in the vacuum (Figure 4.9-right). (a1) LSM reconstruc-

tion at k = 4.2, ne = 22 and ni = 19. (a2) reconstructed shape (red) versus exact shape (blue). (a3), (b1), (b2),

(b3) plots of k 7→ ∥gz∥L2(Ω) for several choices of z, respectively for (ne, ni) = (8, 8), (11, 5), (22, 19), (67, 61).

ne ni k∗
0 n∗ - exact shape n∗ - reconstructed shape

8 8 2.98 8.07 7.61

11 5 3.27 7.05 6.69

22 19 1.76 20.28 18.86

67 61 0.97 64.11 59.42

Table 4.1: Transmission eigenvalues and reconstructed index associated with Figure 4.20.
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Figure 4.21: Two layered circular inclusion (a1) embedded in an inhomogeneous background (a2). (a3):

reconstructed shape (red) versus exact shape (blue). (b1), (b2), (b3): plots of k 7→ ∥gz∥L2(Ω) for several choices

of z, respectively for (ne, ni, nb) = (8, 8, 2), (11, 5, 2), (67, 61, 10).

ne ni nb k∗
0 n∗ - exact shape

n∗ - reconstructed

shape

8 8 2 4.11 8.09 7.70

11 5 2 4.89 6.92 5.04

67 61 10 1.11 64.35 61.44

Table 4.2: Transmission eigenvalues and reconstructed index associated with Figure 4.21.
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Figure 4.22: Two layered circular inclusion (ne, ni) = (8, 8), embedded in an inhomogeneous absorbing

background with nb = 2 + ı. (a1), (a2): reconstructed shape (red) versus exact shape (blue). (a3): considered

artificial background with ñb = 1 inside D. (b1), (b2), (b3): plots of k 7→ ∥gz∥L2(Ω) for several choices of

z, respectively for the exact shape and artificial background, reconstructed shape (overestimated (a1)) and

artificial background, exact shape and true background. (c1), (c2), (c3): same as (b1), (b2), (b3) but for the

case (ne, ni) = (11, 5) and underestimated reconstructed shape (a2).

ne ni nb ñb (k∗
0, n∗) - exact shape

(k∗
0, n∗) - reconst.

shape

8 8 2+ı 1 (2.98, 8.07) (2.96, 7.69)

11 5 2+ı 1 (3.27, 7.05) (3.28, 7.43)

Table 4.3: Transmission eigenvalues and reconstructed index associated with Figure 4.22.
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Cases of non circular geometries

In Figure 4.23 and Figure 4.24 the case of scatterers that are not circular is investigated. In both

figures a two layered inclusion is considered. The exact profile of D, the LSM reconstruction

for ne = 22, ni = 19 and transmission eigenvalues for (ne, ni) = (8, 8), (11, 5), (22, 19) are

respectively shown for a layered ellipse and for an ellipse embedded into a rectangle. Tables

4.4 and 4.5 present the values of n∗ achievable using the values of k∗
0 and the extracted profile

D̃. One can draw roughly similar conclusions as in the case of circular geometries.
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Figure 4.23: Two layered ellipsoidal inclusion (a1) embedded in the vacuum. (a2): LSM reconstruction for

k = 4.16, ne = 22 and ni = 19. (a3): reconstructed shape (red) versus exact shape (blue). (b1), (b2), (b3):

plots of k 7→ ∥gz∥L2(Ω) for several choices of z, respectively for (ne, ni) = (8, 8), (11, 5), (22, 19).

ne ni k∗
0 n∗ - exact shape n∗ - reconstructed shape

8 8 3.42 8.08 7.74

11 5 2.81 11.10 10.50

22 19 1.92 22.16 20.73

Table 4.4: Transmission eigenvalues and reconstructed index associated with Figure 4.23.
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Figure 4.24: Rectangular inclusion containing an ellipsoidal layer (a1) embedded in the vacuum. (a2): LSM

reconstruction for k = 5.64, ne = 22 and ni = 19. (a3): reconstructed shape (red) versus exact shape (blue).

(b1), (b2), (b3): plots of k 7→ ∥gz∥L2(Ω) for several choices of z, respectively for (ne, ni) = (8, 8), (11, 5), (22, 19).

ne ni k∗
0 n∗ - exact shape n∗ - reconstructed shape

8 8 3.05 8.94 9.37

11 5 2.48 12.62 13.27

22 19 1.69 25.53 26.90

Table 4.5: Transmission eigenvalues and reconstructed index associated with Figure 4.24.

Cases of multiply connected inclusions

Finally, inspired by Corollary 4.2.3, we present a simulation for a scatterer consisting in two

distinct objects of different refractive indexes. Figures 4.25 and 4.26 jointly with Tables 4.6

and 4.7 prove that a reconstruction of both indexes of refraction is effectively achievable by

considering k 7→ ∥gz∥L2(Ω) first for several z in one connected component and second for several

z in the other connected component. As one cas observe in part (b1) of Figure 4.26, small

peaks are present in k 7→ ∥gz∥L2(Ω) preceding the first transmission eigenvalue. A closer look
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reveals that those peaks correspond with the transmission eigenvalues of the other connected

component (see part (b3)). We think that this is due to the fact that the two connected

components are close to each others. For instance, such perturbation is not observed in the

case of Figure 4.25 where the distance between the two connected components is larger.
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Figure 4.25: Two homogeneous circular inclusions (a1): a circle c1 centered at (0, 0) of refractive index n = 8

and a circle c2 centered at (5, 5) of refractive index n = 25. (a2): LSM reconstruction for k = 4.2. (a3) and

(b2): reconstructed shape (red) versus exact shape (blue) respectively for c1 and c2. (b1) and (b3): plots of

k 7→ ∥gz∥L2(Ω) for several choices of z, respectively for c1 and c2.

circle n k∗
0 n∗ - exact shape n∗ - reconstructed shape

c1 8 2.99 8.03 7.17

c2 25 1.57 25.17 24.60

Table 4.6: Transmission eigenvalues and reconstructed index associated with Figure 4.25.
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Figure 4.26: Two homogeneous circular inclusions (a1): a circle c1 centered at (0, 0) of refractive index n = 8

and a circle c2 centered at (2, 2) of refractive index n = 25. (a2): LSM reconstruction for k = 4.2. (a3) and

(b2): reconstructed shape (red) versus exact shape (blue) respectively for c1 and c2. (b1) and (b3): plots of

k 7→ ∥gz∥L2(Ω) for several choices of z, respectively for c1 and c2.

circle n k∗
0 n∗ - exact shape n∗ - reconstructed shape

c1 8 2.98 8.07 7.17

c2 25 1.57 25.17 24.60

Table 4.7: Transmission eigenvalues and reconstructed index associated with Figure 4.26.
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4.2.6. The evidence of the existence of complex transmission eigenval-

ues

The arguments introduced in Section 4.2.2 suggest a way for providing an easy proof to the

existence of complex transmission eigenvalues for a particular group of scattering settings. Un-

til few years ago, it was unclear if complex transmission eigenvalues exist and only recently

their effective existence has been proved for several scattering situations in [24]. The literature

among complex transmission eigenvalues is still short, and most of the more recent publica-

tions investigate under which scattering conditions they may exist or not exists as well as the

existence of regions where complex transmission eigenvalues can not occur (see for example

[43, 27, 47, 61, 62, 67]).

Let n(x) be absorbing and equal to n(x) = a(x) + ib(x), where i =
√
−1 and a, b are real

valued functions, and let consider the interior transmission problem

∆w + k2nw = 0 in D (4.114)

∆v + k2nbv = 0 in D (4.115)

w − v = 0 on ∂D (4.116)

∂w

∂ν
− ∂v

∂ν
= 0 on ∂D (4.117)

where the background refractive index nb is complex inside D. In particular, if we assume that

nb(x) = (1 + i b(x)
a(x)

) one has that n = a · nb and that n
nb

= a. Then, substituting k̃ = k
√
nb one

obtains

∆w + k̃2aw = 0 in D (4.118)

∆v + k̃2v = 0 in D (4.119)

w − v = 0 on ∂D (4.120)

∂w

∂ν
− ∂v

∂ν
= 0 on ∂D (4.121)

which admits an infinite countable number of real transmission eigenvalues k̃∗. This implies

that (4.114)-(4.117) admits, at least, a countable number of complex transmission eigenvalues

k∗ = k̃∗√
nb
.

Hence, in principles, techniques providing transmission eigenvalues (and corresponding es-

timates on the material properties) from far field data can be adapted to the case of absorbing

scatterers (or, at least, to those scatterers of the previously defined particular shape): in

fact, by choosing a background such that and given the complex wave number k̃, the interior

transmission problem can be rewritten in the form of (4.118)-(4.121) allowing the detection

of transmission eigenvalues. Unfortunately, in practice, such a suitable nb can not be a priori

known (since n is unknown): hence, the effective applicability of the technique to this particular

situation has to be discarded.
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4.2.7. Conclusions

In this work, we have presented a method able to provide estimates on the index of refraction

of a scatterer by the knowledge of the first transmission eigenvalue. Such an estimate has

been shown to coincide with the value of the refractive index in the case of homogeneous

scatterers and to fall between the minimum and the maximum of the index when one deals

with scatterers of non-constant refractive index. Moreover, the method has been extended to

the case of scatterers embedded in an absorbing background and to the case of multi-connected

scatterers, enabling to achieve a different estimate for each connected component.

In a practical framework, this method is thought to complement the class of qualitative

methods since its operation requires as input an approximation of the shape of the scatterer;

moreover, in order to find the first transmission eigenvalue, it utilizes the same mathematical

tools of the linear sampling method, the most well known qualitative method.

From a more general point of view, the results here presented numerically shows the concrete

feasibility of retrieving realistic information on the scatterer from the spectrum of the interior

transmission problem.

For future developments, it would be interesting to better understand the relation between

the smallest transmission eigenvalue k∗
0 and the whole sequence of eigenvalues associated to

P (D, k∗
0, n). A further open problem of more general relevance would be to study the possible

relations between all the other transmission eigenvalues and the refractive index.



CHAPTER 5

Ant colony optimization in cryosurgery

planning

In Chapter 2, Section 2, the problem of the cryosurgery planning has been presented and a

review on the state of the art among the existing planning algorithms has been provided.

This chapter is dedicated to show that the resolution of a cryosurgery planning problem

can be performed through the application of a particular genetic algorithm. More specifically,

this chapter will present the application of the statistical based approach called ant colony

optimization method (ACO) [96] to the planning of a cryosurgery session.

Section 5.1 will introduce the ACO algorithm, while in Section 5.2 ACO is tested against

a 2D section of a prostate phantom in the planning of different experimental aspects. Finally,

Section 5.3 will face the problem of reducing the computational cost of ACO in order to speed

up the method by integrating it with a geometrical based a priori optimization, when one wants

to find the best position of the probes.
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5.1. The ant colony optimization procedure

Ant colony optimization (ACO) is a statistical based optimization method developed in the

nineties with the aim of providing, in a limited amount of time, a reliable although not optimal

solution to some NP-hard combinatorial optimization problems. More recently, ACO has been

generalized to continuous domains [96]. In view of its generality and wide range of applicability,

ACO has been successfully applied to a wide range of problems (e.g. [19], [49]).

ACO takes inspiration from the way in which ants find and carry food to their nest. While

an ant is going back to the nest after having taken some food, it releases a pheromone trace:

this trace serves as a trail for next ants, which are able to reach food detecting pheromone.

Since the pheromone decays in time, its density is higher if the path to food is shorter and

more crowded; on the other hand, more pheromone attracts more ants, making longer paths

to be forgotten until, at the end, all ants follow the same trail.

Ants’ behavior is paraphrased in ACO identifying the cost function F with the length of

the path to food, and the pheromone traces with a probability density which is updated at

each iteration depending on the value of the cost function for a set of states. In practice, at

each iteration, the cost function is evaluated on a set of P admissible states, and the states are

ordered according to increasing values of the cost function. Then ACO defines a probability

distribution which is more dense in correspondence of the cheaper states (i.e. the states with

smallest values for F) and, on its basis, Q new states are extracted; a comparison procedure

identifies the new best P states which form the next set of states.

In more details, the starting point of the algorithm is a set of P states,

B := {Uk = (u1,k, ..., uN,k), such that

Uk ∈ S ⊂ IRN , k = 1, . . . , P} (5.1)

that are ordered in terms of growing cost, namely, F(θU1) ≤ · · · ≤ F(θUP
).

Next, for any j = 1, . . . , N e i = 1, . . . , P , one computes the parameters

mi,j = uj,i, si,j =
ξ

P − 1

P∑
p=1

|uj,p − uj,i|

and defines the Probability Density Function (PDF)

Gj(t) =
P∑
i=1

wiN[mi,j ,si,j ](t)

where N[µ,σ](t) is a Gaussian function with mean value µ and standard deviation σ and

wi = N[1,qP ](i) (5.2)
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with i = 1, . . . , P and ξ, q real positive parameters to be fixed.

It follows that Gj is a superposition of normal PDFs, each one of mean uj,i and of variance

si,j proportional to the average distance between uj,i and the corresponding degrees of freedom

of the other P configurations.

By sampling Q times S with Gj, the procedure generates Q new states UP+1, ...,UP+Q

enlarging the set B to the set of states B̃ := {U1, ...,UP+Q}. If Uk1 , ...,UkQ are the Q states

of B̃ of greatest cost, the updated B is defined as

B = B̃ \ {Uk1 , ...,UkQ}.

This procedure converges to an optimal solution of the problem by exploiting the fact that

the presence of weights wi in the definition of Gj gives emphasis to solutions of lower costs since

w1 > · · · > wP . This fact, associated to the influence that a proper choice of parameters ξ and

q has on the shape of the Gaussian functions, determines the way in which the method tunes

the impact of the worse and best solutions.

The algorithm ends when the difference between any two states of B is less than a predefined

quantity or when the maximum allowable number of iterations is reached. The initial set B of

trial states is chosen by sampling a uniform probability distribution.

(a) (b) (c)

Figure 5.1: The operation of ACO in case of the minimization of the function |x| (red line). The blue line

represents the probability density function at the current iteration while red circles are the P configurations.

The green star is the target value (i.e. minimum of |x|). (a), (b) and (c) are shots of the evolution of the

method respectively during one of the initial, intermediate and final steps of the procedure.

5.2. ACO and prostate cryosurgery

In this section we describe a new systematic procedure to deal with cryosurgery planning

based on the application of the ant colony optimization (ACO) method. The strength of this

approach lies in the generality of its formulation since ACO is independent of the physical
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interpretation and from the number of the parameters subjected to optimization. In other

words, through ACO, one is able to set different kinds of free planning parameters without

changing the optimization technique.

As a first application, here we consider the problem of determining the best location for

cryprobes and cryoheaters. The algorithm is based on an iterative procedure consisting in the

solution of several (direct) Stefan problems at each step. Every step begins with the assumption

that the placement of cryoprobes and cryoheaters is given while cryoprobes, cryoheaters, tumor

and background tissue are at the temperature of 37 oC. Next the direct Stefan problem is solved

as the temperature of the cryoprobes is lowered down to −145 oC, until the tumor is almost

completely frozen. The resulting temperature field is processed to evaluate the defect weighting

function [73] providing a quantitative estimate of the mismatch between the frozen tissue at

sufficiently low temperature and the tissue to be destroyed. ACO utilizes this cost functional

and yields the new positions of cryoprobes and cryoheaters in order that the next step can

begin. The procedure stops when the further correction of the position of cryoprobes and

cryoheaters becomes negligible.

Section 5.2.1 provides a description of the numerical algorithm we implemented in order

to solve the direct Stefan problem in biological tissues whose mathematical model has been

given in Chapter 2. Section 5.2.2 contains some numerical examples including an application

of our method to a more sophisticated planning than the only optimization of the location of

the cryoprobes. Finally, our conclusions are offered in Section 5.2.31.

5.2.1. Numerical solution of the direct Stefan problem

The problem of finding the temperature distribution determined by a group of cold and hot

cryoprobes of given positions and temperature laws is solved by an Euler-Galerkin approach,

i.e. a method combining a finite difference approximation of the time-derivative and a finite

element approach solving the space dependent part of the differential problem (2.58)-(2.59).

The approximation scheme is iterative in time. If TM is the duration of the cryosurgery

experiment and ∆t = TM/n is the time step, at each iteration τ = 0, 1, ..., n we set

∂

∂t
θτ+1 ≈

1

∆t
(θτ+1 − θτ ). (5.3)

The functions a, k, and b are defined at every step of the iterative process in terms of the value

of the temperature distribution at the previous step. A further comparison with (5.3) shows

that equation (2.58) can be approximated by

a(θτ )

∆t
(θτ+1 − θτ ) = ∇ · (k(θτ )∇(θτ+1)) + χ(θτ )b(θτ+1) (5.4)

1The results showed in Section 5.2 are contained in [54]
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where θτ is given and θτ+1 is the unknown. Integration of (5.4) against test functions φ ∈ H1
0 (V )

and use of the Green’s identity lead to the variational formulation∫
V

a(θτ )
θτ+1 − θτ

∆t
φ dv =

=

∫
V

[−k(θτ )∇φ · ∇θτ+1 + b(θτ+1)φ] dv. (5.5)

The finite element approximation of (5.4) is based on (5.5), where boundary conditions

(2.59) are imposed through penalization [2].

Given an operation time TM , the Euler-Galerkin approach provides an approximation of

the temperature distribution during the evolution from t = 0 to t = TM . The effectiveness of

the cryosurgery simulation can be quantitatively assessed by introducing a simple cost function

that counts one all defective pixels (i.e. all pixels in the tumoral region whose temperature is

higher than a reference temperature and all the pixels in the healthy tissue whose temperature

is smaller than this reference temperature) and zero all correctly treated pixels (i.e. all pixels

in the tumoral region whose temperature is smaller than a reference temperature and all the

pixels in the healthy tissue whose temperature is higher than this reference temperature). More

formally, a specific configuration of the cryosurgery design is represented by a state variable U,

which is a list of N operating parameters (e.g. number and position of cryoprobes, temperature

variation, etc.) whose admissible values are contained in S ⊂ IRN . The cost function is the

defect weighting function F : S → IN such that

F(θU) =

∫
V

µ(θU(x))dx (5.6)

where θU is the temperature distribution associated to U and

µ(θ(x)) :=


0 if θ(x) < θ̄ and x is diseased

1 if θ(x) < θ̄ and x is healthy

1 if θ(x) ≥ θ̄ and x is diseased

0 if θ(x) ≥ θ̄ and x is healthy.

(5.7)

The most appropriate choice of the constant reference temperature θ̄ is discussed in [73], where

the defect weighting function was first introduced. In our applications we have used θ̄ = −22oC

as suggested in that paper. The cost function (5.6) plays a central role in the optimization

procedure for the cryosurgery planning.

5.2.2. Numerical Examples

In this section the optimization method is tested against the same 2D prostate phantom used

in [73] (see Figure 5.2).
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Figure 5.2: Prostate phantom used for numerical tests. Dashed lines delimit the area under investigation; the

smallest circle inside the biggest one identifies the urethra contour. The same phantom has been used in [73].

The optimization process is performed minimizing (5.6) on a square containing the phantom

and discretized by a grid of 1 mm x 1 mm pixels. Given a configuration of cryoprobes, the

distribution of temperature is computed through the open source software FreeFem++2. The

initial temperature is set to 37 oC everywhere and cryoprobes are supposed to reach −145
oC in 30 seconds by a linear decrease law; the temperature at the boundary of the urethra is

set at 37 oC (see [86]) and external Dirichlet conditions are given on a square of side 0.1 m

embedding the investigation domain. Phase change region V2 is identified as the set of pixels

of temperature between θm = −6 oC and θM = 0 oC while the threshold value θ̄ is −22 oC (see

[73]); cryoprobes as well as cryoheaters have a circular cross-section with diameter of 1 mm.

The other values are chosen according to Table 5.1.

In the first numerical example we look for both the optimal positions of a set of cryoprobes

and the optimal duration of the cryosurgery experiment, (i.e. no cryoheaters are considered).

Results are shown in Figures 5.3 - 5.4 and in Table 5.2 where the behavior of the method is

tested for different numbers of cryoprobes and for different values of ACO’s parameters P and

Q (P is chosen as multiple of the number of probes +1 whereas Q = [P
2
] + 1 where [·] denotes

the floor function). The value of F(Uopt), with Uopt optimal configurations, generally decreases

as P and Q increase, although some exception to this trend can occur due to the complete

randomness of the initialization of the method.

It is interesting to note that the level curve distribution in Figure 5.3 (c) implies a gradient

2downloadable at http://www.freefem.org/ff++/
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of temperature from −45oC to +37oC (on the urethra boundary) over a very small distance

(around 2 mm). This abrupt behavior is difficult to realize in a real experiment. However,

this drawback is not due to the optimization method but to the simplistic model adopted,

particularly in the definition of the boundary conditions. The aim of our work is to assess

the reliability of a novel computational approach in the case of a model widely adopted in the

scientific literature. We also point out that one of the strengths of this approach is that the

generalization to more realistic models is straightforward.

Finally, Figure 5.5 gives an idea of how probes group during the optimization process,

converging to the final configuration in the case of 15 cryoprobes.

Parameters Units of measurements Values

k1 W / (o C· m) 1.76

k3 W / (o C· m) 0.50

ρ1c1 MJ / (o C · m3) 1.67

ρ3c3 MJ/(o C· m3) 3.35

ρbwbcb kW/ (o C · m3) 40

qm kW / m 3 33.8

θb
o C 37

L MJ/m 3 300

Table 5.1: Model parameters used in the numerical procedure.

In the second experiment we consider the presence of cryoheaters as well as cryoprobes.

Figure 5.6 shows the optimal solution of an experiment in which 14 cryoprobes and 3 cryoheaters

have to be placed and an optimal duration has to be set: cryoprobes are constrained to fall

inside the prostate, while cryoheaters are placed outside the prostate, at the same side of the

urethra. Again, ACO converges to a configuration which guaranties the death of most the

tumoral tissue, keeping healthy tissues over temperature θ̄ (the ratio between defected and

total pixels is equal to 3.2% and the duration of the experiment is set by ACO to 571 seconds).

A last example shows the efficacy of our optimization method when it is applied to a more

complex operation planning characterized by two distinct stages. In the first one, we want

to setup the probes position; in the second one, we want to control the temperature of each

cryoprobe in order that the cold front keeps on freezing the tumoral cells without invading

the healthy tissue. The introduction of such a second stage is motivated by the fact that, in

order to kill a tumoral cell, one has to keep its temperature low enough for an appropriate

amount of time. Moreover, recent studies claimed that the killing power of cold is increased

when cells are subjected to several cycles of thaw and freeze [51] and the duration of these

cycles is generally decided by medical doctors based on physiological considerations. These

facts can consistently increase the duration of the operation beyond the time established by
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No cryoprobes P Q Duration (sec) Defected/Total (%)

8 27 14 1289 8.9

9 20 11 874 7.7

9 30 16 737 7.3

10 11 6 609 9.7

10 22 12 546 6.1

11 12 7 573 9.8

11 24 13 587 5.5

11 36 19 552 3.5

12 13 7 618 4.0

12 26 14 587 3.7

12 (Fig. 5.3) 39 20 586 1.9

13 14 8 493 5.2

13 28 15 524 2.9

14 15 8 456 5.7

14 30 16 494 3.0

15 32 17 347 2.1

15 (Fig. 5.4) 48 25 298 1.8

16 34 18 427 2.5

Table 5.2: Results for geometry of Figure 5.2 in the case of q = 0.05 and ξ = 0.5. Columns respectively collect

the values of: number of cryoprobes, P , Q (parameters of ACO), optimal duration for the experiment and ratio

between still defected area (i.e. F(Uopt)) and investigated area.

the first stage and hence a manner to control the ice propagation during the extended time

becomes an essential planning tool.

Therefore, in more details, let us suppose that an optimal configuration of cryoprobes has

been fixed in the first stage together with an optimal duration T1. Let us further suppose

that - for physiological reasons - tumoral tissues are required to maintain their temperature

under the killing value θ̄ for a time T2 > T1. In the second stage our optimization approach is

generalized to optimally determine the best temperature that each cryoprobe has to maintain

in order to kill tumoral tissues and keep healthy tissues safe.

The results of this two-stage strategy are shown in Figure 5.7 and Table 5.3. Specifically,

Panels (a) and (b) in Figure 5.7 represent the optimal positions for the 15 cryoprobes deter-

mined in stage 1 and the corresponding isotherms together with the cost function representation

at T1 = 298 seconds. Then, Panels (c) and (d) give the result of the second step when the

cryoprobes are kept fixed and their temperatures are reported in Table 5.3. Finally, Panels

(e) and (f) of Figure 5.7 show what would happen if the second stage were neglected and the
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(a) (b)

(c) (d)

Figure 5.3: Case of 12 cryoprobes. (a) Initial position of P = 39 configurations (where each circle represents

a cryoprobe and where cryoprobes of different colors belong to different configurations). (b) Final position of

the P configurations collapsed into one after ACO. (c) Temperature distribution for the optimal solution (i.e.

the one characterized by the minimum value of the cost function): 0o C-isotherm is red, −22o C-isotherm is

green, −45o C-isotherm is blue. (d) Plot of the defected (i.e. x s.t. µ(θ(x)) = 1) pixels (white).

cryoprobes were maintained at −145 oC up to time T2 = 15 minutes.

In summary, the performances of the ACO method applied in finding the best position of

the cryoprobes are nicely consistent with the state of the art in cryosurgery planning and, for

example, with the force-field analogy method (see [73]). Further, its applicability to more gen-

eral cryosurgical situations is confirmed by the good results obtained in the two-stage example

showed in Figure 5.7 and Table 5.3. The computational time is of the same magnitude of most

of the other optimization methods utilized in cryosurgery, although this is still far from per-

formance requirements needed by real-time operations. Particularly for the 3D case (but just

for the determination of the cryoprobes’ position), on-line designing is currently guaranteed

only by geometry-based methods as bubble packing. In this perspective, the opportunity of

integrating ACO with a geometry-based method providing some a priori uniform distribution
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(a) (b)

(c) (d)

Figure 5.4: Case of 15 cryoprobes. (a) Initial position of P = 48 configurations (where each circle represents a

cryoprobe and where cryoprobes of different colors belong to different configurations). (b) Final position of the

P configurations after ACO. (c) Temperature distribution for the optimal solution (i.e. the one characterized

by the minimum value of the cost function): 0o C-isotherm is red, −22o C-isotherm is green, −45o C-isotherm

is blue. (d) Plot of the defected (i.e. x s.t. µ(θ(x)) = 1) pixels (white).

of the cryoprobes should be considered.

5.2.3. Conclusions

In Section 5.2 we have introduced a novel optimization method for cryosurgery planning. The

algorithm utilizes ACO to choose the optimal parameter configurations, where the computation

of the cost function to minimize is based on the numerical solution of several direct Stefan

problems. With respect to gradient-based methods, this approach can be implemented in a

more straightforward way; with respect to heuristic methods, it guaranties a better flexibility

and generalization power. Indeed the ACO-based method may be easily adapted to deal with a

variety of parameters entering the numerical simulation of a cryosurgery experiment. Also, the
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(a) (b)

(c) (d)

Figure 5.5: Evolution of ACO iterations in the case of 15 cryoprobes. (a) is the initial condition. (b) and (c)

are the situations of the P configurations respectively after a quarter and three quarter of iterations. (d) is the

final situation of the P configurations.

parameters to be optimized may be divided into families to be processed in subsequent steps.

Finally, if continuous functions are involved in the description of a state, they may be replaced

by piecewise constant functions thus reducing the optimization problem to a finite number of

degrees of freedom.

There are no a priori restrictions on the choice of the independent initial states, although

common practice can suggest choices that may reduce the number of iterations. Every iteration

requires the solution of several direct independent Stefan problems, but a notable saving of

time may be achieved by parallelized computation that can be very naturally realized.

To simplify computations, in this work we have been concerned with a 2D domain, but the

approach in terms of ACO can be straightforwardly generalized to a 3-dimensional framework.

Similarly, more realistic models for the direct Stefan problems can be considered where, e.g.,

the thermal conductivity of the solid phase depends on the temperature. Freeze-thaw processes

of different cooling rates can also be considered for optimization. Also the definition of the
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(a) (b)

(c) (d)

Figure 5.6: Case of 14 cryoprobes and 3 cryoheaters (where empty and filled circles represent the position of

cryoprobes and cryoheaters and where probes of different colors belong to different configurations); q = 0.015,

ξ = 0.4, P = 36, Q = 19. (a) Initial position of the P configurations. (b) Final position of the P configurations

after ACO. (c) Temperature distribution for the optimal solution (i.e. the one characterized by the minimum

value of the cost function): 0o C-isotherm is red, −22o C-isotherm is green, −45o C-isotherm is blue. (d) Plot

of the defected (i.e. x s.t. µ(θ(x)) = 1) pixels (white).

cost function can be modified to obtain a more accurate description of defective pixels.
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A 1 2 3 4 5 6 7 8

B -128 -114 -118 -134 -123 -128 -122 -112

C -145 -145 -145 -145 -145 -145 -145 -145

A 9 10 11 12 13 14 15

B -110 -138 -122 -128 -137 -113 -117

C -145 -145 -145 -145 -145 -145 -145

Table 5.3: Temperature optimization in a two-stage planning (second stage): the cryoprobes’ configuration

is in Figure 5.7 (c). Lines A indicate the cryoprobes position (see Figure 5.7); lines B contain the cryoprobes

temperature when a second optimization stage (concerning the temperature) is applied; lines C contain the

cryoprobes temperature at the end of the first optimization stage (concerning positions).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Two stage planning: case of 15 cryoprobes, P = 48, Q = 25, q = 0.015, ξ = 0.5. (a) and (b)

contain the first stage results (see Figure 5.4). (c) Temperature distribution after 15 minutes with cryoprobes’

temperature optimization: 0o C-isotherm is red, −22o C-isotherm is green, −45o C-isotherm is blue. (d)

Plot of the defected (i.e. x s.t. µ(θ(x)) = 1) pixels (white) with cryoprobes’ temperature optimization. (e)

Temperature distribution after 15 minutes without cryoprobes’ temperature optimization: 0o C-isotherm is red,

−22o C-isotherm is green, −45o C-isotherm is blue. (f) Plot of the defected pixels (white) without cryoprobes’

temperature optimization.
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5.3. On the importance of computational lightness in

cryosurgery planning

If one realistically wants to place side by side a planning tool to cryosurgery operation, it is

necessary to face the problem of the computational cost that the planning technique requires

as well as of its cost in terms of time employed for converging to an optimal configuration.

The structure of the planning problem is such that the information on suitable configurations

of the free parameters is encoded inside a direct thermic problem made by non-standard heat

equations (i.e. Pennes equation, see Chapter 2, Section 2) implying a phase change of non-

trivial modelization. The straightforward inversion of this problem is not possible so, often,

inversion procedures are iterative and requiring, at each iteration, the solution of the direct

problem in order to evaluate the goodness the last step. The numerical resolution of the

direct thermic problem requires a considerable amount of time and, hence, the cost of a full

computation of the most appropriate configuration of the free experimental parameters (i.e. of a

complete planning) can become very large when the thermic problem is solved at each iteration.

Since the idea is that every cryosurgery operation has to be preceded by a corresponding

planning, the duration of a cryosurgery planning has to be on the order of minutes.

One way to solve the problem of reducing the duration of the planning procedure is to

initialize the inversion technique (or, even, base the entire procedure) through geometrical

considerations avoiding the computation of the temperature distribution at each step. The

definition of the positions of the cryoprobes is one of the most important aspects inside a

planning procedure and it generally requires a large amount of time; for this reason, we will

first face this particular problem although remarking that proper initializations may accelerate

the optimization of all the parameters.

Let, hence, consider the case in which one has to set the position of the probes depending on

the value of the temperature they reach and on the shape of the tumoral region: the planning

procedure may simply follow few principles. A freezing probe has to be both far enough from

the tumoral boundary to keep non-tumoral tissues healthy and close enough to freeze the whole

tumoral area; moreover, two different probes are needed to be as close to each other as little is

the target area and, viceversa, as far as big is the tumor. These simple considerations suggest

that a possibility to initialize such a planning procedure is to pick the positions of the probes in

a way that they can homogeneously cover the whole tumoral region. In other words to choose

their positions in a way that the distance occurring between tumoral boundaries and probes,

and between a probe and its closest correspondent, is approximatively the same for each probe.

Following these simple principles, one can obtain a satisfactory initial configuration for

the position of the probes. Bubble-packing [99] basically works following these criteria and,

although the first idea was to utilize it as initialization tool for force-field [100], its only oper-
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ation seems to be already enough precise and not requiring further optimization steps. As it

will be better explained in Section 5.3.1, also ACO lends itself to an utilization based on the

previously mentioned geometrical considerations.

5.3.1. A geometrical initialization technique for cryosurgery planning

The aim of this section is to describe a strategy able to provide a good a priori distribution

of the positions of the cryoprobes inside the target tumoral region without making use of the

numerical resolution of the direct thermic problem. The structure of the method will be based

again on ACO.

Let suppose that one wants to place N cryoprobes. Based on the principle that a homoge-

neous distribution of probes inside a region can approximately provide its complete freezing,

the aim of the here presented strategy is to divide the target area into N regions of the same

size and to choose the position of the probes such that each probe belongs to a different region,

being placed approximatively at its center. More precisely, at each iteration, ACO will extract

a set of Q (or P +Q if it is the first step) configurations (i.e. positions of the probes); then all

the pixels of the tumoral region will be divided into N families, where the jth family includes all

the pixels for which the closest probe is the jth-one; then the pixels of each family are summed

and a cost function is defined in order to make the technique converging to a solution for which

all the regions have similar values of area.

Hence, if (u1,k, ..., uN,k) are the positions of the probes of a particular state Uk and z stands

for a generic pixel of the investigation domain, then it is possible to label all the pixels and

define the families of pixels

Ψj = {z ∈ P|j = min
i=1,...,N

∥z − ui∥} (5.8)

with ∥ · ∥ opportune norm and with P set of the pixels belonging only to the target region (i.e.

to the region to be freezed) and not to its outer part. Then, in order to assign a cost to each

state, one has to choose a function that evaluates the difference between the values of the areas

of Ψj for each j = 1, ..., N and such that the cost is zero when all the Ψj, with j = 1, ..., N ,

include the same number of pixels. One possible choice is the following

F(Uk) = max
i=1,...,N

(♯Ψi)− min
i=1,...,N

(♯Ψi), (5.9)

where ♯Ψj indicates the number of elements of Ψj. Finally, when ACO has converged to a

configuration Ū which identifies (in the sense of equation 5.8) N regions with almost equal

areas, the optimal configuration for the positions of the probes can be, then, taken as Ug =

(ug
1, ..., u

g
N), where ug

j is the barycenter of Ψj.

Hence, the initialization process can be summarized as follows:
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• Apply ACO by choosing as cost function (5.9) and with Uk state of positions of probes.

• Given the optimal configuration Ūk with the corresponding Ψj, j = 1, ..., N , compute

Ug.

Once the optimal preliminary configuration Ug is obtained, one can start the optimization

process described in Section 5.2 taking into account Ug as initialization. More specifically, the

optimization process does not need to start anymore with a uniform probability distribution

G·. In fact, for each j = 1, ..., N , it will be possible to choose Gj as a Gaussian function centered

in ug
j and with an opportunely defined variance. An initial utilization of a uniform probability

density function will be required only for those parameters which have not been covered by the

initialization.

Although detailed only for freezing probes, the previous initialization technique can be easily

adapted to initialize also cryoheaters. Moreover, its generalization to the three dimensional

case is rather trivial: in fact, in the case of three dimensions, the norm at equation 5.8 can

be substituted by a function of the distance between the pixel z and the straight line (or the

segment) representing the probe and a priori restrictions on admissible values (insertion depth,

angle of tilt or positions) can be implemented as usual (see Section 5.2.1).
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(a) (b)

(c) (d)

Figure 5.8: Example of the initial distribution provided by the technique described in Section 5.3.1 in the

case of 11 freezing probes and with P = 36, Q = 19, q = 0.05, ξ = 0.5. (a) shows the pixels (blue points)

belonging to the target area, i.e. belonging to P; (b) represents the converged configuration Ū (blue stars)

with its corresponding regions Ψj with j=1,...,11 (delimitated by segments); in (c) Ū (stars) is plotted together

with Ug (empty circles); (d) shows the final configuration Ug.
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Mates of lunches, dinners, evenings but in particular coffee breaks: Paola Bisio, Andrea

Carbonaro, Michela Chessa, Stefano Gagliardo, Neeraj Kumar, Valeriano Lanza, Gian-

vittorio Luria, Lucia Mantovani, Renza Morino, Fabio Pasquali, Micol Spinelli, Matteo

Varbaro and many others.

• I wish to remind and to thank also the few persons met during summer schools and con-

ferences that shared with me tourist trips and good moments: Jerome Goddard, Hector



156 ACKNOWLEDGEMENTS

Chang and Andrea Ballerini (Delaware 2009), Gabriele Arnulfo, Raluca Andrei, Chiara

Olivieri and Saverio Salzo (Lipari 2009), Fabian Dunker and Frank Werner (College Sta-
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