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Abstract

In the framework of supervised learning we prove that the iterative algorithm introduced
in Umanità and Villa (2010) allows to estimate in a consistent way the relevant features of
the regression function under the a priori assumption that it admits a sparse representation
on a fixed dictionary.
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1. Introduction

In the context of supervised learning theory, this paper studies the consistency of
the algorithm proposed in Umanità and Villa (2010) in a deterministic framework. The
algorithm is an iterative procedure for the minimization of the `2-regularized empirical
error on the `1-ball with an early stopping rule where both the `1 and `2 norms are
computed with respect to a (possibly infinite) dictionary of functions.

Supervised learning refers to a process that builds a function that best represents
the relation between an input-output random pair (X, Y ), with values in X × Y , on the
base of a sample of n i.i.d. copies (X1, Y1), . . . , (Xn, Yn) of (X, Y ) (Vapnik (1998); Cucker
and Smale (2002b); Poggio and Smale (2003)). In this paper we assume that X is a
separable complete metric space and Y is a separable Hilbert space. The joint probability
distribution is unknown, but we know that the regression function f ∗(x) = E(Yi |Xi = x)
is of the form f ∗ =

∑
β∗sϕs with

∑
|β∗s | < +∞ and {ϕs}s∈Γ a family of (bounded)

functions from X to Y called dictionary.
Functions whose coefficient vector is in `1 are usually called sparse. The sparsity

of the regression function is an appropriate assumption in several relevant applications
(genomic data for example) and the problem of selecting a consistent estimator not only
for prediction, but also for variable selection, is a relevant topic. This roughly amounts
to ask the estimator being able to identify the features on which the regression function
depends, and this topic has been studied by many points of view. Recently much effort
has been devoted to the analysis of the case where the cardinality of the dictionary
is significantly bigger than the number of examples, or even infinite, as in our model.
In these situations, the classical Tikhonov regularization (Engl et al. (1996)) does not
perform well and the most popular approach is based on the Lasso technique (Tibshirani
(1996); Efron et al. (2004)): several related but different consistency properties of this
regularization procedure have been proved under various hypotheses (Chen et al. (1998);
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Candes and Tao (2007); Daubechies et al. (2004); Bunea (2008); Zhao and Yu (2006);
Van de Geer (2008)). Anyway it is known that Lasso has some drawbacks, especially
when there are correlated features. In fact, in this case different coefficients can give
the same representation of f ∗, and the Lasso tends to select only arbitrarily one non-
zero coefficient from each group of correlated features instead of all the relevant ones.
For this reason, other regularizing penalties have been proposed to select a particular
representation of f ∗ depending on the required properties on the solution. For example
the elastic-net penalty provides consistent and sparse estimators (De Mol et al. (2009))and
is thus preferable to the `1 - norm (Zou and Hastie (2005); Jin et al. (2009)). In fact,
such a penalty is a weighted sum of the `1-norm, enforcing sparsity, and the square of the
`2-norm of the vector coefficient, which promotes a grouping effect.

To estimate β∗ = (β∗s )s we use an iterative algorithm (βmλ,R,n)n with early stopping
based on the one proposed in Umanità and Villa (2010) and consisting in the (approxi-
mate) minimization

min
β∈BR

n∑
i=1

1

n

∥∥∥∥∥
(∑

s

βsϕs(Xi)

)
− Yi

∥∥∥∥∥
2

+ λ ‖β‖2
2 , (1)

on the `1-ball BR of radius R. Here we prove that, when the positive constant R is suitably
large, there exists a choice of m = mn and of the regularization parameter λ = λn such
that βmnλn,R,n

converges with probability one to β†R as the number of observations goes to

∞, where β†R is a regression vector of f ∗, i.e. f ∗ =
∑

s(β
†
R)sϕs. Note that the choice

of mn defines a stopping rule in the computation of the minimizer of (1), therefore the
proposed algorithm belongs to the class of early stopping methods.

Since in general the dictionary is not assumed to be linearly independent, there are
many different regression vectors, and the parameter R allows to move from the Lasso
estimator, to the elastic-net and the Tikhonov estimator. Moreover the convergence of
the algorithm on the coefficients ensures the consistency of the corresponding estimator
of f ∗.

Besides casting in a unified framework three different regularizing methods, this ap-
proach has the advantage of bypassing the problem of exactly computing the minimizer
of the regularized empirical risk, as it is usually needed. In fact, we directly show the
consistency of an approximation of this minimizer obtained through the application of a
suitably early stopping rule, and this is particularly relevant from the applications point
of view.

The paper is organized in the following way. In Sections 2 and Appendix Appendix
A, referring to De Mol et al. (2009), we introduce the mathematical setting of the problem
and the main tools we will use to solve it. In section 3 we propose the iterative projected
algorithm analyzed in Umanità and Villa (2010); Combettes and Wajs (2005); Fornasier
et al. (2008) to compute the solution of the constrained problem (1). Finally, through this
algorithm, we produce an estimator of the regression function and show its consistency
(Sections 3 and 4).

2. The model

In this section, following De Mol et al. (2009), we describe the general mathematical
framework to deal with the problem of estimating the regression function in the context
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of supervised statistical learning.
Let X be a separable complete metric space and Y a real separable Hilbert space

with norm and scalar product denoted by ‖ ‖ and 〈·, ·〉 respectively. Given a random
input-output pair (X, Y ) with probability distribution ρ, defined on the probability space
(Ω,F ,P) and taking values in the product X ×Y we assume that (X, Y ) fits the regression
model

Y = f ∗(X) +W,

where f ∗ : X → Y is a measurable function and W is a random noise in Y satisfying

E[W |X] = 0 (2)

E

[
exp

(
‖W‖
L

)
− ‖W‖

L
− 1 |X

]
≤ σ2

2L2
(3)

for some positive constants σ and L.
It follows from (2) that f ∗ : X → Y is the regression function, i.e. f ∗(x) = E[Y |X = x]
for almost all x ∈ X , while equation (3) implies (see Van der Vaart and Wellner (1996))

E[‖W‖m |X] ≤ 1

2
m!σ2Lm−2 ∀m ≥ 2. (4)

As mentioned in the introduction f ∗ is assumed to belong to a specific hypothesis
space H that we now describe.

Let (ϕs)s∈Γ be a countable dictionary of measurable features ϕs : X → Y such that

∀ x ∈ X κ(x) :=
∑
s∈Γ

|ϕs(x)|2 ≤ κ (5)

for some positive constant κ. Assumption (5) ensures that for any β ∈ `2(Γ) the
series

∑
s∈Γ βsϕs defines a bounded function fβ : X → Y (the series is summable in

Y uniformly on X ) and the set {fβ | β ∈ `2(Γ)} will be the hypothesis space of the
algorithm we propose. Our main assumption is that the regression function f ∗ admits a
sparse representation with respect to the dictionary {ϕs}, namely

f ∗ =
∑
s∈Γ

β∗sϕs for at least one β∗ ∈ `1(Γ). (6)

This implies that f ∗ belongs to the Hilbert space (De Mol et al. (2009))

H := {fβ :=
∑
s∈Γ

βsϕs : β ∈ `2(Γ)},

whose elements are bounded functions on X thanks to the inequality supx∈X |fβ(x)| ≤
κ1/2‖β‖2. Since we consider H as hypothesis space in which we search for an estimator of
f ∗, the map β 7→ fβ allows us to cast the problem in `2(Γ). Since the features {ϕs}s∈Γ

can be linearly dependent, the set of the regression vectors of f ∗

C = {β ∈ `2(Γ) : f ∗(X) =
∑
s∈Γ

βsϕs(X)} (7)
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(which β∗ belongs to) in general is not a singleton. As a consequence, different algorithms
can select different elements in C. The scheme we propose is the following.

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. copies of (X, Y ). For a fixed a positive parameter

R, for λ > 0 and positive constants (γ
(m)
n )m, we introduce a family of estimators of f ∗ by

setting {
β0
λ,R,n = 0

βm+1
λ,R,n = PR

[
(1− λγ(m)

n )βmλ,R,n + γ
(m)
n β̂mλ,R,n

]
,

(8)

where

(β̂mλ,R,n)s :=
1

n

n∑
i=1

〈Yi −
∑
g∈Γ

(βmλ,R,n)gϕg(Xi), ϕs(Xi)〉

and PR is the projection onto BR := {β ∈ `2(Γ) : ‖β‖1 ≤ R}, the `1-ball of radius R in
`2(Γ).

Defining
R∞ := min

β∈C
‖β‖1 , (9)

we show in the next section that, for R ≥ R∞ and for a suitable choice of m = mn and
λ = λn, the sequence (βmλ,R,n)n converges to the regression vector

β†R := argmin
C∩BR

‖β‖2
2 . (10)

Note that the condition R ≥ R∞ is necessary and sufficient to guarantee C ∩ BR 6= ∅.
Moreover, β†R is well defined since C and BR are closed and convex subspaces and ‖ · ‖2

2 is
coercive and strictly convex, so that the set of minimizers is nonempty and is reduced to
a singleton.

Remark 1. Hypothesis (6) guarantees C 6= ∅. On the other hand every β∗ ∈ C satisfies
(6), and (10) selects a unique element in C to which the algorithm converges. The choice
of R allows for choosing an appropriate regression vector of f ∗. In fact, varying the
parameter R, we can identify different features of f ∗ according to some available a priori
information on the solution. However R0 and R∞ are a priori information, and to develop
adaptive methods for the a posteriori estimate of these quantities would be an interesting
topic (see De Vito et al. (2010)).

As R grows, β†R ranges from the Lasso solution to the Tikhonov one passing through
the elastic-net. More precisely, β†R is respectively (see Theorem 8 of Umanità and Villa
(2010)):

1. the element of minimal `2-norm among the solutions of the `1-regularization, that
is

β†R = argmin
β∈M1

‖β‖2
2, if R = R∞,

where M1 := argminβ∈C ‖β‖1;

2. the Tikhonov representation of f ∗, namely

β†R = β† := argmin
C
‖β‖2

2 , if R ≥ R0 :=
∥∥β†∥∥

1
;
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3. the elastic-net representation of f ∗, i.e.

β†R = argmin
β∈C

pτ (β), if R∞ < R < R0,

where pτ (β) := 2τ‖β‖1 +‖β‖2
2 (see De Mol et al. (2009); Zou and Hastie (2005)). Of

course there is a relationship between R and τ , but such relationship is not explicit.
For a discussion of this fact see Fornasier et al. (2008); Umanità and Villa (2010).

3. Consistency for selection and prediction

This section is devoted to the rigorous statement of the main convergence results. We
start introducing some notations.

We denote by L2(Ω,P;Y) the Hilbert space of square-integrable random variables
taking values in Y with the usual L2-norm. Given f : X ×Y → Y a measurable function,
then

‖f(X, Y )‖2
P =

∫
X×Y
‖f(x, y)‖2dρ(x, y).

We denote by HS(`2) the Hilbert space of Hilbert-Schmidt operators on `2(Γ) endowed
with the norm ‖ · ‖HS.

For all ω ∈ Ω we define the following Hilbert-Schmidt operators

ΦP : `2(Γ)→ L2(Ω,P;Y), ΦPβ = fβ(X)

and
Φn(ω) : `2(Γ)→ Yn, (Φn(ω)) β = (fβ(X1(ω)), . . . , fβ(Xn(ω))) . (11)

The operators Φn(ω) and ΦP are well-defined thanks to the results in Subsection Ap-
pendix A of the Appendix. Moreover Φ∗PΦP ∈ HS(`2).

We can rewrite the family βmλ,R,n of estimators as{
β0
λ,R,n = 0

βm+1
λ,R,n(ω) = PR

[
(1− λγ(m)

n )βmλ,R,n(ω) + γ
(m)
n Φ∗n(ω)(Y(ω)− Φn(ω)βmλ,R,n(ω))

]
,

(12)

where Y = (Y1, . . . , Yn). In this way we obtain a family of random variables on `2(Γ).
This can be proved by induction using that the projection is continuous and the map
ω 7→ Φ∗n(ω)(Y(ω)− Φn(ω)βmλ,R,n(ω)) is measurable (see Lemma 11 in the Appendix).

In the following we will consider R ≥ R∞.

Theorem 2. Fix R ≥ R∞ and consider λ = λn ∈ (0, 1] satisfying limn λn = 0 and

limn

√
nλn(log n)−1 = +∞. Choose (γ

(m)
n )n,m such that

0 < γ := inf
n,m

γ(m)
n ≤ sup

n,m
γ(m)
n =: γ < 2/(1 + κ). (13)

Then there exists a sequence mn with limn→+∞mn = +∞ such that

lim
n→+∞

∥∥∥βmnλn,R,n
− β†R

∥∥∥
2

= 0 with probability 1, (14)

where βmnλn,R,n
is defined in (12) and β†R in (10).
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Remark 3. In order to have finite sample bounds it is necessary to have an estimate
of the approximation error in (19). Such a quantity depends on the a priori informa-
tion on β†R, given by the so called source conditions and a rate of convergence for the
approximation error cannot be obtained in the general case as proved in the “no free lunch
theorem”, Györfi et al. (2002). In the non-quadratic case the problem of determining
source counditions giving a rate of convergence of polynomial type is an open problem.
The theory is completely clear only in the quadratic case, see Cucker and Smale (2002a)
and the discussion in De Mol et al. (2009).

Remark 4. The hypothesis λn ∈ (0, 1] is not essential, and can be removed. In this

case the condition supn,m γ
(m)
n = γ < 2/(1 + κ) must be replaced with supn γ

(m)
n = γ <

2/(supλn + κ). Note that, since λn → 0, it follows 2/(supλn + κ) > 0. In a similar
way the initialization β0

λ,R,n = 0 simplifies the proofs, but is not mandatory, and can be
replaced with an arbitrary one, on condition that (β0

λ,R,n)n is bounded.

As a consequence of Theorem 2, we obtain consistency for prediction of the estimator
corresponding to the coefficients βmnλn,R,n

. We adapt the definition of a consistent estimator
to our context (see Def. 7.9 in Schervish (1995)).

Definition 5. We say that an estimator ω 7→ fn(ω) ∈ H of the regression function f ∗ is
consistent if

P
{
ω : lim

n
E
[
‖(fn(ω))(X)− f ∗(X)‖2] = 0

}
= 1.

Corollary 6. The map fn : Ω→ H given by

ω 7→ fβmnλn,R,n(ω) ∈ H,

where (mn)n and (λn)n are sequences obtained applying Theorem 2, is a consistent esti-
mator of f ∗.

Proof. Since (fn(ω))(X) = ΦP(βmnλn,R,n
(ω)) and f ∗(X) = ΦP(β†R) by (7) and the fact that

β†R ∈ C, we get

E
[
‖(fn(ω))(X)− f ∗(X)‖2] =

∥∥∥ΦP(βmnλn,R,n
(ω)− β†R)

∥∥∥2

P
≤ ‖ΦP‖2

∥∥∥βmnλn,R,n
(ω)− β†R

∥∥∥2

2
,

which converges to 0 with probability 1 by Theorem 2. Consistency is thus proved.

Some comments are in order. Theorem 2 provides the consistency for variable selection
of βmnλn,R,n

, which we measure in terms of the `2-norm. Putting together this result with
the consistency property stated in Corollary 6, we are able to exhibit a unique estimator
converging to the regression function whose coefficients are the asymptotic solutions of
the Tikhonov regularization, the elastic-net (see De Mol et al. (2009); Zou and Hastie
(2005)) and the Lasso respectively. Note that, usually the problem of consistency of the
Lasso regularization is rather complex to deal with because of the non uniqueness of the
minimal `1- norm solution; here, we bypass the problem obtaining an algorithm which
selects a particular element in the set of these solutions.
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3.1. Derivation of the algorithm

We conclude this section by proving that the choice of the constants γ
(m)
n in Theorem

2 allows us to view the proposed family of estimators {βmλ,R,n}m(for fixed n) as an approx-
imation in probability of the minimizer ω 7→ βλ,R,n(ω) on BR of the regularized empirical
risk Enλ (ω, ·) defined by

Enλ : Ω× `2(Γ) → [0,+∞)

(ω, β) 7→ ‖Φn(ω)(β)−Y(ω)‖2
n + λ ‖β‖2

2

. (15)

Note that βλ,R,n(ω) is well defined since Enλ (ω, ·) is a lower semicontinuous, coercive
and strictly convex functional for all ω ∈ Ω and BR is a closed and convex subset of `2(Γ).
In addition βλ,R,n is a random variable thanks to Rockafellar (1976), Theorem 2K.
It is a well known fact that βλ,R,n(ω) can be computed through the iterative projected
algorithm (which is a particular case of the forward-backward scheme)

βm+1
λ,R,n(ω) = PR

[
(1− λγ(m)

n (ω))βmλ,R,n(ω) + γ(m)
n (ω)Φ∗n(ω)(Y(ω)− Φn(ω)βmλ,R,n(ω)

]
(16)

with
0 < inf

m
γ(m)
n (ω) ≤ sup

m
γ(m)
n (ω) < 2/(‖Φ∗n(ω)Φn(ω)‖+ λ), (17)

since for fixed n, the sequence of random variables (βmλ,R,n)m is pointwise convergent to the
estimator βλ,R,n (see Combettes and Wajs (2005); Fornasier et al. (2008) and Theorem

6 in Umanità and Villa (2010)). Moreover, the possibility of choosing the step-size γ
(m)
n

adaptively improves the convergence rate (see Fornasier et al. (2008)).

Our algorithm (12) can be obtained by (16) taking the constants γ
(m)
n (ω) regardless of

ω and satisfying equation (13). Note that, in this way, γ
(m)
n (ω) := γ

(m)
n fulfills condition

(17) for all ω thanks to equation (A.9), and so (βmλ,R,n)m is pointwise convergent to βλ,R,n.

4. Proof of Theorem 2

We decompose the quantity in (14) in the sum of two terms, one being deterministic,
and the other depending on the sampling. Since

C = argmin
β∈`2(Γ)

‖ΦPβ − Y ‖2
P,

and β†R belongs to C, β†R minimizes the discrepancy ‖ΦPβ − Y ‖2
P on `2(Γ). Hence, as

usually happens in the inverse problems theory, β†R can be approximated by the unique
minimizer βλ,R on BR of the regularized expected risk Eλ, λ > 0, where

Eλ(β) = ‖ΦP(β)− Y ‖2
P + λ ‖β‖2

2 , β ∈ `2(Γ).

Therefore it is natural to consider the following decomposition:

‖βm+1
λ,R,n(ω)− β†R‖2 ≤ ‖βm+1

λ,R,n(ω)− βλ,R‖2 + ‖βλ,R − β†R‖2, (18)

for fixed ω ∈ Ω. The first term is an approximation of the so called sample error, while
the second is named approximation error. Regarding the latter, Theorem 44 of Dontchev
and Zolezzi (1993) gives

lim
λ→0
‖βλ,R − β†R‖2 = 0, (19)
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when R ≥ R∞, and Combettes and Wajs (2005); Umanità and Villa (2010) gives

βλ,R = PR [(1− λγ)βλ,R + γΦ∗P(Y − ΦPβλ,R)] (20)

for all γ ∈ R.

Next we bound the first term in (18).

Proposition 7. Consider λn ∈ (0, 1], γ̄ as in (13) and let

qn := max
{

1− γλn, γ̄ (λn + κ)− 1
}
. (21)

Then qn < 1 and for all ω ∈ Ω the quantity ‖βm+1
λ,R,n(ω)− βλ,R‖2 is bounded from above by

‖βλ,R‖2 q
m+1
n +

(
‖Φ∗n(ω)W(ω)‖2 + ‖βλ,R − β†R‖2 · ‖Φ∗n(ω)Φn(ω)− Φ∗PΦP‖HS

) γ̄

1− qn
,

where W(ω) := (W1(ω), . . . ,Wn(ω)), Wi := Yi − f ∗(Xi).

Proof. Fix ω ∈ Ω: since ω remains fixed in the whole proof, we omit the explicit depen-
dence on it in the following definitions. Fix n ∈ N and define a bounded operator A

(m)
n

on `2(Γ) by setting
A(m)
n :=

(
1− λγ(m)

n

)
I − γ(m)

n Φ∗nΦn.

If we consider

T (m)
n (β) := PR

[
(1− λγ(m)

n )β + γ(m)
n Φ∗n(Y − Φnβ)

]
= PR

[
A(m)
n β + γ(m)

n Φ∗nY
]
,

Tγ(β) := PR [(1− λγ)β + γΦ∗P(Y − ΦPβ)] , (γ > 0),

for all β ∈ `2(Γ), then βm+1
λ,R,n = T

(m)
n

(
βmλ,R,n

)
and βλ,R = Tγ(βλ,R) for all γ > 0 (by equation

(20)). Therefore,

‖βm+1
λ,R,n − βλ,R‖2 ≤ ‖T (m)

n

(
βmλ,R,n

)
− T (m)

n (βλ,R)‖2 + ‖T (m)
n (βλ,R)− βλ,R‖2

≤ ‖A(m)
n ‖ · ‖βmλ,R,n − βλ,R‖2 + ‖T (m)

n (βλ,R)− βλ,R‖2 (22)

thanks to the non-expansiveness of PR. Choosing γ = γ
(m)
n we have

‖T (m)
n (βλ,R)− βλ,R‖2 = ‖T (m)

n (βλ,R)− T
γ
(m)
n

(βλ,R)‖2

≤ γ(m)
n ‖Φ∗nY − Φ∗PY − (Φ∗nΦn − Φ∗PΦP) βλ,R‖2;

now, since Y = f ∗(X) + W = ΦPβ
†
R + W by (10) and Φ∗PW = 0 by assumption (2), we

get
Φ∗PY = Φ∗PΦPβ

†
R

and by (A.9)
Φ∗nY = Φ∗nΦnβ

†
R + Φ∗nW,
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so that

‖T (m)
n (βλ,R)− βλ,R‖2 ≤ γ(m)

n ‖ (Φ∗nΦn − Φ∗PΦP) (β†R − βλ,R) + Φ∗nW‖
≤ γ(m)

n ‖Φ∗nΦn − Φ∗PΦP‖HS · ‖βλ,R − β†R‖2

+ γ(m)
n ‖Φ∗nW‖2.

Substituting in equation (22) we obtain

‖βm+1
λ,R,n − βλ,R‖2 ≤ ‖A(m)

n ‖ · ‖βmλ,R,n − βλ,R‖2 + γ(m)
n ‖Φ∗nΦn − Φ∗PΦP‖HS · ‖βλ,R − β†R‖2

+ γ(m)
n ‖Φ∗nW‖2.

Iterating and recalling that β0
λ,R,n = 0 we get

‖βm+1
λ,R,n − βλ,R‖2 ≤

m∏
j=0

‖A(j)
n ‖ · ‖βλ,R‖2

+
(
‖Φ∗nW‖2 + ‖Φ∗nΦn − Φ∗PΦP‖HS‖βλ,R − β†R‖2

)
·

·

(
γ(m)
n +

m−1∑
j=0

γ(j)
n

m∏
k=j+1

‖A(k)
n ‖

)
. (23)

On the other hand it holds

‖A(k)
n ‖ =

∥∥(1− λnγ(k)
n

)
I − γ(k)

n (Φ∗nΦn)
∥∥

≤ max
{∣∣1− γλn∣∣ , |1− γ̄ (λn + κ)|

}
,

where the second bound holds for all k ∈ N and ω ∈ Ω thanks to Proposition 10 in
Appendix. Evaluating explicitly the maximum in the previous equation we get

‖A(k)
n ‖ ≤ max

{
1− γλn, γ̄ (λn + κ)− 1

}
= qn

for all k. By (13) it immediately follows that qn < 1. Finally, we have

m−1∑
j=0

γ(j)
n

m∏
k=j+1

‖A(k)
n ‖2 + γ(mn)

n ≤
m∑
j=0

γ̄qm−jn = γ̄
1− qm+1

n

1− qn
≤ γ̄

1

1− qn
. (24)

Substituting in inequality (23) we get the thesis.

We can now prove Theorem 2.

Proof. Let (qn)n ⊆ (0, 1) be the sequence defined in Proposition 7. Since

lim
m→+∞

qmn = 0 for all n ∈ N,

via a diagonal procedure, it is possible to select a subsequence (mn)n such that

lim
n→+∞

qmnn = 0.
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By the triangular inequality we have (see equations (19) and (20))

‖βmnλn,R,n
− β†R‖2 ≤ ‖βmnλn,R,n

− βλn,R‖2 + ‖βλn,R − β
†
R‖2,

where limn ‖βλn,R − β†R‖2 = 0 by equation (19). Therefore, it is enough to prove that
limn ‖βmnλn,R,n

− βλn,R‖2 = 0 with probability 1.
Proposition 7 allows us to bound from above the quantity ‖βmnλn,R,n

(ω)− βλn,R‖2 by

q(mn+1)
n ‖βλ,R‖2 +

(
‖Φ∗n(ω)W(ω)‖2 + ‖Φ∗n(ω)Φn(ω)− Φ∗PΦP‖HS‖βλn,R − β

†
R‖2

) γ̄

1− qn
,

where the first term goes to zero for n→∞. Denoting by M := supn≥1 ‖βλn,R−β
†
R‖2 <∞

(see equation (19)), the second term in the above equation is smaller than( √
n

log n
‖Φ∗n(ω)W(ω)‖2 +

√
n

log n
‖Φ∗n(ω)Φn(ω)− Φ∗PΦP‖HSM

)
log n√
n

γ̄

1− qn
,

and

lim
n

√
n

log n
‖Φ∗n(ω)W(ω)‖2 = lim

n

√
n

log n
‖Φ∗n(ω)Φn(ω)− Φ∗PΦP‖HS = 0

with probability 1 thanks to Corollary 13. Finally, since the definition of qn in (21) gives
√
n

log n
(1− qn) =

√
n

log n
min

{
γλn, 2− γ̄(λn + κ)

}
,

the assumptions on λn and (13) imply
√
n(1− qn)/ log n→∞, so that we can conclude

lim
n
‖βmnλn,R,n

− β†R‖2 = 0 with probability 1.

Appendix A. Auxiliary results

In this section we reported some statements and proofs of known facts for the sake of
completeness.

We introduce the map Φx : `2(Γ)→ Y by setting

Φxβ := fβ(x), x ∈ X , β ∈ `2(Γ). (A.1)

In particular from Proposition 3 and Lemma 1 in De Mol et al. (2009), for every x ∈ X
the map Φx is a Hilbert-Schmidt operator such that

tr(Φ∗xΦx) = tr(ΦxΦ
∗
x) = κ(x) ≤ κ (A.2)

and its adjoint Φ∗x : Y → `2(Γ) is given by:

(Φ∗xy)γ := 〈y, ϕγ(x)〉 , y ∈ Y , s ∈ Γ. (A.3)

Moreover we will consider the maps

ΦXβ : Ω→ Y , ΦXβ := fβ ◦X
Φ∗XZ : Ω→ `2(Γ), (Φ∗XZ) (ω) = Φ∗X(ω)(Z(ω))

for all ω ∈ Ω, β ∈ `2(Γ) and random variables Z : Ω→ Y .

10



Remark 8. The functions defined above are well defined random variables.

Proof. Concerning ΦXβ, it is enough to prove its measurability. By definition we have
ΦXβ(ω) =

∑
γ∈Γ βγϕγ(X(ω)). Since the functions ϕγ and X are measurable, the same

holds for ΦXβ.
The measurability of Φ∗XZ follows from the fact that the map ω 7→ 〈y,Φ∗X(Z)(ω)〉 is

measurable for each y ∈ `2(Γ) and `2(Γ) is a separable space.

Below we recall some useful results shown in De Mol et al. (2009) (see Lemma 1 and
Proposition 1).

Proposition 9. The following facts hold.

1. For all β ∈ `2(Γ), ΦXβ belongs to L2(Ω,P;Y) and

ΦP : `2(Γ)→ L2(Ω,P;Y), ΦPβ = ΦXβ

is a Hilbert-Schmidt operator such that

tr(Φ∗PΦP) = tr(ΦPΦ∗P) = E[κ(X)] ≤ κ. (A.4)

2. Φ∗XΦX : Ω → HS(`2), defined by setting Φ∗XΦX(ω) := Φ∗X(ω)ΦX(ω) is a random
variable with

E[Φ∗XΦX ] = Φ∗PΦP. (A.5)

3. Y belongs to L2(Ω,P;Y), Φ∗XY has finite expectation and

Φ∗PY = E[Φ∗XY ] (A.6)

(Φ∗PY )γ = E[〈Y, ϕγ(X)〉] (A.7)

(Φ∗PΦPβ)γ = E[〈ΦPβ, ϕγ(X)〉]. (A.8)

Proof. We only prove in details the measurability of the map Φ∗XΦX ; all the other proofs
can be found in De Mol et al. (2009) (see Lemma 1 and Proposition 1). In order to
get measurability, since HS(`2) is a separable Hilbert space, it is enough to prove that
ω 7→ [Φ∗X(ω)(ΦX(ω))β]γ = 〈

∑
i∈Γ βiϕi(X(ω)), ϕγ(X(ω))〉 is measurable for each β ∈ `2(Γ),

γ ∈ Γ. This follows from the measurability of ϕγ and of the scalar product.

Let now (X1, Y1), . . . , (Xn, Yn) be n-observed i.i.d. copies of (X, Y ), and consider the
Hilbert space Yn with the scalar product

〈(z1, . . . , zn), (w1, . . . , wn)〉n :=
1

n

n∑
i=1

〈zi, wi〉 .

Proposition 10. For all ω ∈ Ω the map Φn(ω) defined in (11) is a Hilbert-Schmidt
operator with adjoint Φn(ω)∗ : Yn → `2(Γ) given by

Φn(ω)∗(z1, . . . , zn) =
1

n

n∑
i=1

Φ∗Xi(ω)zi.
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Moreover, the random variable

Φ∗nΦn : Ω→ HS(`2)

satisfies

Φ∗nΦn =
1

n

n∑
i=1

Φ∗XiΦXi , tr((Φ∗nΦn)(ω)) =
1

n

n∑
i=1

κ(Xi) ≤ κ. (A.9)

Proof. Since

∑
s∈Γ

‖ (Φn(ω)) eγ‖2
n =

∑
s∈Γ

1

n

n∑
i=1

‖(ΦXieγ)(ω)‖2 =
1

n

n∑
i=1

tr(Φ∗Xi(ω)ΦXi(ω))

=
1

n

n∑
i=1

κ(Xi(ω)) ≤ κ

by equation (A.2), any Φn(ω) is a Hilbert-Schmidt operator and the second equation in
(A.9) is fulfilled.

Given (z1, . . . , zn) ∈ Yn and β ∈ `2(Γ) we have

〈Φn(ω)∗(z1, . . . , zn), β〉2 = 〈(z1, . . . , zn),Φn(ω)β〉n =
1

n

n∑
i=1

〈
zi,ΦXi(ω)β

〉
=

n∑
i=1

〈
Φ∗Xi(ω)zi, β

〉
2
,

so that Φn(ω)∗(z1, . . . , zn) = 1
n

∑n
i=1 Φ∗Xi(ω)zi.

Finally,

((Φ∗nΦn)(ω)) β = (Φn(ω)∗Φn(ω)) β =
1

n

n∑
i=1

Φ∗Xi(ω)ΦXi(ω)β =
1

n

n∑
i=1

(
(Φ∗XiΦXi)(ω)

)
β

holds for every ω ∈ Ω and β ∈ `2(Γ), and so first equation (A.9) follows.

In order to prove that the proposed estimators βmλ,R,n are random variables in `2(Γ),
we need the following result.

Lemma 11. Given the random variables α : Ω→ `2(Γ) and Z = (Z1, . . . , Zn) : Ω→ Yn,
the following maps are random variables too:

Φnα : Ω→ Yn, (Φnα)(ω) := (Φn(ω))α(ω)

Φ∗nZ : Ω→ `2(Γ), (Φ∗nZ) (ω) := (Φ∗n(ω)) Z(ω).
(A.10)

The proof is similar to remark 8.

In the proof of Theorem 2 we use the following result based on the concentration
inequalities in Hilbert spaces and showed in Pinelis (1999).
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Lemma 12. Let (ξi)
n
i=1 be a sequence of i.i.d. zero mean random variables with values in

a real separable Hilbert space such that

E[‖ξi‖m] ≤ 1

2
m!M2Hm−2 ∀m ≥ 2, (A.11)

with M and H positive constants. Then,

lim
n

1√
n log n

∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥ = 0

with probability 1.

Proof. Theorem 8.6 in Pinelis (1994) (see also Pinelis (1999)) assures that, for all n ≥ 1
and ε > 0, the inequality

P

(∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥ ≥ ε

)
≤ 2e

− nε2

M2+Hε+M
√
M2+2Hε

holds. Therefore, given ε > 0, we also obtain

P

(
1√

n log n

∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥ ≥ ε

)
= P

(∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥ ≥ ε
log n√
n

)
≤ 2e−A(n,ε) = 2

(
1

n

)A(n,ε)
logn

,

with

A(n, ε) :=
ε2(log n)2

M2 +Hε logn√
n

+M
√
M2 + 2Hε logn√

n

.

It follows that ∑
n≥1

P

(
1√

n log n

∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥ ≥ ε

)
≤ 2

∑
n≥1

(
1

n

)A(n,ε)
logn

.

Since
A(n, ε)

log n
=

ε2 log n

M2 +Hε logn√
n

+M
√
M2 + 2Hε logn√

n

tends to +∞, the series
∑

n≥1

(
1
n

)A(n,ε)
logn is convergent, and then the Borel-Cantelli lemma

gives the thesis.

Corollary 13. Given W = (W1, . . .Wn) as in Proposition 7, we have

P
(

lim
n

√
n

log n
‖Φ∗n(ω)W(ω)‖2 = 0

)
= P

(
lim
n

√
n

log n
‖Φ∗n(ω)Φn(ω)− Φ∗PΦP‖HS = 0

)
= 1.

Proof. Proposition 10 implies

Φ∗nW =
1

n

n∑
i=1

Φ∗XiWi, Φ∗nΦn − Φ∗PΦP =
1

n

n∑
i=1

(
Φ∗XiΦXi − Φ∗PΦP

)
.
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Now, since X1, . . . , Xn are i.i.d. and

E[Φ∗XiWi] = E[E[Φ∗XiWi |Xi ]] = 0

E[Φ∗XiΦXi ] = Φ∗PΦP

by Proposition 9 and assumption (2), the random variables
{

Φ∗XiWi

}
i
and

{
Φ∗XiΦXi − Φ∗PΦP

}
i

are i.i.d. and have zero mean. Moreover, for all m ≥ 2 they satisfy

E[
∥∥Φ∗XiWi

∥∥m
2

] = E[(
∑
s∈Γ

| 〈ϕγ(Xi),Wi〉 |2)m/2] ≤ κm/2E[‖Wi‖m] ≤ κm/2
m!

2
σ2Lm−2

thanks to (5) and (4), and

E[
∥∥Φ∗XiΦXi − Φ∗PΦP

∥∥m
HS

] ≤ (2κ)m ≤ m!

2
(2κ)2κm−2

since ∥∥Φ∗XiΦXi

∥∥
HS
≤ tr(Φ∗XiΦXi) ≤ κ, ‖Φ∗PΦP‖HS ≤ tr(Φ∗PΦP) ≤ κ

(see (A.2), (A.4)) and the inequality 2m−1 ≤ m! holds.
Applying Lemma 12 to variables Φ∗XiWi and Φ∗XiΦXi − Φ∗PΦP we get the thesis.
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